
Predictable Mapping of Streaming
Applications on Multiprocessors

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op donderdag 25 oktober 2007 om 16.00 uur

door

Sander Stuijk

geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H. Corporaal
en
prof.dr.ir. J. van Meerbergen

Copromotor:
dr.ir. T. Basten

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Stuijk, Sander

Predictable Mapping of Streaming Applications on Multiprocessors
/ by Sander Stuijk. - Eindhoven : Technische Universiteit Eindhoven, 2007.
Proefschrift. - ISBN 978-90-386-1624-7
NUR 959
Trefw.: multiprogrammeren / elektronica ; ontwerpen / multiprocessoren /
ingebedde systemen.
Subject headings: data flow graphs / electronic design automation /
multiprocessing systems / embedded systems.

Predictable Mapping of Streaming
Applications on Multiprocessors

Committee:

prof.dr. H. Corporaal (promotor, TU Eindhoven)
prof.dr. J. van Meerbergen (promotor, TU Eindhoven)
dr.ir. T. Basten (copromotor, TU Eindhoven)
prof.dr. K.G.W. Goossens (TU Delft)
prof.dr. A. Jantsch (Royal Institute of Technology, Kista, Sweden)
dr. R. Marculescu (Carnegie Mellon University, Pittsburgh, USA)
prof.dr.ir. R.H.J.M. Otten (TU Eindhoven)

The work in this thesis is supported by the Dutch government in their NWO
research program within the PROMES project 612.064.206.

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 152.

iPhone is a registered trademark of Apple Inc.
PlayStation3 is a registered trademark of Sony Computer Entertainment Inc.

c© Sander Stuijk 2007. All rights are reserved. Reproduction in whole or in part
is prohibited without the written consent of the copyright owner.

Printing: Printservice Technische Universiteit Eindhoven

Abstract

Predictable Mapping of Streaming Applications on Multiprocessors

The design of new consumer electronics devices is getting more and more complex
as more functionality is integrated into these devices. To manage the design
complexity, a predictable design flow is needed. The result should be a system
that guarantees that an application can perform its own tasks within strict timing
deadlines, independent of other applications running on the system. This requires
that the timing behavior of the hardware, the software, as well as their interaction
can be predicted.

A heterogeneous multi-processor System-on-Chip (MP-SoC) is often men-
tioned as the hardware platform to be used in modern electronics systems. An
MP-SoC offers good potential for computational efficiency (operations per Joule)
for many applications. Networks-on-Chip (NoCs) are proposed as interconnect
in these systems. A NoC offers scalability and guarantees on the timing behav-
ior when communicating data between various processing and storage elements.
Combining this with a predictable resource arbitration strategy for the processors
and storage elements gives a predictable platform. To obtain a fully predictable
system, also the timing behavior and resource usage of an application mapped
to such an MP-SoC platform needs to be analyzable and predictable. The Syn-
chronous Dataflow (SDF) model of computation fits well with the characteristics
of streaming applications, it can capture many mapping decisions, and it allows
design-time analysis of timing and resource usage. Therefore, this thesis aims
to achieve predictable, streaming application behavior on NoC-based MP-SoC
platforms for applications modeled as SDF graphs (SDFGs).

The most important timing requirement for streaming applications is usually
related to the throughput that should be achieved. A major aspect influencing
the achievable throughput, and in fact also the computational efficiency, is the
storage space allocated to the data streams being processed in the system. In
an SDFG model, the edges in the graph typically correspond to data streams.
The storage allocation problem for an SDFG is the problem of assigning a fixed
storage size to its edges. This size must be chosen such that the throughput
requirement of the system is met, while minimizing the required storage space.
The first major contribution of this thesis is an exact technique to explore the

i

ii

throughput/storage-space trade-off space. Despite the theoretical complexity of
the storage allocation problem, the technique performs well in practice. By con-
sidering the entire trade-off space, it is possible to cope with situations where the
precise throughput constraint is not (yet) known or might dynamically change.
In multi-processor mapping, for example, scheduling decisions can influence the
achievable throughput. This introduces uncertainty on the relation between the
throughput and the storage requirements of an SDFG in the early phases of the
trajectory when these scheduling decisions are not yet made.

In any multi-processor mapping trajectory, an application must be bound
to and scheduled onto the processors and storage elements in the MP-SoC. An
important contribution of this thesis is such a technique to bind and schedule an
SDFG onto an MP-SoC. Existing binding and scheduling techniques can only deal
with single-rate execution dependencies between tasks. SDFGs can express multi-
rate dependencies between tasks. Dependencies in an SDFG can be expressed in
single-rate form, but then the problem size may increase exponentially making
the binding and scheduling infeasible. The binding and scheduling technique
presented in this thesis works directly on SDFGs, building on an efficient technique
to calculate throughput of a bound and scheduled SDFG.

When the application tasks have been bound to and scheduled onto the plat-
form components, it remains to schedule the communication onto the MP-SoC
interconnect. This thesis presents three different scheduling strategies that sched-
ule time-constrained communications on a NoC while minimizing resource usage
by exploiting all scheduling freedom offered by NoCs. It is shown that these
strategies outperform existing NoC scheduling techniques. Furthermore, a tech-
nique is presented to extract the timing constraints on the communication from
a bound and scheduled SDFG, connecting the NoC scheduling strategies to the
binding and scheduling strategy for SDFGs mentioned earlier.

Finally, the techniques presented in this thesis are embedded into a coherent
design flow. The starting point is a streaming application that is modeled with
an SDFG and a NoC-based MP-SoC that offers a predictable timing behavior.
The objective of the flow is to minimize the resource usage while offering guaran-
tees on the timing behavior, in practice the throughput, of the application when
mapped to the system. A case study is performed that maps a set of multime-
dia applications (H.263 encoder/decoder and an MP3 decoder) onto a NoC-based
MP-SoC. It shows that the design flow, SDFG mapping techniques, and SDFG
analysis techniques presented in this thesis enable a mapping of a streaming ap-
plication onto a NoC-based architecture that has a predictable timing behavior.
This makes it the first complete design flow that maps a time-constrained SDFG
to a NoC-based MP-SoC while providing throughput guarantees.

Contents

Abstract i

1 Introduction 1
1.1 Trends in Embedded Systems: A Consumers Perspective 1
1.2 Trends in Embedded Systems: A Designers Perspective 3
1.3 Problem Statement . 7
1.4 A Predictable Design Flow . 10
1.5 Contributions . 14
1.6 Thesis Overview . 14

2 Streaming Multimedia Applications 17
2.1 Overview . 17
2.2 Application Domain . 17
2.3 Application Modeling . 20
2.4 Analyzing Actor Resource Requirements 23
2.5 Summary . 25

3 Network-on-Chip-based Multi-Processor Platform 27
3.1 Overview . 27
3.2 Multi-Processor Platform Template 27
3.3 Resource Arbitration Strategies . 29
3.4 Resource Arbitration in the Platform 32
3.5 Summary . 34

