
A Unified Programming Model for Time- and
Data-Driven Embedded Applications

Gabriela Breaban∗, Sander Stuijk∗, Kees Goossens∗†
∗Eindhoven University of Technology, The Netherlands

{g.breaban,s.stuijk,k.g.w.goossens}@tue.nl
†Topic Embedded Products, The Netherlands

Abstract—Modern embedded systems encompass a fast-
increasing range of applications, spanning from automotive to
multimedia, and industrial automation. To tackle the increasing
design complexity, the model-based design paradigm promotes
the use of Models of Computation (MoCs) to capture the essential
application properties. Existing MoCs are split between the
event/time-triggered paradigm and the data-driven paradigm.
However, time and data are two inter-related dimensions that
are essential for defining the correct application behavior.

In this paper we advocate a unified MoC that integrates the
notions of time and data while accounting for imperfect clocks.
We present the formal properties of our model and show how
the Synchronous Data Flow (SDF) MoC can be used to analyze
the time performance guarantees.

I. INTRODUCTION

Embedded applications are found today in an increasing
number of fields, from the cyber-physical domain to multi-
media and Internet of Things (IoT). Embedded applications
interact with the surrounding environment from which they
receive inputs, they process them and produce outputs that are
used by the environment. In the digital domain, the inputs and
outputs take the form of data samples.

Traditionally, embedded systems have been seen as event-
triggered [1] due to the use of mechanisms such as interrupts
for interacting with internal as well as external components.
Following the introduction of the Time-Triggered Architec-
ture [2], that relies on a shared notion of time between
the interconnected processors, the time-triggered paradigm
emerged as a viable option for safety-critical systems [3]. On
the other hand, applications that do not rely on a global notion
of time are described using a data-driven paradigm [4]. Hence
the primary concepts that form the foundations for describing
embedded systems are events, time and data.

Model-based design [5] advocates the use of abstract models
to achieve a correct-by-construction design methodology. A
large number of MoCs have been defined in the embedded
systems literature. Since event- and time-triggered MoCs offer
a total order of the events that occur in the system, they
are classified as timed models. On the other hand, Dataflow
models do not incorporate a notion of time and provide a
partial order of the events, and are therefore classified as
untimed models [6]. Although later extensions of the original
Dataflow model included actor execution times for timing
analysis purposes [7], [8], the execution semantics maintained
data as the only trigger mechanism for the actors. Time and

data, as possible execution trigger mechanisms, need to be
reconciled in a meaningful manner. While the use of time
triggers ensures a uniform and predictable timing, data triggers
optimize the throughput and latency. Another important obser-
vation is that the explicit inclusion of time in the semantics of
time-triggered MoCs came together with the assumption that
a clock synchronization mechanism is in place to offer the
common notion of time. Since precise clock synchronization
can be costly to implement, alternative architectures have been
defined that tolerate bounded clock imperfections [9].

In this paper we propose a unified model of computation
that subsumes the time-triggered and dataflow paradigms. It
extends the time-triggered notion of a period by allowing
offsets that enhances pipelining, it supports multi-rates, and
it offers a protocol that tolerates clock jitter, while ensuring
the preservation of the semantics. Due to its extended view
of time, the model naturally supports a range of HW architec-
tures from Time-Triggered Architecture (TTA), Loosely Time-
Triggered Architecture (LTTA) to Globally Asynchronous
Locally Synchronous (GALS). The present paper is intended
as a formalization of the proposed model, and the proof of
concept using real applications is part of future work. The
remaining part of the paper is organized as follows: Section II
presents the related work, Section III introduces the structure
of the model and the operational semantics, Section IV proves
the equivalence between our model and SDF and Giotto,
respectively, Section V shows how the model can be analyzed
and Section VI concludes the paper.

II. RELATED WORK

Eker et al. propose in [10] a hierarchical modeling frame-
work that tackles the heterogeneous nature of cyber-physical
systems at subsystem level. The system to be designed is seen
as a composition of subsystems residing in different domains,
modeled by distinct MoCs, that interact via communication
interfaces. The authors address the problem of semantic com-
patibility of the composed MoCs at the communication level to
ensure a well-defined model behavior. Our work, by contrast,
does not aim at combining existing MoCs but rather at defining
a model that is a union of a time-based MoC and a data-based
MoC, while also tolerating imperfect clocks.

Arumi et al. propose in [11] an extension of the SDF
MoC for the so-called callback-based architecture in which
the application receives its input data through time-triggered



interrupts. The extension consists of explicitly distinguishing
between time-triggered input actors, deadline-based output
actors and untimed actors. Simillarly, our model distinguishes
between sources, sinks and intermediate tasks. However, it is
not restricted to a given architecture, and it allows an extended
view of time (including offsets and support for clock jitter).

Benveniste et al. propose in [9] two protocols to tolerate
clock jitter while preserving synchronous execution semantics.
The first protocol is based on elastic circuits and the notion
of back-pressure and the second one is time-based and allows
for non-blocking communication. The protocol we propose in
this paper is inspired by the back-pressure protocol, as it uses
finite FIFO channels for communication between components
whose clocks experience individual jitter. However our model
operates at a higher granularity as it allows for multi-rates and
different periods of the communicating components.