4 Dataflow Preliminaries 35
4.1 Overview . 35
4.2 Synchronous Dataflow . 35
4.3 Synchronous Dataflow and Time 37
4.4 Throughput Analysis . 40
4.5 Scheduling . 43
4.6 SDF3: Synchronous Dataflow for Free 47
4.7 Comparison of Dataflow Models . 49

iii

iv

4.8 Summary . 52

5 Modeling Memory Mappings 55
5.1 Overview . 55

5.2 Related Work . 56

5.3 SDF model for Memory Accesses 58

5.4 Memory Allocation . 60

5.5 Experimental Evaluation . 63
5.6 Summary . 66

6 Resource Allocation 67

6.1 Overview . 67

6.2 Related Work . 68
6.3 Platform Graph . 69

6.4 Resource-Aware Application Graph 71

6.5 Resource Allocation Problem . 72

6.6 Throughput Analysis . 73

6.7 Resource Allocation Strategy . 80
6.8 Experimental Evaluation . 83

6.9 Summary . 87

7 Throughput-Buffering Trade-Off Exploration 89
7.1 Overview . 89

7.2 Related Work . 90

7.3 Storage Requirements . 92

7.4 Storage Dependencies . 94

7.5 Design-Space Exploration . 98
7.6 Experimental Evaluation . 102

7.7 Approximation of Buffer Sizes . 105

7.8 Buffer Requirements for Binding-aware SDFGs 110

7.9 Summary . 112

8 Network-on-Chip Routing and Scheduling 113

8.1 Overview . 113

8.2 Related Work . 114

8.3 Communication Modeling . 115
8.4 Interconnect Graph . 117

8.5 Time-Constrained Scheduling Problem 119

8.6 Scheduling Strategies . 125

8.7 Benchmark . 129

8.8 Experimental Evaluation . 131
8.9 Extracting Communication Scenarios from SDFGs 136

8.10 Summary . 141

v

9 Design Flow 143
9.1 Overview . 143
9.2 Related Work . 145
9.3 Starting Point . 148
9.4 MP-SoC Configuration . 150
9.5 Memory Dimensioning . 151
9.6 Constraint Refinement . 156
9.7 Tile Binding and Scheduling . 160
9.8 NoC Routing and Scheduling . 161
9.9 Implementation . 162
9.10 Summary . 163

10 Case Study 165
10.1 Overview . 165
10.2 Applications . 166
10.3 Hardware Architecture . 170
10.4 Mapping . 172
10.5 Discussion on the Design Flow . 177
10.6 Summary . 179

11 Conclusions and Future Work 181
11.1 Conclusions . 181
11.2 Open Problems and Future Research 183

Bibliography 187

Glossary 201

Samenvatting 207

Acknowledgments 211

Curriculum Vitae 213

List of Publications 215

vi

Chapter 1

Introduction

1.1 Trends in Embedded Systems: A Consumers Perspective

The number of consumer electronics devices sold worldwide is growing rapidly. A
total of 2.1 billion consumer electronics devices with a total value of $1.3 trillion
were sold worldwide in 2006. It is expected that by 2010 this has grown to over 3
billion devices with a total value of around $1.6 trillion [68]. Most of these devices
contain one or more processors that are used to realize the functionality of the
device. This type of devices are called embedded systems. Embedded systems
range from portable devices such as digital cameras and MP3-players, to systems
like a television or the systems controlling the flight of an airplane. These systems
are everywhere around us in our daily live. Most of them are becoming intelligent
micro-systems that interact with each other, and with people, through (wireless)
sensors and actuators. Embedded systems form the basis of the so-called post-PC
era [88], in which information processing is more and more moving away from just
PCs to embedded systems. This trend is also signaled by ubiquitous computing
[149], pervasive computing [57] and ambient intelligence [1]. These three visions
describe all a world in which people are surrounded by networked embedded sys-
tems that are sensitive to their environment and that adapt to this environment.
Their objective is to make information available anytime, anywhere. Embedded
systems provide the necessary technology to realize these visions [16]. Realization
of these visions implies that the number of embedded systems surrounding us in
our daily lives will increase tremendously.

An important subclass of embedded systems are embedded multimedia
systems. These systems combine multiple forms of information content and
information processing (e.g. audio, video, animations, graphics) to inform or en-
tertain the user. Examples of such systems are mobile phones, game consoles,
smart cameras and set-top boxes. Many of the applications that perform the in-

1

2 1.1. TRENDS IN EMBEDDED SYSTEMS: A CONSUMERS PERSPECTIVE

Figure 1.1: Embedded multimedia systems: PlayStation 3 and iPhone.

formation processing in these systems process audio, video and animation. These
types of data are inherently streaming. So, many embedded multimedia systems
contain streaming applications [142]. These applications typically perform a
regular sequence of transformations on a large (or virtually infinite) sequence of
data items.

The functionality integrated into new embedded multimedia systems is ever
increasing. The Sony PlayStation has, for example, transformed itself from a sim-
ple game console to a complete entertainment center. It not only allows users to
play games, it can also be used to watch movies, listen to music and to browse the
Internet or chat online with other PlayStation 3 users. Another example of a true
multimedia platform is the Apple iPhone. It includes many different applications
next to the mobile-phone functionality. It has, for example, a wide-screen LCD
display that allows users to watch movies and browse through their collection
of photos that are taken with the build-in camera. The phone contains also an
MP3-player which allows users to listen for up-to 16 hours to their favorite mu-
sic. While traveling, users can also use the phone to browse the Internet, send
emails or use online navigation software such as Google-maps. It is expected that
even more functions will be integrated into future embedded multimedia systems.
This trend was already signaled by Vaandrager in 1998 who stated that “for many
products in the area of consumer electronics the amount of code is doubling every
two years” [145].

Current embedded multimedia systems have a robust behavior. Consider for
example a modern high-end television system. Such a system splits the incom-

1. INTRODUCTION 3

ing video stream from its accompanying audio stream. Many different picture
enhancement algorithms are executed on the video stream to improve its quality
when displayed on the screen. Despite the complex processing going on inside the
television, the video and audio stream are output in sync on the screen and the
speakers. Consumers expect that future embedded multimedia systems provide
the same robust behavior as current systems have despite the fact that more and
more media processing is performed in software [26].

In summary, the following trends in embedded (multimedia) systems are ob-
served from the perspective of consumers.

• The number of embedded systems surrounding people in their daily lives is
growing rapidly, and these systems are becoming connected more and more
often.

• Increasingly more functionality is integrated into a single multimedia sys-
tem.

• Users expect the same seamless behavior of all functions offered by novel
multimedia systems as offered by existing systems.

1.2 Trends in Embedded Systems: A Designers Perspective

The previous section outlines the most important trends in the field of embedded
systems from the perspective of consumers. It shows that embedded systems have
to handle an increasing number of applications that are concurrently executed on
the system. At the same time, guarantees must be provided on the behavior of
each application running on the system. This section considers the same systems,
but it looks at the trends visible in their design(-process).

The omnipresence of embedded systems in people’s lives is leading to a tremen-
dous increase in the amount of data that is being used. Today, people have giga-
bytes of photos, music and video on their systems. That data must be processed
in real-time to be made useful. Embedded systems must provide the required
computational power to do this. At the same time, their energy consumption
should be kept at a minimum as many of these devices are battery powered (e.g.,
mobile-phone, MP3-player, digital-camera). To fulfill these requirements, the use
of multi-processor systems-on-chip (MP-SoCs) is becoming increasingly pop-
ular [15, 73]. For example, Intel has shifted from increasing the clock frequency of
every processor generation to a strategy in which multiple cores are integrated on
a single chip. This paradigm shift is outlined in their platform 2015 vision [25].
It describes the expected evolution of Intel processor architectures from single
core systems, via multi-core systems toward many-core systems (see Figure 1.2).
The Cell architecture [74] that is used in the PlayStation 3 is another example

4 1.2. TRENDS IN EMBEDDED SYSTEMS: A DESIGNERS PERSPECTIVE

2003 2005 2007 2009 2011 2013

1

10

100

Hyper-threading

Multi-core era

Many-core era

Number of

cores per

chip

Figure 1.2: Current and expected eras for Intel processor architectures [25].

that shows the increasing popularity of MP-SoCs. It combines a PowerPC core
with 8 synergetic processors that are used for data-intensive processing. A third
example is the Nexperia digital video platform [36] from NXP. It supports digi-
tal television, home gateway and networking, and set-top box applications. An
advanced member of the Nexperia family is the PNX8550 that combines two Tri-
Media processors, a MIPS processor and several hardware accelerators in a single
chip.