Ali et al. try to bridge the gap between traditional real-
time applications and Dataflow applications by proposing
in [12] an algorithm for extracting real-time parameters from
Homogeneous Synchronous Data Flow (HSDF) graphs in
order to use them in real-time scheduling algorithms. The task
real-time parameters, that comprise offset, period, deadline
and execution time, are derived based on end-to-end latency
constraints. In comparison, our model allows the coexistance
of all the previously mentioned real-time parameters together
with the Dataflow properties in a unified manner, so that either
real-time scheduling algorithms or static Dataflow scheduling
can be applied, depending on the specific structure of the
application. However, we advocate the explicit support of
different types of hardware platforms such as TTA, LTTA and
GALS, as the notions of time and data are not equally enforced
on each one of them.

III. MODEL STRUCTURE AND OPERATIONAL SEMANTICS

A. Model Components

The components of our MoC are: clocks, tasks, sources,
sinks and communication channels. We will exemplify each
component using the example application in Figure 1.

A clock is a time source, that provides an infinite series
of clock ticks, separated by the clock period. When a system
comprises multiple clocks, the duration of each clock period
will experience variation over time due to physical phenomena
such as jitter or drift. This can be a problem when a common
notion of time is required by the application semantics. To

�� ��
���

��
���

��
���

��

�	
���

�





� �







� �





�








�





�

�




�




���

���

�




���
�
����
�

���
�
���
�
��

���
���
�
����
�
����
�


�
�
�
�
�

�




��


�
�
�
�
�

�




�




Fig. 1. Running Example

counteract it, a clock synchronization algorithm can be used
to obtain a single time unit.

We allow for two types of clocks. The application can
have a set of clocks that are perfectly synchronized with each
other (e.g. using clock synchronization) effectively providing a
single time unit reflected by the clock period. Alternatively, we
consider the case when the clocks are affected by jitter (and
not drift) and are not synchronized. Jitter causes a bounded
variation of the clock period, so the clock can be characterized
by a minimum and a maximum clock period. In our model
we only consider the maximum clock period, since the aim is
to provide worst-case guarantees for throughput and latency.
These two types of clocks cannot coexist in a single model:
either all the clocks are synchronized or they all experience
jitter. In order to measure and compare distinct clock periods
and their jitter, we need an external precise time reference. In
this paper, we assume that this reference is the wall time.

Definition 1. (Synchronized Clock) A synchronized clock c is
a component that has a period p such that tc(n+1)−tc(n) =
p, ∀n ∈ N, where n is the clock tick index and tc(n) is the
instant of the n’th tick.

When all the clocks in a system are synchronized, the actual
period p can be abstracted away, as all the remaining time-
related notions can be expressed as a multiple of the same
time unit that is equal to p. Figure 1 shows a synchronized
clock CK1 with a period of 1 time unit.

Definition 2. (Jittery Clock) A jittery clock c has a maximum
period pmax = p+j such that p−j ≤ tc(n+1)−tc(n) ≤ p+j,
∀n ∈ N, where n is the clock tick index, tc(n) is the instant of
the n’th tick, p is the nominal clock period and j is the jitter.

Given a clock c of type synchronized or jittery, let
crtT ime(c, t) ∈ N be a function that returns the total number
of clock ticks at time t ≥ 0.

A third concept that we include in our model to express
time is the offset. An offset represents an initial delay with
respect to a time instant.

Definition 3. (Offset) Given a clock tick at time instant ti, an
offset o will produce a tick at time instant to = ti + o.

The processing components in our model are called tasks.

Definition 4. (Task) A task is a tuple τ =
(I, U, e, pr, or, pw, ow), where I is a finite set of input
ports, U is a finite set of output ports, e is the execution
time, pr and pw are read and write periods, or and ow are
read and write offsets. e, pr, or, pw, ow ∈ N are expressed as
a multiple of a given time unit p, where p is the (maximum)
period of a clock c. Let taskClk : T → C, where C is a set
of clocks (synchronized or jittery) and T is a set of tasks, be
a function that returns the clock c associated with task τ .

Each input/output port has a positive integer number associ-
ated with it called rate. Given a set of ports P , let r : P → N>0

be a function that returns the rate of a port p ∈ P . Further,



we will write p ∈ a to mean that port p belongs to a
task/source/sink a.

The read/write period and offsets are optional and they only
need to be specified when the task is required to read or write
data periodically. We write Px = ∅, Ox = ∅, x ∈ {w, r} to
mean that the read/write period and offset are not defined.

The example application in Figure 1 contains four tasks, t1
to t4. Task t1 has a read period of 6 and read offset of 0. Task
t3 has a write period of 9 and write offset of 10, and task t4
has a read and a write period, both equal to 6 and read and
write offset of 1 and 3 respectively. Note that when both a
read and a write period are defined for the same task, they
have to be equal. The time unit is given by clock CK1. Task
execution times are shown between square brackets.

The application receives data in the form of samples from
sources, it processes it and sends the resulting output samples
to data sinks. We assume that all sources are periodic and their
period and offset are known.

Definition 5. (Source) A source is a tuple s = (U, ps, os)
where U is a set of output ports, ps is the source period and
os is the offset. Let srcClk : S → C, where C is a set of
clocks (synchronized or jittery) and S is a set of sources, be
a function that returns the clock c associated with source s,
that gives the time unit for ps and os.

The period and offset (potentially 0) are mandatory proper-
ties for a source.

Definition 6. (Sink) A sink is a tuple d = (I, pd, od, e) where
I is a set of input ports, pd is the sink period, od is the offset
and e is the execution time. Let sinkClk : D → C, where C
is a set of clocks (synchronized or jittery) and D is a set of
sinks, be a function that returns the clock c associated with
sink d, that gives the time unit for pd and od.

The sink period and offset are not mandatory properties.
Figure 1 shows a source s1 with a period of 6 and offset 0,

source s2 with the period of 6 and offset 1, and a sink d1.
The tasks, sources and sinks communicate data via channels.

A channel expresses a data dependency between a task/source
and another task/sink.

Definition 7. (Channel) A channel is a tuple γ = (u, i), γ ∈ Γ
where u is an output port and i is an input port, such that
∀γi = (ui, ii) ∈ Γ, γi 6= γ =⇒ ui 6= u ∧ ii 6= i. Given a
channel γ, let q(γ, t) be a function that returns the number of
data samples present in channel γ at time instant t.

The above channel definition allows an input/output port to
be connected to only a single communication channel. In our
model the communication channels are assumed to be First In
First Out (FIFO) memories characterized by destructive reads
and non-destructive writes. A destructive read means that after
reading a sample, the space occupied by the sample is freed. A
non-destructive write means that a write operation will block
until there is sufficient free space in the FIFO. In Figure 1,
the channels are shown as arrows. The FIFO size is assumed
to be infinite by the model. However, at design time, the finite

size has to be properly dimensioned based on the known write
and read frequencies at the output and input ports.

Definition 8. (Application) An application is a tuple A =
(T,Γ, C, S,D), where T is a set of concurrent tasks, Γ is a
set of communication channels, C is a set of clocks, S is a set
of sources and D is a set of sinks.

We define two criteria for an application to be valid. The
first criterion is called data consistency and the second one
is called time consistency.

Data consistency is a concept inherited from synchronous
dataflow [4]. We present it here briefly. For in depth details
we refer the reader to [13].

Definition 9. (Balance Equations) A balance equation is
defined for a communication channel (u, i) connecting an
output data port u with an input data port i as follows:

r(u) · f(a) = r(i) · f(b), po ∈ a, pi ∈ b (1)

where a is a task/source and b is a task/sink, r(u), r(i) are
the rates of ports u, i.

After writing the balance equations for all the data channels,
at least a solution has to be found for all the quatities denoted
f(k), where k denotes the task/source/sink connected to the
corresponding port. We will call the minimum solution for
f(k) the repetition value of k. When a solution cannot be
found, we say that the aplication specification is inconsistent
and it cannot be analyzed.

Definition 10. (Data consistency) Given an application
(T,Γ, C, S,D) and a set of balance equations for all channels
c ∈ C, we say that the application is data consistent if a
solution can be found to the set of balance equations.

When the application includes read/write periods for the
tasks, sources and sinks, the periods require also a consistency
check called time consistency. Let us define this concept for
the case of synchronized clocks.

Definition 11. (Time consistency) Given an application
(T,Γ, C, S,D) and ∃ Tp ⊂ T such that ∀τ ∈ Tp, τ has a read
period pr and/or a write period pw defined and ∃ Dp ⊂ D
such that ∀d ∈ Dp, pd 6= ∅, then time consistency is defined
as follows:

pu1
· f(w1) = .. = pun

· f(wn),∀wi ∈ {S, Tp, Dp} (2)

In the equation above wi is either a source, a periodic task
or sink, pui

is its (read/write) period, and f(wi) represent
the repetition value of component wi, as obtained in the data
consistency check. When a task has both a read and a write
period, they both need to be included in the equality.

Data and time consistency ensure that the application execu-
tion consists of a repetitive state with respect to time and data.
The strict periodicity of tasks can only be obtained when a
single notion of time exists. For jittery clocks, time consistency
is explained in Subsection III-C.



B. Operational Semantics for Synchronized Clocks

A clock provides a time unit for the tasks and sources. When
all the clocks of an application are synchronized they provide
the same time unit. This subsection presents the operational
semantics for the tasks, sources and sinks in this specific case.
Further, the following set of assumptions have to hold:

Assumption 1 : Every data sample in a communication
channel is written and read exactly once.

This assumption is in fact a consequence of having FIFO
communication channels in which a data sample can only be
read after it has been written and a new sample can be writen
in the same location after the previous sample has been read.

Assumption 2 : For every task τ with a read period pr and
offset or, sufficient data samples are present on each of its
input channels at the time instants or +k ·pr, k ≥ 0, with the
time unit given by a synchronized clock c = taskClk(τ).

Definition 12. (Task Invocation) The execution of a task
τ = (I, U, e, pr, or, pw, ow) is called task invocation. A task
invocation τ [k], k ≥ 0 consists of the following steps:

1) Evaluate the read condition:

a) Data-driven Read: if pr = ∅ ∧ or = ∅ then, given a
set of channels Γi such that ∀pi ∈ I, ∃ γ = (u, i) ∈
Γi, pi = i we say that the read condition of τ [k]
evaluates to true if q(γ, t) ≥ r(pi).

b) Time-driven Read: if pr 6= ∅ ∧ or 6= ∅ then
the read condition of τ [k] evaluates to true when
crtT ime(c, t) = k · pr + or, c = taskClk(τ).