An important design question that arises when developing an MP-SoC is
whether a homogeneous or heterogeneous solution should be used. Amdahl ob-
served that the less parallel portion of an application can limit the performance
on a parallel system [6]. This observation is an important reason for using het-
erogeneous multi-processor systems. Different types of cores can be used in such
a system to reduce the time needed to run the less parallel code. For example,
consider an application in which 10% of the execution time is spent in code that
cannot be executed in parallel on a 25-processor system. Suppose that in or-
der to run this sequential code twice as fast, a processor would be needed that
requires five times as much area as the cores used in the 25-processor system.
A heterogenous 21-processor system with 20 cores similar to the cores used in
the 25-processors and one core with the improved performance, would require
the same area as the homogeneous 25-processor system. To compare the perfor-
mance of both systems, the speed-up of the application on both systems can be
computed using Amdahl’s law [61]. This law computes the maximum expected
improvement, i.e., reduction in run-time, to an overall system when only part of
the system is improved. The speed-up of the application when executed on a ho-
mogeneous 25-processor system and a heterogenous 21-processor system relative
to a sequential implementation of the application are:

1. INTRODUCTION 5

Speeduphomogeneous =
1

0.1 + 0.9/25
= 7.4x

Speedupheterogeneous =
1

0.1/2 + 0.9/20
= 10.5x

This example shows that using a heterogeneous system with some poten-
tially large processors can be advantageous for the achieved speedup of the whole
application. In addition, heterogeneous systems can show significant advantages
in energy consumption as compared to homogeneous systems as the instruction
set of the various processors can be optimized for their specific tasks.

The processing and storage elements that make up an MP-SoC must be in-
terconnected. Traditionally, this has been done using on-chip buses or crossbar
switches. These approaches do not scale very well when more processors are in-
tegrated in a system. To address these issues, Networks-on-Chip (NoCs) have
been introduced [19, 32]. NoCs provide a scalable interconnect that can be shared
between the processors and memories that are connected to it. Furthermore, it
can provide guarantees on the time needed to send data through the NoC [93, 122].
This property makes NoCs suitable for use in MP-SoCs with a predictable timing
behavior which is key for building reliable embedded multimedia systems.

The growing complexity of embedded multimedia systems leads to a large
increase in their development effort. At the same time, the market dynamics
for these systems push for shorter and shorter development times. It will soon
be obligatory to keep to a strict design time budget that will be as small as
six months to go from initial specification to a final and correct implementation
[78]. Furthermore, the non-recurring engineering cost associated with the design
and tooling of complex chips is growing rapidly. The International Technology
Roadmap for Semiconductors (ITRS) predicts that while manufacturing complex
Systems-on-Chip will be feasible, the production cost will grow rapidly as the
costs of masks is raising drastically [69]. To address these issues, a platform-
based design methodology is proposed in [39, 78]. The objective of this design
methodology is to increase the re-use across different products that share certain
functionality and the re-use between different product generations. The first form
of re-use decreases the production cost as the same hardware can be used in more
products. The second form of re-use lowers the development time as functionality
implemented for a product does not have to be re-implemented for a successor
product.

The traditional design methodology is a single monolithic flow that maps an
application onto an architecture (see Figure 1.3(a)). It starts with a single ap-
plication which is shown at the top of Figure 1.3(a). The bottom of the figure
shows the set of architectures that could support this application. The design
process (black arrow) selects the most attractive solution as defined by a cost
function. Synthesis of this architecture is often an explicit objective of the de-

6 1.2. TRENDS IN EMBEDDED SYSTEMS: A DESIGNERS PERSPECTIVE

Application space

Architectural space

Architecture instance

Application instance

Design-space

exploration

(a) Traditional.

Application space

Architectural space

Architecture instance

Application instances

Platform

Design-space

exploration

Architecture

exploration

(b) Platform-based.

Figure 1.3: Design-space exploration strategies.

sign methodology [12, 38]. The platform-based design methodology [39, 78] no
longer maps a single application to an architecture that is optimal for this single
application. Instead, it maps an application onto a hardware/software platform
that can also be used for different applications from the same application space
(see Figure 1.3(b)). This platform consists of a set of interconnected hardware
components (e.g., processors, memories, etc.), potentially software components
with, for example, operating-system type of functionality and an application pro-
gram interface (API) that abstracts from the underlying hardware and software.
This API allows replacing one platform instance from the architecture space with
another platform instance without the need to re-implement the application on
the platform. The platform-based design methodology stimulates the use of a
common “platform” denominator between multiple applications from the same
application space. As a result, future design flows that map an application to a
platform will focus on compiling an application onto an existing platform [78].

The trends signaled above show that the context in which applications are
executed is becoming more dynamic. In future systems, multiple applications
are running concurrently on an MP-SoC, and the set of active applications may
change over time. At the same time, users expect a reliable behavior [10] of each
individual application independent of the context in which it is operating. Vir-
tualization of the resources in a system has been proposed as a concept to tackle
this problem. The idea behind virtualization is that an application is given the

1. INTRODUCTION 7

illusion that it is running on its own copy of the real hardware which however
has only a fraction of the resources that are available in the real platform. For
example, a processor which can do 100 million instructions per second could use
a Time-Division Multiple-Access (TDMA) scheduler to present itself to an appli-
cation A as a processor which can run 50 million instructions per second. This
leaves room for another application B to use the remaining 50 million instructions
per second without knowing that application A is also running on this processor.
Virtualization has become popular in recent years in server and desktop com-
puters [25, 61]. The concept is also employed in embedded systems. The Cell
architecture [74] of IBM uses virtualization to avoid that programmers have to
think about sharing processing resources and to guarantee the real-time response
characteristics of applications. The Hijdra architecture [17] of NXP is another
example of an embedded multi-processor system that uses virtualization. This
architecture assumes that every hardware component has a scheduler that allows
it to be shared between applications without them influencing each others timing
behavior.

In summary, the following trends in the design of embedded systems are ob-
served from a design perspective.

• Heterogeneous multi-processor systems are used to provide the required
computational power for novel embedded multimedia systems.

• Networks-on-chip are used to provide a scalable interconnect with timing
guarantees between the processors in the system.

• Platform-based design reduces production cost, design cost and design time
of embedded systems.

• Virtualization of resources is used to guarantee a predictable behavior of
applications in a dynamic environment.

1.3 Problem Statement

The trends outlined in the first two sections of this chapter show that the design
complexity of future embedded multimedia systems is growing rapidly. Con-
sumers expect that the number of applications integrated into these systems is
increased as compared to existing systems. At the same time, they expect that
this increased functionality does not affect the reliable behavior and quality of
these systems, and that the price of these systems does not increase (too much).
System-designers do not only have to meet these criteria, they also have to cope
with a decreasing time-to-market and increasing design cost. To deal with these
conflicting requirements, designers are starting to use multi-processor systems-
on-chip, virtualization and a platform-based design methodology. The challenge
is to combine these elements into a design method that enables designers to build

8 1.3. PROBLEM STATEMENT

systems with a predictable timing behavior. In such a predictable system,
applications are mapped to a platform while timing guarantees are provided for
each application independent of the other applications executing simultaneously
on the platform.