2) Read phase: If the read condition of τ [k] evaluates to
true, then given the set of channels Γi connected to task
input ports such that ∀pi ∈ I, ∃ γ = (u, i) ∈ Γi, pi = i,
the read phase of τ [k] will remove a number of samples
equal to r(pi) from each γ ∈ Γi.

3) Process phase: in this phase the task uses the read input
data and executes for a time duration equal to e.

4) Evaluate the write condition:

a) Data-driven Write: if pw = ∅ ∧ ow = ∅ then the
write condition of τ [k] always evaluates to true

b) Time-driven Write: if pw 6= ∅ ∧ ow 6= ∅ then
the write condition of τ [k] evaluates to true when
crtT ime(c, t) = k · pw + ow, c = taskClk(τ).

5) Write phase: If the write condition of τ [k] evaluates to
true, then given the set of channels Γo connected to task
output ports such that ∀pu ∈ U, ∃ γ = (u, i) ∈ Γo, pu =
u, the write phase of τ will add a number of samples
equal to r(pu) into each γ ∈ Γo.

Both the read and write conditions are blocking, meaning
that the read and write phase only take place after the
corresponding condition evaluates to true.

Also note that the read condition in step 1) represents a
necessary condition for the next step, and not a sufficient
condition. In other words, when an application is executed
on a platform, the scheduler can always postpone a task
invocation for which the read condition evaluates to true.

����� �����

�����

�����

�������	
������ ���
	���

��	

��	

Fig. 2. Jitter Effects

Hence the sufficient condition for a executing a task invocation
is ultimately given by the scheduler.

The execution of the sources and the sinks is also called in-
vocation. A source will write on each output port a number of
samples equal to the port rate, as specified by Definition 5. A
sink, on the other hand, will read on each invocation a number
of samples equal to the port rate, when the corresponding read
condition evaluates to true, and if an execution time is defined,
then the read phase will be followed by a process phase.

C. Accounting for clock jitter

A common notion of time ensures deterministic communi-
cation. This means that for two communicating time-driven
tasks, τ1 and τ2, for which the j-th invocation of τ2 reads
the data written by the i-th invocation of τ1, i ≥ j, the time-
driven write phase of the i-th invocation of τ1 always precedes
the time-driven read phase of the j-th invocation of τ2. This
precedence can be achieved when both tasks share the same
notion of time. Clock jitter determines random variation of the
clock period. Hence, when the two tasks are driven by distinct
jittery clocks, the above mentioned precedence can be violated
due to independent period variation of the individual clocks,
leading to non-deterministic communication.

When the time-driven communication is realized via FIFOs,
clock jitter can lead to two cases: the reader might either
attempt to read the data before it has been written (when the
reader’s clock is too fast) or, in the opposite case, the writer
might attempt to overwrite data that hasn’t been read yet (when
the writer’s clock clock is too fast). The former case can lead to
FIFO underflow and the latter to overflow. Figure 2 illustrates
these two cases for a one-place FIFO. The k-th invocation
of the reader, rd[k] is supposed to access the data written by
the k-th invocation of the writer, wr[k], k = 0,1,2. The arrows
labelled wr[1] and rd[1] show the case when none of the clocks
experiences jitter and the reader can access the data right after
it was written. rdearly[1] shows the situation when the reader
attempts to read the data before it was written and rdlate[1]
shows the opposite case when the writter overwrites the data
from invocation wr[1] before rdlate[1] occurs.

To overcome the effects of jitter for unsynchronized clocks
on time-triggered architectures, we propose a protocol inspired
by [14] that prevents FIFO under- and overflow. The protocol
is called back-pressure-based protocol and it is based on the
use of elastic circuits together with a skipping mechanism.
An elastic circuit is, effectively, a FIFO, while a skipping
mechanism allows for the FIFO to be polled by a local clock.



At the reader side, polling ensures that the read phase will
only occur after the writer produced the necessary amount of
data, therefore preventing underflow. At the writer side, back-
pressure ensures that the writer will only attempt to write new
samples after the reader has freed enough space in the FIFO,
therefore preventing overflow.

To support this protocol we need to enhance the semantics
presented in the previous subsection. Given a channel γ =
(po, pi), where po ∈ τ1, pi ∈ τ2 the back-pressure protocol
extends the set of input ports of τ1 with an additional port p′i,
r(p′i) = r(po), the set of output ports of τ2 with an additional
port p′o, r(p′o) = r(pi) and the set of application channels
Γ with γ′ = (p′o, p

′
i). Further, for the reader, as well as for

the writer, when it has a time-driven read, the time-driven
read condition is extended to add a condition that checks the
presence of data as follows:

Definition 13. Enhanced Time-driven Read: If pr 6= ∅ ∧
or 6= ∅ then, given a jiterry clock c with a maximum period
pmax, c = taskClk(τ) and a set of channels Γi such that
∀pi ∈ I, ∃ γ = (o, i) ∈ Γi, pi = i we say that the read
condition of τ [k] evaluates to true when crtT ime(c, t) ≥ k ·
pr + or ∧ q(γ, t) ≥ r(pi), ∀γ ∈ Γi, where the time unit of pr,
or is pmax.

Using this extended condition, the reader task will first wait
until the start of the current period, k · pr + or, as given by its
own jittery clock. Afterwards, it will poll until sufficient data
is present on each of its input channels (q(γ, t) ≥ r(pi)). The
writer, on the other hand, will check that sufficient space is
available for the current write phase during the evaluation of
the read condition preceding the current write phase.

The extended semantics effectively transform the time-
driven read into a time- and data-driven read to counteract the
effects of clock jitter. When an application including jittery
clocks and finite channels is executed as soon as possible,
according to the specified operational semantics, it will reach
a periodic state. This result follows from the SDF theory [7],
which we use for timing analysis (see Section V). Then,
the periods pui in Definition 11 represent average periods
rather then strict period. An average period is computed by
dividing the application period (from the periodic phase) by
the repetition value, f(wi).

IV. FORMAL PROPERTIES OF THE PROPOSED MODEL

We claim that our MoC unifies the notions defined by the
timed SDF MoC, the single-mode Giotto MoC and the LTTA
protocol. We will prove this formally by showing that there
exists a structural as well as an operational correspondance
between each of these models and a subset of our model.

A. Equivalence Relation to Timed SDF

A timed SDF model consists of a set of actors and a set of
edges [7]. An actor is defined by a set of input ports, a set of
output ports and an execution time. An edge is defined by a
source port and a destination port.

To show the equivalence between timed SDF graphs and
our model, we will distinguish between three types of actors:
actors that contain both input as well as output ports, actors
with no input ports and actors with no output ports.

Lemma 1. There is a one-to-one relation between a SDF
actor a = (I, U, e) where I is a set of input ports, O is a
set of output ports and e is an execution time, such that I 6=
∅ ∧ U 6= ∅ and a task τ = (I, U, e, pr, or, pw, ow) for which
pr = or = pw = ow = ∅.

Proof. Structurally, an actor port is identical to a task port, as
both are essentially a communication interface. The concept of
actor execution time and task execution time are also identical.

In terms of execution semantics, the execution of a SDF
actor (i.e. a firing) is the same as the invocation of a task that
has a data-driven read and a data-driven write phase. Indeed,
according to Definition 12, when pr = or = pw = ow = ∅,
task τ has a data-driven read and write condition.

Lemma 2. There is a one-to-one relation between a non-auto-
concurrent SDF actor a = (I, U, e) where I is a set of input
ports, O is a set of output ports and e is an execution time,
such that I = ∅ ∧ U 6= ∅ and a source s = (U, ps, os) for
which ps = e and os = 0.

Proof. Structurally, the same considerations as for Lemma 1
apply here.

In terms of execution semantics, a non-auto-concurrent actor
is an actor that does not have multiple concurrent executions.
Such an actor executes sequentially and each execution takes
an amount of time equal to e. Moreover, when the actor has
no input ports and thus no input data dependencies, then the
executions will be back-to-back, with no intermediate delays.
Then a sequence of actor executions is identical to a sequence
of periodic source invocations, that consist of write phases
separated by the period.

Lemma 3. There is a one-to-one relation between a SDF actor
a = (I, U, e) where I is a set of input ports, O is a set of output
ports and e is an execution time, such that I 6= ∅ ∧ U = ∅
and a sink d = (I, pd, od, e) for which ps = os = ∅.

Proof. Structurally, the same considerations as for Lemma 1
apply here.

In terms of execution semantics, the SDF actor will start as
soon as sufficient data is present on each input port and then
execute for an amount of time equal to e. Similarly, the sink
will execute the read phase when sufficient data is present on
each input port and then proceed with the process phase for e
time units. Hence, the execution semantics are equivalent.

Theorem 1. All valid timed SDF application models are valid
models in our formalism.

Proof. The proof follows directly from the Lemmas 1, 2 and 3
and the equivalence between SDF edges and the channels in
our model, both assumed to be FIFO memories.



B. Equivalence Relation to Single-Mode Giotto
A single-mode Giotto model consists of a set of concurrent

tasks, sensors and actuators [3]. The tasks read data from
sensors and write data to actuators. The mode definition
specifies a mode period and frequencies for task invocations
and actuator updates. A frequency represents the number of
invocations/updates of a task/actuator during the mode period.
All invocations/updates are equally spaced in time such that
the task/actuator period is equal to the mode period pm divided
by the frequency. The communication is realized through
Giotto ports, using drivers. A Giotto port is a persistent
memory location that retains the latest written value. Each
sensor and actuator has its own Giotto port. Finally, a driver
transports data between a set of source ports (from sensors or
tasks) to a set of destination ports (from actuators or tasks).

To distinguish between Giotto ports and the ports in our
model, we refer to the latter as enhanced ports. Structurally, a
Giotto port acts as a memory location which allows multiple
successive read or write operations, while an enhanced port
acts as a FIFO location which only allows single write and read
operations to occur after each other, prohibiting thus the loss
of data. To properly adress the equivalence, we will consider
the known write and read periods of the corresponding tasks
and show how an equivalent behavior can be achieved through
adequate mechanisms (see Lemmas 7 and 8).