This thesis deals with the design of systems with a predictable timing behav-
ior. Three components are needed to build these systems. First, a platform must
be used that offers a predictable timing behavior to individual applications in-
dependent of other applications running on the same platform. Second, a model
should be used that allows timing analysis of the application and its mapping
to the platform. Third, a design flow should be used that allocates sufficient re-
sources for an application in the platform to meet its timing requirements. The
remainder of this section discusses all three aspects in some more detail and it
explains the choices made in this thesis.

Multi-processor systems that use a NoC interconnect will be a dominant hard-
ware platform in future embedded multimedia systems. The tile-based architec-
ture presented in [30] enables the structured design of these NoC-based MP-SoCs.
The template of this architecture allows any type of interconnect. Figure 1.4
shows the template instantiated with a NoC interconnect. Each tile contains a
processor (P), a memory (M), a communication assist (CA) and a network inter-
face (NI). The latter two resources are needed to decouple the computation from
the communication and to connect the tile with the NoC. This NoC connects all
tiles together via its routers (R) and links. To use this NoC-based MP-SoC in a
predictable system, the platform should offer a resource sharing mechanism that
allows multiple applications to use the platform resources simultaneously while
guarantees can be provided on the amount of time an application has access to the
resources and frequency of these accesses. A platform that offers these guarantees
is called a predictable platform. The NoC-based MP-SoC shown in Figure 1.4
can be turned into a predictable platform through the use of virtualization on its
resources. Due to the virtualization it is possible to consider a single application
at a time when designing a system in which multiple applications are executed
concurrently. This avoids that all combinations of applications have to be ana-
lyzed when verifying the timing constraints of an application that is mapped to
the platform.

The design of a predictable system requires that the timing behavior of the
application and its mapping to the platform can be analyzed. This can be done by
modeling the application and mapping decisions in a Model-of-Computation
(MoC) that allows timing analysis. A MoC captures, in an abstract manner, the
relevant features of a computation [73]. Which features are relevant depends on
the context in which a MoC is used. For the purpose of designing a predictable
MP-SoC system, it is important that the MoC can express the concurrency that
is present in an application. This concurrency should be exploited when mapping

1. INTRODUCTION 9

M CA

NI

tile
P

P CA

NI

tile
M

link

network

R R R

P CA

NI

tile
M

Figure 1.4: Predictable platform.

the application to the MP-SoC that is inherently concurrent. The MoC should
also express the synchronization and communication between the concurrent tasks
of an application. Concurrent tasks have to communicate with each other and
they should be able to agree on the use of shared resources. Furthermore, the
MoC must capture the timing behavior of the tasks and allow analysis of the
timing behavior of the application. This makes it possible to verify whether the
timing constraints imposed on the application are satisfied. Finally, the MoC
should allow a natural description of the application in the model. Multimedia
applications are typically streaming applications. The class of dataflow MoCs
fits well with this behavior. A dataflow program is specified by a directed graph
where the nodes (called actors) represent computations that communicate with
each other by sending ordered streams of data-elements (called tokens) over their
edges. The execution of an actor is called a firing. When an actor fires, it con-
sumes tokens from its input edges, performs a computation on these tokens and
outputs the result as tokens on its output edges. In this thesis, the Synchronous
Dataflow (SDF) MoC is used to model streaming applications. Actors in an SDF
graph (SDFG) consume and produce a fixed amount of tokens on each firing. This
makes it possible to analyze the throughput [46] and latency [47, 128] of these
graphs. An example of an SDFG modeling an H.263 decoder is shown in Figure
1.5. Every of the four actors performs part of the frame decoding. The frame
decoding starts in the actor VLD and a complete frame is decoded when the data
is processed by actor Motion Comp. (motion compensation). Data that must be
preserved between subsequent firings of an actor is modeled with an initial token
on the self-edges of the actors. The partially decoded data is communicated via
the edges at the bottom (left-to-right). The edges at the top (right-to-left) model
the storage-space constraints on the bottom edges. This shows another important
property of SDFGs. They allow modeling of many mapping decisions in the graph
[13]. This enables analysis of the timing behavior of the application under these
design decisions.

10 1.4. A PREDICTABLE DESIGN FLOW

1

2544

1 1

4
1 2376

2544

IDCTIQVLD 1
2376

1 1

1

2376

1 1 1 1 1 1

1 1 1

Motion

Comp.

2376

Figure 1.5: SDFG of an H.263 decoder.

When building a predictable system, a predictable platform should be used.
Furthermore, a MoC should be used which allows analysis of the timing behavior
of an application under certain mapping decisions. The third aspect that should
be considered when designing a predictable system is the design flow that maps
an application to a platform. This design flow should reserve sufficient resources
in the platform such that the application can meet its timing-constraints when
executed on the platform. A design flow that can determine this mapping is called
a predictable design flow.

In this work, it is assumed that a platform with a predictable timing behavior
is available. It is also assumed that applications are modeled as SDFGs. This
allows timing analysis of an application and its mapping to the platform. The
third element, a predictable design flow, is studied in this thesis. The next section
sketches the steps needed in a predictable design flow. It also introduces the most
important problems that must be solved in developing such a flow.

1.4 A Predictable Design Flow

This thesis presents techniques to map a time-constrained streaming application
to a NoC-based MP-SoC. The objective is to minimize the resource usage (pro-
cessing, memory, communication bandwidth) while offering guarantees on the
throughput of the application when mapped to the system. A design flow that
provides this guarantee is shown in Figure 1.6. The design flow consists of thirteen
steps which are divided over four phases. This section introduces the various steps
in the flow. The details of these steps can be found in the chapters mentioned in
Figure 1.6. The motivation for the ordering of the steps in the flow can be found
in Chapter 9.

The design flow assumes that the application that it has to map to the NoC-
based MP-SoC is modeled with a (streaming) application SDFG with accom-
panying throughput constraint. The application SDFG specifies for every actor
the required memory space and execution time for all processors on which this
actor can be executed. It also gives the size of the tokens communicated over the
edges. The NoC-based MP-SoC is described with a platform graph and an inter-
connect graph. The platform graph describes all resources in the SoC except
that it abstracts from the NoC interconnect. The NoC resources are captured in

1. INTRODUCTION 11

Streaming application SDFG

(3) Select storage distribution

(4) Estimate storage distribution per connection

(5) Estimate latency constraints

(6) Compute bandwidth constraints

(7) Bind SDFG to tiles

(8) Construct static-order schedules per tile

(9) Allocate TDMA time-slices

(10) Optimize storage space allocations

(11) Communication constraint extraction

(12) Communication scheduling

(13) Update bandwidth allocations

MP-SoC configuration

Platform graph

(1) Model non-local memory accesses

M
e
m

o
r
y

D
im

e
n
s
io

n
in

g

T
il
e

b
in

d
in

g
a
n
d

s
c
h
e
d
u
li
n
g

C
o
n
s
tr

a
in

t
r
e
fi
n
e
m

e
n
t

N
o
C

r
o
u
ti

n
g

a
n
d

s
c
h
e
d
u
li
n
g

Interconnect graph

(2) Compute storage-space / throughput trade-offs

Throughput constraint

Memory-aware SDFG Throughput constraint

Resource-aware SDFG Throughput constraint

Binding-aware SDFG Throughput constraint / scheduling constraints

iterate

update

Chapter

5

7

9

9

9

9

6

6

6

7

8

8

9

Figure 1.6: SDFG-based MP-SoC design flow.