Let t = (In,Out, ft) denote a Giotto task t with frequency
ft containing a set In of input Giotto ports and a set Out of
output Giotto ports and drv = (Src,Dst) denote a driver drv
between a set Src of source ports and a set Dst of destination
ports, sens(p, fs) is a sensor with port p and frequency fs and
act(p, fa) an actuator act with a port a and frequency fa.

For the remaining part of this subsection, we will assume
that given a Giotto model, there exists a time unit ∈ Q+ such
that pm

lcm(fi)
for all specified frequencies fi, where lcm is the

least common multiple.

Definition 14. (Sensor frequency) Given a sensor with a
Giotto port p and a set of drivers D such that p ∈
Src, ∀drv = (Src,Dst) ∈ D and T is a set of tasks
such that ∀t = (In,Out, ft) ∈ T, ∃ p′ ∈ In ∧ ∃ drv′ =
(Src′, Dst′) ∈ D, p′ ∈ Dst′, then the sensor frequency fs is
equal to lcm(ft), ∀t ∈ T .

Intuitively, this definition says that a sensor frequency is
given by the lcm of the frequencies of the reading tasks.

Lemma 4. Given a sensor sens(p, fs) and a set of drivers
D such that ∀drv = (Src,Dst) ∈ D, p ∈ Src, then for each
drv ∈ D define a new enhanced port output po with rate 1.
There exists a one-to-one correspondance between a sensor
sens(p, fs) and a source s = (U, ps, os) where U is a set
comprising all previously defined enhanced output ports po,
ps = pm

fs
, os = 0 and pm is the Giotto mode period.

Proof. Structurally, the Giotto port of the sensor, p, is trans-
formed into multiple enhanced ports, one for each driver
connected to it. Essentially, a Giotto port shared between
multiple connections is transformed into multiple identical

enhanced ports connected to point-to-point connections. Thus,
the contents of the enhanced ports are all equal to the content
of p. Further, Giotto ports have an implicit rate of 1.

In terms of execution semantics, the source writes periodi-
cally its output ports with period ps, which is equivalent to the
periodic update of the Giotto sensor port with period ps.

Lemma 5. Given an actuator act(p, fa) and a set of drivers
D such that ∀drv = (Src,Dst) ∈ D, p ∈ Dst, then for
each drv in D define a new enhanced input port pi with
rate 1. There exists a one-to-one correspondance between an
actuator act(p, fa) and a sink d = (I, pd, od, e) where I is a
set comprising all previously defined enhanced input ports pi,
pd = pm

fa
, od = 0 and pm is the Giotto mode period.

Proof. The proof is the same as for Lemma 4.

Lemma 6. Given a Giotto task t(In,Out, ft) and a set of
drivers Di such that ∀drv = (Src,Dst) ∈ Di, p ∈ Dst,
then for each drv in Di define a new enhanced input port
pi with rate 1. Similarly, for a set of drivers Do such that
∀drv = (Src,Dst) ∈ Do, p ∈ Dst, for each drv in Do define
a new enhanced output port po with rate 1. There exists a one-
to-one correspondance between the task t(In,Out, ft) and a
task τ = (I, U, e, pr, or, pw, ow) where I is a set comprising
the defined enhanced input ports pi, U is a set comprising
the defined enhanced output ports po, pr = pw = ow = pm

ft
,

or = 0, and pm is the Giotto mode period.

Proof. Structurally, the transformation between the Giotto
ports and the enhanced ports follows the same principals as
in the previous lemmas. In terms of execution semantics, the
task will read and write data with the period pm

ft
. The read

offset is 0 since in Giotto, all tasks read at the beginning of
the mode period, while the write offset is equal to the period,
since the first write operation occurs after one invocation.

Definition 15. (Sampling Ratio) Given a driver drv, a sam-
pling ratio between a source port ps ∈ v and a destination port
pd ∈ w is a pair (p, q) where p = fv

gcd(fv,fw) is the frequency
of the sensor/task v connected to port ps and q = fw

gcd(fv,fw)
is the frequency of the actuator/task connected w to port pd.
We write p : q to denote a sampling ratio (p, q).

To define the correspondance between Giotto drivers and
the channels in our model, we will consider each pair of
source and destination ports (ps, pd) connected by a driver
drv and distinguish between two cases, based on the value of
the sampling ratio p : q between the two ports.

Lemma 7. Given a driver drv from the source port ps to the
destination port pd such that the sampling ratio between ps
and ps is 1 : 1, then there exists a one-to-one relation between
the tuple (drv, ps, pd) and a channel γ = (ps, pd) where the
rates of ps and pd are both 1.

Proof. A connection between a source and a destination Giotto
ports that are written/read with the same frequency f is
equivalent to having a FIFO channel between two ports with
rate 1 that are written/read with the frequency f .



Lemma 8. Given a driver drv from the source port ps to
the destination port pd such that the sampling ratio between
ps and pd is p : q, such that (p = 1 ∧ q 6= 1) ∨ (p 6=
1 ∧ q = 1) then there exists a one-to-one relation between
the tuple (drv, ps, pd) and the tuple (γ1, τaux, γ2) where
γ1 = (ps, p

′
s), γ2 = (p′d, pd), τaux = (p′s, p

′
d, 0,∅,∅,∅,∅),

r(ps) = r(pd) = 1, r(p′s) = p and r(p′d) = q.

Proof. To ease the understanding of this lemma, we illustrate
the relation in Figure 3. The auxiliary task τaux ensures the
data consistency between ps and pd. Recall that given two
components v and w such that ps ∈ v and pd ∈ w, data
consistency requires that r(ps) ·f(v) = r(pd) ·f(w) where the
repetition values f(v) (f(w)) are equivalent to the frequencies
fv (fw). Since r(ps) = r(pd) = 1 and f(v) 6= f(w), the
equation has no solution. By introducing τaux, the previous
equality is transformed into the following set of equalities:
r(ps)·f(v) = r(p′s)·f(τaux) and r(p′d)·f(τaux) = r(pd)·f(w)

for which the solution is f(τaux) = f(u)
p = f(w)

q .

The last two lemmas present two cases for the sampling
ratio p : q. One third case that we don’t cover in the current
paper is when p and q are relatively prime numbers.

Theorem 2. All valid single-mode Giotto application models
are valid models in our formalism.

Proof. The proof follows directly from the lemmas 4 to 8.

C. Correctness of the Back-Pressure Protocol for Clock Jitter

Theorem 3. Given a channel γ = (po, pi) between tasks
τ1 and τ2 such that τ1 has write period pw = n1 · p1 and
offset ow = m1 · p1 and τ2 has read period pr = n2 · p2
and offset or = m2 · p2, where p1 is the maximum period of
c1, c1 = taskClk(τ1) and p2 is the maximum period of c2,
c2 = taskClk(τ2), let γ′ denote γ augmented with the back-
pressure protocol defined by condition 1) b)′. Then γ′ prevents
the under- and overflow of the FIFO associated to γ.

Proof. Let us first address the underflow case. By augmenting
c with the back-pressure protocol, the consumer’s read condi-
tion becomes crtT ime(c, t) ≥ k · pr + or ∧ q(γ, t) ≥ r(pi).
Let us assume that the k-th invocation of τ2 consumes r(pi)
tokens produced by invocations k + p to k + p + n of τ1,
p, n ≥ 0, (n + 1) · r(po) ≥ r(pi). FIFO underflow would
occur if the k-th invocation of τ2 would read the FIFO before
the k+ p+n-th invocation of τ1 finishes. This is not possible

t1 d t2

t1 t2taux
p q 11

Fig. 3. Equivalence Relation for Lemma 8

[ps]
s

[0]
O
[os]

rPeriod

Fig. 4. SDF model for a source

due to the condition q(γ, t) ≥ r(pi) and the destructive read of
the FIFO, which ensures that when the amount of tokens in γ
reaches r(pi), then they can only be produced by invocations
k + p to k + p+ n of τ1.

To address the overflow case, let us consider the two
possible types of read condition for τ1. If τ1 has a data-driven
read, then the back-pressure protocol extends the set of input
ports of τ1 with port p having a rate r(p) = r(po). This will
ensure that invocations k + p to k + p + n of τ1 will only
finish if at least (n + 1) · r(po) locations are available in the
FIFO. Hence the producer will never overwrite the buffer if
it becomes full. If τ1 has a time-driven read, then the back-
pressure protocol extends the set of input ports of τ1 with port
p having a rate r(p) = r(po) and it extends the read condition
to crtT ime(c, t) ≥ k · pr + or ∧ q(γ, t) ≥ r(p). As in the
previous case, the added condition q(γ, t) ≥ r(p) prevents τ1
from overwriting the FIFO.

V. SDF ANALYSIS MODEL

To provide worst-case timing guarantees, we use the SDF
model of computation. In this section, we will present the
modeling techniques that allow us to translate an application
written in our model to an analyzable SDF graph. We use
the timed SDF formalism, in which actors have an allocated
worst-case execution time (WCET). Within the SDF MoC, the
data samples are called tokens, the computational components
that correspond to the tasks in our model are called actors
and their execution is called firing. SDF actors include input
and output ports, thus our component ports can be directly
translated to actor ports. The communication channels in our
model correspond to edges.

A. Analysis Model for Synchronized Clocks

Let us start with the simplest components, sources and sinks.
A source having a period ps and offset os is modeled by three
actors, as shown in Figure 4. The Period actor models the
source period and the O actor models the offset. The token on
the channel between Period and O will enable the source to
start its first firing at the time instant os. The following firings
will start at times os + k · ps, k ≥ 1, according to the source
definition. At each firing, the source will produce on each of
its output ports, a number of tokens equal to the port rate r.

A sink d = (I, pd, od, e) is modeled similarly, with the
difference that it has an execution time of e instead of 0.