12 1.4. A PREDICTABLE DESIGN FLOW

the interconnect graph. The result of the design flow is an MP-SoC config-
uration which specifies a binding of the actors to the processors and memories,
a schedule for the actors on the processors and a schedule for the token commu-
nication over the NoC.

Tokens that are communicated over the edges of an application SDFG must be
stored in memory. The allocation of storage space for these tokens is dealt with
in the memory dimensioning phase. Some tokens might be too large to fit into
the memory that is available inside the tiles executing the actors that process the
data in these tokens. Such tokens should be placed in some remote tile which has
sufficient memory space. The actors that use these tokens must then access the
tokens over the NoC. These accesses to the NoC must be modeled in the SDFG
to allow timing analysis of this design decision. The first step of the design flow
identifies the tokens which should be stored in a remote tile. It also transforms
the streaming application SDFG to model the design decision that these tokens
are stored in this remote tile.

The streaming application has a throughput constraint that must be satisfied
by the MP-SoC configuration. A major aspect influencing the achieved through-
put is the storage space allocated to the edges of the graph. Allocating space
for more than one token to an edge might increase throughput because it may
increase pipelining opportunities. The size of the storage space must be chosen
such that the throughput requirement is met, while minimizing the required stor-
age space. As the exact throughput constraint for parts of the system at various
stages of the design is often unknown, a trade-off must be made between the re-
alizable throughput and the storage requirements for an SDFG. The second step
of the flow computes the throughput-storage space trade-off space. It finds all
distributions of storage space that achieve the maximal throughput under a given
total storage size constraint. One of these storage distributions is selected in the
third step of the flow to limit the storage space of the edges in the application
SDFG. The source and destination actor of an edge might in the end be bound
to different tiles. In that case, the storage space allocated to an edge has to be
split over both tiles. Step 4 estimates the storage space that should be allocated
in both tiles to meet the throughput constraint. The SDFG that results from the
first phase of the design flow is called a memory-aware SDFG. It models access
to tokens stored in a remote memory and it constrains the storage space of the
edges in the graph.

In the SDF MoC, it is assumed that edges have an infinite bandwidth and no
latency. In other words, communication of tokens over an edge takes no time.
Edges whose source and destination actors are bound to different tiles will be
bound to a connection in the NoC. This connection has a latency and finite
bandwidth. The constraint refinement phase of the design flow estimates the
maximal latency (step 5) and minimal bandwidth (step 6) needed for edges when
bound to a connection such that the throughput constraint is met. The resulting
SDFG is called a resource-aware SDFG.

The constraints computed in steps 3 through 6 are used to steer the resource

1. INTRODUCTION 13

allocation that takes place in the third phase of the flow. This tile binding and
scheduling phase binds actors and edges from the resource-aware SDFG to the
resources in the platform graph (step 7). When a resource is shared between
different actors or applications, a schedule should be constructed that orders the
accesses to the resource. The accesses from the actors in the resource-aware
SDFG to a resource are ordered using a static-order schedule. This schedule
is constructed in step 8 of the flow. Step 9 allocates TDMA time slices on all
resources that are used by the resource-aware SDFG. These TDMA time slices
provide virtualization of the resources to the application.

The storage space allocated to the edges of the resource-aware SDFG could be
too large when the mapping decisions made in step 7 through 9 are considered.
Step 10 computes the throughput-storage space trade-off space of the resource-
aware SDFG considering the binding and scheduling decisions taken so far. The
storage space allocations of the edges are then updated based on the smallest
storage space allocation from this trade-off space that satisfies the throughput
constraint.

The third phase of the design flow, binds and schedules the actors to the
resources of the platform. This phase does not consider the scheduling of the
communication on the NoC. This problem is considered in the NoC routing
and scheduling phase of the design flow. The actor bindings and schedules
impose timing-constraints on the communication that must be met when con-
structing a communication schedule. These timing constraints are extracted from
the binding-aware SDFG in step 11. Next, the communication is scheduled onto
the NoC. The objective of the NoC scheduling is to minimize the resource usage
while satisfying all timing constraints. Based on the actual bandwidth usage of
the communication schedule, the resource availability in the platform and inter-
connect graph can be updated. This is done in step 13 of the design flow. The
updated graphs can then be used to map another application on the same platform
while considering the resources used by the already mapped application(s).

The mapping of the streaming application to the NoC-based MP-SoC may fail
at various steps of the design flow. This may occur due to lack of resources (step
7) or infeasible timing constraints (step 9 and 12). In those situations, the design
flow iterates back to the first or third step of the flow and design decisions made
in those steps are revised. When going back to step 1, more or different tokens
should be placed in a memory that is accessed over the NoC. Reverting back to
step 3 implies that the storage space allocated to the edges is too constrained for
meeting the throughput constraint. So, a different storage distribution should be
chosen.

The design process ends as soon as a mapping of the application to the NoC-
based MP-SoC is found that satisfies the throughput constraint or till all storage
distributions from the space found in step 2 are tried unsuccessfully. In the latter
case, the design flow is not able to find an MP-SoC configuration that satisfies
the throughput constraint. More resources should be added to the platform or
the application and its constraint should be modified in order to find an MP-SoC

14 1.5. CONTRIBUTIONS

configuration that meets the throughput constraint.

1.5 Contributions

This thesis makes several contributions to develop a predictable design flow as
sketched in the previous section.

• An SDF model is presented that allows reasoning about the timing behavior
of an actor which uses data stored in a memory that is accessed over an
interconnect (Chapter 5). An earlier version of this work was published in
[135, 136].

• A cost-function driven heuristic algorithm is proposed for binding and sched-
uling a throughput-constrained SDFG on the tiles of a multi-processor sys-
tem (Chapter 6). This work was published in [132].

• An efficient technique is presented to calculate the throughput of a bound
and scheduled SDFG (Chapter 6). This work was published in [132].

• An algorithm is presented to compute the trade-off space between storage-
space allocation for the edges of an SDFG and the maximal throughput that
can be realized under these storage constraints (Chapter 7). This work was
published in [137].

• Several routing and scheduling algorithms for mapping time-constrained
communication on a NoC are presented. These algorithms minimize re-
source usage by exploiting all scheduling freedom offered by NoCs while
guaranteeing that the timing constraints are met (Chapter 8). This work
was published in [134] and an extended version is published in a special is-
sue of the Journal of Systems Architecture on the best papers of the Digital
System Design conference [133].

• A design-flow is proposed that maps a throughput-constrained application
modeled with an SDFG onto a NoC-based MP-SoC (Chapter 9).

• The SDF3 tool-kit implements all techniques presented in this thesis, the
predictable design-flow and existing SDFG analysis and visualization tech-
niques, as well as a graph generator (Chapter 4). An earlier version of this
work has been published in [138].

1.6 Thesis Overview

This thesis is organized as follows. The next chapter discusses the characteristics
of modern streaming multimedia applications. It considers both the modeling of
these applications as dataflow graphs as well as the estimation of their resource

1. INTRODUCTION 15

requirements. Chapter 3 presents the NoC-based MP-SoC platform template
assumed in this thesis with its scheduling strategies. These scheduling strate-
gies make sure that the platform can provide timing guarantees to individual
applications when these applications reserve resources from the platform. The
synchronous dataflow model is introduced in Chapter 4. This chapter discusses
also existing techniques for analyzing the throughput of an SDFG and scheduling
it on single and multi-processor systems. Chapter 5 presents an SDF model that
allows reasoning about the timing behavior of an actor that uses data stored in
a memory that is accessed over the NoC. A technique to bind and schedule an
SDFG to the resources of an MP-SoC is presented in Chapter 6. The minimal
storage-space for the edges of an SDFG that must be allocated by this binding and
scheduling technique can be computed using the algorithm presented in Chapter
7. This algorithm can compute the complete trade-off space between the storage-
space and throughput of an SDFG. The resource allocation technique presented
in Chapter 6 does not construct a schedule for the communication on the NoC.
Several scheduling techniques for this problem are presented in Chapter 8. All
techniques presented in this thesis are embedded into a coherent and complete
design flow in Chapter 9. A case study is performed in Chapter 10 that maps
a set of multimedia applications (H.263 encoder/decoder and an MP3 decoder)
onto a NoC-based MP-SoC. Finally, Chapter 11 concludes this thesis and gives
recommendations for future work.

16 1.6. THESIS OVERVIEW

Chapter 2

Streaming Multimedia Applications

2.1 Overview

This chapter gives an overview of the main characteristics of streaming multimedia
applications. Section 2.2 introduces the application domain and its most widely
used applications. The properties that should be captured when modeling these
applications are discussed in Section 2.3. To perform timing analysis and resource
allocation, properties like the execution time and required memory space need to
be extracted from an application. Section 2.4 discusses techniques to extract these
requirements from the source code of applications.

2.2 Application Domain

Multimedia applications constitute a huge application space for embedded sys-
tems. They underlie many common entertainment devices, for example, cell
phones, digital set-top boxes and digital cameras. Most of these devices deal
with the processing of audio and video streams. This processing is done by ap-
plications that perform functions like object recognition, object detection and
image enhancement on the streams. Typically, these streams are compressed
before they are transmitted from the place where they are recorded (sender)
to the place where the are played-back (receiver). Applications that compress
and decompress audio and video streams are therefore among the most dominant
streaming multimedia applications [152].

The compression of an audio or video stream is performed by an encoder.
This encoder tries to pack the relevant data in the stream into as few bits as
possible. The amount of bits that need to be transmitted per second between the
sender and receiver is called the bit-rate. To reduce the bit-rate, audio and video
encoders usually use a lossy encoding scheme. In such an encoding scheme, the
encoder removes those details from the stream that have the smallest impact on

17

18 2.2. APPLICATION DOMAIN

encoded bitstreamvideo samples

-

+

+

motion estimator

motion compensation predictor

DCT quantizer variable length encoder

inverse DCT

buffer

Figure 2.1: Structure of a video encoder [152].

the perceived quality of the stream by the user that has to listen to it or look at it.
Typically, encoders allow a trade-off between the perceived quality and the bit-
rate of a stream. The receiver of the stream must use a decoder to reconstruct the
received audio or video stream. After decoding, the stream can be output to the
user, or additional processing can be performed on it to improve its quality (e.g.,
noise filtering), or information can be extracted from it (e.g., object detection).
There exist a number of different audio and video compression standards that
are used in many embedded multimedia devices. The remainder of this section
discusses the most commonly used standards.

Popular video coding standards are MPEG-2 [96] (e.g., used for DVD) and its
successor MPEG-4 [97]. These video coding standards focus on high resolution
video streams. The H.263 [70] and H.264 [71] coding standards focus on the mobile
domain. These standards are meant for video compression of streams with low
resolutions. The basic structure of the encoder used in all four video compression
standards is shown in Figure 2.1. All compression standards use a discrete cosine
transformation (DCT) to identify information in a frame that can be removed.
The DCT separates the information into spatial frequencies. The higher spatial
frequencies represent finer details that could be eliminated first. This elimination
of details occurs in the quantizer. Depending on the required quality level, more
or less details are removed from a frame. Motion estimation and compensation
are also used in all coding standards to reduce the bit-rate of the compressed
stream. Motion estimation compares part of one frame to a reference frame and
determines the distance over which the selected part is shifted in the frame with
respect to the reference frame. A motion compensator uses this motion vector to
reconstruct the frame. The disadvantage of using a motion estimator is that the
sender must hold a reference frame in its memory. However, the use of motion
estimation and compensation greatly reduces the bit-rate. Motion compensation
is performed both in the decoder and in the encoder. The encoder constructs,
by performing motion compensation, the exact same frame as the decoder will
construct. This frame is then used as a reference by the motion estimator to

2. STREAMING MULTIMEDIA APPLICATIONS 19

Sync

and

Error

Check-

ing

Huffman

Decoding

Hufmann Info

Decoding

Scalefactor

Decoding

Requantization Reordering

Joint Stereo

Decoding

Anti

Alias

Hybrid

Synthesis

Frequency

Inversion

Subband

Inversion

encoded bitstream

left audio samples

right audio samples Anti

Alias

Hybrid

Synthesis

Frequency

Inversion

Subband

Inversion

Figure 2.2: Structure of an MP3 decoder [126].

compute the motion vectors for the next frame. To further reduce the bit-rate,
all standards use on top of the lossy encoding a loss-less encoding scheme. For
this purpose, Huffman encoding or variable length encoding are typically used.
These encoding techniques remove entropy from the final data stream that is sent
to the decoder.

Audio streams are often compressed using the MPEG-1 Layer 3 (MP3) stan-
dard [83] or the Ogg Vorbis standard [147]. MP3 uses a combination of subband
coding and a psychoacoustic model to compress the audio stream. The psychoa-
coustic model relies on the characteristics of the human hearing system. For
example, when the human ear hears one tone, followed by another tone at a
nearby frequency, the second tone cannot be heard for some interval. This effect
is called masking and it is exploited in the psychoacoustic mechanism of the MP3
encoder. This allows the encoder to eliminate masked tones to reduce the amount
of information that is sent to the decoder. The structure of an MP3 decoder is
shown in Figure 2.2. It reverses the operations performed by the encoder in order
to reconstruct the audio stream. The ‘Sync and Error Checking’ block finds a
starting point in the bitstream and it checks the received stream for errors due to
the data transmission. The ‘Huffman’ block uncompresses the bitstream using a
Huffman decoder. The coefficients required for this operation are supplied by the
‘Huffman Info Decoding’ block. The output of the Huffman decoder is a stream
of audio samples. The MP3 standard groups these samples into frames of 576
samples that are processed together in the remainder of the decoder. After the
Huffman decoding, a frame is requantized. In this process, each audio sample in-
side the frame is multiplied with a coefficient that is supplied by the ‘Scalefactor
Decoding’ block. Next, the audio samples inside a frame are reordered and an in-
verse discrete cosine transformation is applied. The latter operation is performed
in the ‘Joint Stereo Decoding’ block. The remainder of the decoder consists of
a series of audio filters that remove noise inserted into the audio stream by the
operations performed in the encoder and decoder.

20 2.3. APPLICATION MODELING

Ogg Vorbis is another audio compression standard that also uses a psychoa-
coustic model to compress the audio stream. Because it has been developed after
the MP3 standard, the designers could use more sophisticated models. As a re-
sult, an Ogg Vorbis encoder can typically compress an audio stream with the
same quality but with a lower bit-rate than an MP3 encoder.