A task is modeled by a chain of three actors: Rd, Exec and
Wr. Figure 5 shows the model for an example task containing
two input ports with the rates m and n, respectively and two
output ports with the rates p and q, respectively, and no read
or write period and offset. Actor Rd models the first two steps
of the task invocation. The evaluation of the read condition is



m

n

p

q

1 1 1Exec 1Rd Wr
[0] [0][e]

Fig. 5. SDF model for a data-driven task

m

n

p

q

1 1 1Exec 1

[or ] [ow ]

[p]
O1 O2

Period

Rd Wr
[0] [0][e]

Fig. 6. SDF model for a time-driven task

B

[0]

Dc

Dp

rc

[0]
rc

[ppmax ]

[pcmax ]

rp

WRp RDc

rp

Periodp Periodc
[m1 · ppmax ] [m2 · pcmax ]Op Oc

[n1 · ppmax ] [n2 · pcmax ]

Fig. 7. SDF model for jitter

implicitly realized by the SDF firing rules, that allow the actor
to fire as soon as a sufficient number of tokens are present on
each input channel. By default, the Rd actor has an execution
time of 0, but it can be modified to reflect a higher read time.
Next, the Exec actor models the process phase and finally, the
Wr actor models the last two execution phases.

Figure 6 shows the SDF model for a time-driven task with
a write and read period of p, read offset or, write offset ow.

Note that the Period actors included in the source and task
models can be either shared or distinct, depending on the exact
values of the periods. However, for the case of synchronized
clocks, there is a single time unit which is reflected in the
execution time of the clock and offset actors.

For a given application A = (T,Γ, C, S,D), its associated
SDF graph G(A) = (V,E) is constructed by representing each
source, task and sink by its designated SDF model and each
communication channel by a graph edge. V represents the set
of resulting SDF actors and E the resulting edges.

B. Analysis Model for Jittery Clocks

Figure 7 presents the SDF model for the back-pressure
protocol presented in subsection III-C. The model shows
the communication between a producer and a consumer task
driven by two distinct jittery clocks. The maximum period of
the producer clock is ppmax while for the consumer clock it
is pcmax . The write period and offset of the producer task
is a multiple of the local clock period and the same holds
for the read period and offset of the consumer task. Since
the SDF model is used for worst-case performance analysis,
the maximum clock period is used to obtain conservative
performance bounds. The communication is realized via a
FIFO that the consumer polls using its local clock. The actors

Dc, Dp model the worst case arrival time of the tokens when
the last one of the rc tokens arrives right after the local clock
tick. The consumer then has to wait for an extra clock period.

To model back-pressure, we add a backwards path from the
consumer’s read actor to the producer’s write actor. The token
labelled B on the edge towards WRp models the size of the
FIFO, equal to B locations.

C. Performance Analysis

The SDF analysis model allows us to compute the minimum
throughput [7] and the minimal latency between a source
and a sink [15] for a given application and also check that
the defined periods and offsets are met. The analysis method
that enables this is called state-space analysis and it consists
of simulating the SDF graph that results by modeling the
application according to the techniques described previously.

VI. CONCLUSIONS

In this paper we propose a unified model of computation that
combines time and data execution semantics, while accounting
for clock jitter. We formalize the structure of the model and the
operational semantics. We prove the correspondance between
a single-mode Giotto model and our model, between an SDF
model and our model. Finally, we show how to compute
performance guarantees using SDF.

ACKNOWLEDGMENT

This research is partially supported by EU grants CT217
RESIST, ECSEL 692455-2 ENABLE-S3, 737422 SCOTT,
737453 I-MECH, NL grant STW ZERO.

REFERENCES

[1] E. A. Lee et al., “Discrete-event models,” in System Design, Modeling,
and Simulation using Ptolemy II, 2014.

[2] H. Kopetz et al., “The time-triggered architecture,” IEEE Proc., 2003.
[3] T. A. Henzinger et al., “Giotto: a time-triggered language for embedded

programming,” IEEE Proc., vol. 91, no. 1, 2003.
[4] E. A. Lee et al., “Synchronous data flow,” IEEE Proc., vol. 75, no. 9,

1987.
[5] T. A. Henzinger et al., “The embedded systems design challenge,” in

FM, 2006.
[6] E. A. Lee et al., “A framework for comparing models of computation,”

TCAD, vol. 17, no. 12, 2006.
[7] A.-H. Ghamarian et al., “Throughput analysis of synchronous data flow

graphs,” in ACSD, 2006.
[8] S. Stuijk et al., “Scenario-aware dataflow: Modeling, analysis and

implementation of dynamic applications,” in SAMOS, 2011.
[9] A. Benveniste et al., “A unifying view of loosely time-triggered archi-

tectures,” in EMSOFT, ser. EMSOFT, 2010.
[10] J. Eker et al., “Taming heterogeneity-the ptolemy approach,” IEEE Proc.,

vol. 91, no. 1, 2003.
[11] P. Arumi and X. Amatriain, “Time-triggered Static Schedulable

Dataflows for Multimedia Systems,” SPIE The International Society for
Optical Engineering, vol. 7253, no. 1, 2009.

[12] H. I. Ali et al., “Generalized extraction of real-time parameters for
homogeneous synchronous dataflow graphs,” in PDP, 2015.

[13] E. A. Lee et al., “Dataflow,” in System Design, Modeling, and Simulation
using Ptolemy II, 2014.

[14] A. Benveniste et al., “A unifying view of loosely time-triggered archi-
tectures,” in EMSOFT, 2010.

[15] A. H. Ghamarian et al., “Latency minimization for synchronous data
flow graphs,” in DSD, 2007.