2.3 Application Modeling

The design of a predictable system requires that the timing behavior of the appli-
cation and its mapping to the platform can be analyzed. More precisely, it requires
that the throughput and latency of an application when bound and scheduled on
a platform can be predicted. Both the throughput and latency are influenced by
the amount of buffering (memory space) that is used in the platform. Through-
put is typically increased when larger buffers are used. Increasing buffer sizes
may also reduce the variation in the time needed to process data items, which
may lead to a reduced latency. However, an increase in buffer sizes means that
more memory is needed in the platform. As a result, the energy consumption
of the system will increase. From an energy perspective, it is important to min-
imize the memory usage and thus the buffering. When designing an embedded
multimedia system, the designer should try to minimize the required buffering
while meeting the throughput and latency constraints. Throughput is often the
most important timing aspect when designing systems for streaming multimedia
applications. Therefore, this thesis focuses on analyzing throughput and buffer
requirements of an application and its mapping to a platform. This requires that
the application and mapping decisions are modeled in a Model-of-Computation
(MoC) that allows throughput and buffer analysis. The MoC that should be used
depends on the features of the application that are relevant for building a pre-
dictable system. The Synchronous Dataflow (SDF) MoC has been selected for
this purpose. A detailed motivation for this choice and a comparison between
SDF and other MoCs can be found in Section 4.7. Essentially, the reason for this
choice is that the SDF MoC provides a good compromise between expressiveness,
modeling ease, analysis potential, and implementation efficiency. Modeling ease
refers to the aspect that a MoC should allow modeling of applications from the
targeted application domain in a natural and straightforward manner. This sec-
tion discusses the application characteristics that are the most important when
modeling streaming multimedia applications. It also explains how an application
can be modeled with an SDF graph (SDFG) and it discusses the limitations of
the SDF MoC.

The previous section shows that the dominant applications from the targeted
application domain operate on streams of data. The SDF MoC can model stream-
ing data in a natural way. In this MoC, an application is modeled with a directed
graph where the nodes (called actors) represent computations (tasks) that com-

2. STREAMING MULTIMEDIA APPLICATIONS 21

VLC
MB

Enc.
Motion

Est.

199 1 99

MB

Dec.

Motion

Comp.

1

1
1

99

1

1

1

1 1

1

1 1

1

(a) H.263 decoder.

Huffman

Req.

Req.

2

1

1

2

Reorder

Reorder

Stereo

1 1

1 1

1

1

1

1

Antialias

Antialias

Hybrid

Synth.

Hybrid

Synth.

Freq.

Inv.

Freq.

Inv.

Subb.

Inv.

Subb.

Inv.

11 1 1 1 1

111 1 1 1

1

1

1

1

1
1

1 1

1 1

1

1

1

(b) MP3 decoder.

Figure 2.3: SDFG model of applications.

municate with each other by sending ordered streams of data-elements (called
tokens) over their edges. The graph makes the parallelism that is available in
an application explicit. This is important when mapping the application onto a
multi-processor system, which inherently offers parallelism. The execution of an
actor is called a firing. When an actor fires, it consumes tokens from its input
edges, performs a computation on these tokens and outputs the result as tokens
on its output edges. The number of tokens that are consumed and produced on
a firing are fixed in the SDF MoC and called the consumption and production
rates. The rates attached to the source and destination of an edge can be differ-
ent in the SDF MoC. This makes it possible to express multi-rate dependencies
between the actors (tasks) in an application. This is important as different tasks
in a multimedia application may operate at a different granularity, as illustrated
with the examples discussed in the remainder of this section.

Figure 2.1 shows the structure of an H.263 encoder. An H.263 encoder divides
a frame in a set of macro blocks (MBs). A macro block captures all image data
for a region of 16 by 16 pixels. The image data inside a MB can be subdivided
into 6 blocks of 8 by 8 data elements. Four blocks contain the luminance values of
the pixels inside the MB. Two blocks contain the chrominance values of the pixels
inside the MB. A frame with a resolution of 174 by 144 pixels (QCIF) contains
99 MBs. These 99 MBs consist, in total, of 594 blocks. An H.263 encoder that
encodes frames with QCIF resolution can be modeled with the SDFG shown in
Figure 2.3(a). The motion estimator block shown in Figure 2.1 is modeled in this
SDFG with the Motion Est. actor. The motion compensation predictor block and
the variable length encoder block are modeled with the Motion Comp. and VLC
actors. The MB decoding (MB Dec.) actor models the inverse DCT block. The
DCT and quantizer block are modeled together in the MB encoding (MB Enc.)
actor. Buffering of the encoded bitstream is not taken into account in the SDFG.
Therefore, the buffer block is not modeled in the graph. The motion estimation,
motion compensation and variable length encoding blocks operate on a complete

22 2.3. APPLICATION MODELING

video frame (i.e., 99 MBs). The other blocks in Figure 2.1 process a single MB
at a time. These different processing granularities are modeled with the fixed
rates in the SDFG of Figure 2.3(a). This application model shows that SDFGs
are well-suited for modeling multi-rate behavior. The self-edges on the Motion
Comp. and VLC actors model that part of the data that is used by these actors
during a firing must be stored for a subsequent firing. In other words, these self-
edges model the global data that is kept between executions of the code segments
that are modeled with these actors.

Another example of an application modeled with an SDFG is shown in Figure
2.3(b). This SDFG models the MP3 decoder application shown in Figure 2.2.
Most tasks shown in the block diagram of Figure 2.2 have a corresponding ac-
tor in the SDFG. The ‘Sync and Error Checking’, ‘Huffman Info Decoding’ and
‘Scalefactor Decoding’ from the block diagram have no corresponding actor in the
SDFG. These blocks represent functionality of the decoder that is executed only
at the beginning of the stream. The data produced by these blocks is used to ini-
tialize the ‘Huffman decoding’ and ‘Requantization’ blocks and is needed during
the whole execution of the MP3 decoder (i.e., it is global data). The self-edges on
the Huffman and Req. actors model the storage of this data between subsequent
firings of these actors. This is similar to the self-edges in the H.263 encoder. All
actors in the SDF MoC are executed periodically. This implies that an initializa-
tion phase, as occurs in the MP3 decoder, cannot be modeled. Therefore, these
three blocks are not modeled in the SDFG of the MP3 decoder. However, these
blocks do represent part of the application that does take time when executed. It
might therefore be necessary to take this time into account when analyzing the
throughput of the SDFG in order to get a conservative estimate of the throughput
of the application when executed on a platform at any point in time, including
the initialization. This can be done by adding the execution time of the code
that corresponds to the ‘Sync and Error Checking’ and ‘Huffman Info Decod-
ing’ blocks to the execution time of the code segment that is modeled with the
Huffman actor. Similarly, the execution time of the ‘Sync and Error Checking’
and ‘Scalefactor Decoding’ blocks can be added to the execution time of the Req.
actor. Alternatively, the execution time of these blocks can be ignored as these
blocks are only executed during the start-up phase of the MP3 decoder. They do
not influence the execution time of the application in the long-run.

The blocks in the block diagram of Figure 2.2 consume and produce data in
blocks of 576 (audio) samples. One such a block of samples is called a frame. Each
frame can be modeled with a token in the SDFG and the actors produce one token
on each firing. These rates are annotated to the edges of the SDFG shown in Fig-
ure 2.3(b). The Huffman decoder blocks in the MP3 decoder of Figure 2.2 always
operate on two frames at the same time, while all other blocks process one frame
at a time. This is correctly modeled with the fixed rates in the SDFG of Figure
2.3(b). Many audio and video codecs can accurately be modeled with fixed rates
as these codecs do not have a very dynamic, data-dependent behavior. There-
fore, the rates (and also often the actor execution times) can be upper-bounded

2. STREAMING MULTIMEDIA APPLICATIONS 23

without a large over-estimation. This over-estimation cannot be avoided when
designing the system for its worst-case behavior. However, the dynamism in the
application may lead to a resource allocation that is too conservative for some
situations [49, 99]. The solution to prevent over-allocation of the resources is to
split the application over multiple scenarios. Each scenario represents a behav-
ior of the application for a constrained range of the rates and execution times.
Identification of different scenarios can be done using the technique described in
[49, 50]. An SDFG can then be constructed for each scenario and this SDFG
can subsequently be mapped onto a platform using the techniques described in
this thesis. However, there are two known issues with this approach. First, the
design flow presented in this thesis deals with a single SDFG at a time. When
mapping multiple SDFGs of different scenarios, the flow should be extended to
take the relations between the actors in the different graphs into account. Sec-
ond, run-time switching from one SDFG implementation to another has not yet
been (extensively) studied. A switch may involve aspects such as task migration,
memory reallocation, and/or NoC reconfiguration. It is currently not possible to
analyze the timing behavior when switching between graphs. Extending the de-
sign flow to deal with multiple SDFGs that model different scenarios of the same
application is an important direction of future work.

2.4 Analyzing Actor Resource Requirements

A design flow must allocate resources for the streaming applications that it maps
onto a platform. To do this, the design flow needs information on the resource
requirements of the application being mapped. The application is modeled with
an SDFG. The actors in an SDFG communicate by sending tokens between them.
Memory space is needed to store these tokens. The amount of tokens that must be
stored simultaneously is determined by the design flow (see Chapter 9). However,
the design flow must know how much memory space is needed for a single token.
This is determined by the number of bytes of the data type that is communicated
with the token. This information can easily be extracted through a static-code
analysis. Some information is also needed on the resource requirements of the
actors. These actors represent code segments of the application. To execute a
code segment, processing time is needed as well as memory space to store its
internal state. The internal state contains all variables that are used during the
execution of the code segment but that are not preserved between subsequent
executions of the code segement. Global data that is used inside a code segment
is not considered part of the internal state. The SDF MoC requires that global
data that is used by a code segment is modeled explicitly with a self-edge on the
actor that models this code segment (see Figure 2.3(b) for an example). This
self-edge contains one initial token whose size is equal to the size of the global
data used in the code segment. The maximal size of the internal state is deter-
mined by the worst-case stack size and the maximal amount of memory allocated

24 2.4. ANALYZING ACTOR RESOURCE REQUIREMENTS

Actor Worst-case execution time [cycles]
Huffman 151977
Req. 72695
Reorder 34684
Stereo 53602
Antialias 409
Hybrid Synth. 7414
Freq. Inv. 4912
Subb. Inv. 1865001

Table 2.1: Worst-case execution times MP3 decoder on ARM7.

on the heap. In many embedded applications, no dynamic memory allocation is
used. So, the memory space requirement for the internal state of an actor can be
found by analyzing its worst-case stack size. The amount of processing resources
that needs to be allocated to an actor depends on the throughput constraint of
the application. To provide throughput guarantees for a mapped application, the
design flow must analyze the throughput of the application using the worst-case
execution times for the actors. Using these worst-case execution times, the design
flow can compute a conservative bound on the actual throughput that is achieved
when the application is executed on the platform. The worst-case execution times
of the actors must be extracted from the code segments that are modeled with
these actors before the design flow is started.

Tools are available to analyze the worst-case stack size and the execution time
of applications [60, 63]. These tools take an application as input and analyze its
memory and execution time requirements. An actor in an SDFG models a code
segment from a full application. So, these tools cannot directly be used to analyze
the requirements of the actors in an SDFG. It requires that each code segment
that is modeled with an actor is isolated from the application code. The separate
code segments can then be analyzed for their worst-case stack size and execution
time. Most worst-case stack size and execution time analysis tools support only
analysis of one or a few different processor types. The predictable design flow
presented in this thesis targets a heterogeneous multi-processor platform which
may contain many different processor types. Therefore, to complement existing
tools, an analysis tool has been developed that can easily be reconfigured for a
large number of different processor types [51]. The tool, called CTAP, supports
ANSI-C as this is the main programming language for embedded systems. It
uses the observation that the time-bound on a C statement that does not affect
the control flow of an application is equal to the sum of the time-bounds on the
assembly instructions it is translated to. The tool assumes that the number of
cycles (time) needed to execute each assembly instruction can be upper bounded,
an assumption valid for many processors used in the embedded domain. This im-

2. STREAMING MULTIMEDIA APPLICATIONS 25

plies a very simple and portable architecture model. Only two things are needed:
a mapping of each assembly instruction onto a constant delay and a translation
of the source code to assembly instructions of the target processor. The former
can be obtained from the processors datasheet, the latter using a compiler. Once
CTAP has computed the bound on the C statements of an application, it uses
static code analysis to compute the worst-case execution time of the whole ap-
plication. Using CTAP, the worst-case execution times of the actor in the MP3
decoder SDFG (see Figure 2.3(b)) have been computed. Table 2.1 shows these
execution times assuming that the actors are mapped to an ARM7 processor type
[8]. The static code analysis technique that is used in CTAP to compute the
worst-case execution time can also be used to find the worst-case stack size of
actors. A first prototype tool exists to compute these worst-case stack sizes.

2.5 Summary

This chapter gives an overview of the most important characteristics of multimedia
applications. These applications are composed of a set of communicating tasks
that operate on streams of data. There are often multi-rate dependencies between
these tasks. The most important constraints when designing a system that runs
a multimedia application are the throughput realized by the application when
mapped to a platform and the buffering required for the data communicated
between the tasks of the application. The SDF MoC allows to analyze these
constraints, to model the parallelism between the tasks of the application and
to model the multi-rate behavior of the tasks. This chapter explains how an
application can be modeled with an SDFG. It also briefly presents a tool to
analyze the worst-case resource requirements of the tasks inside the application.
A predictable design flow needs this information to allocate sufficient resources
for the application such that it can provide throughput guarantees.

26 2.5. SUMMARY

Chapter 3

Network-on-Chip-based

Multi-Processor Platform

3.1 Overview

This chapter introduces a predictable platform template. It combines a Network-
on-Chip-based Multi-Processor-System-on-Chip (NoC-based MP-SoC) platform
with a resource scheduling strategy that can provide the required timing guar-
antees. Section 3.2 presents the template of this platform. Various scheduling
strategies are compared in Section 3.3 with respect to several properties that
are important for a predictable platform. Section 3.4 discusses the use of these
scheduling strategies in the predictable platform.

3.2 Multi-Processor Platform Template

The multi-processor platform template that is used in this thesis is shown in
Figure 3.1. Multi-processor systems like Daytona [3], Eclipse [125], Hijdra [18],
and StepNP [111] fit nicely into this template. The template is based on the
tile-based multi-processor platform described by Culler et al. in [30]. It consists
of multiple tiles connected with each other by an interconnection network. Each
tile contains a set of communication buffers, called the network interface (NI),
that are accessed both by the local processing elements inside the tile and by
the interconnect. The NI is also responsible for packatization of data send over
the interconnect. A tile has also a small controller, called the communication
assist (CA), that performs accesses to the local memory (M) on behalf of the
NI. It decouples the communication and computation, allowing a better resource
utilization. The CA acts also as the memory access arbiter, i.e., it decides when
memory request from the local processor and NI are granted access to the local

27

28 3.2. MULTI-PROCESSOR PLATFORM TEMPLATE

M CA

NI

tile
P

P CA

NI

tile
M

link

network

R R R

P CA

NI

tile
M

Figure 3.1: Multi-processor template.

memory.

Two different types of tiles are distinguished based on the functionality of the
processing element (P) inside the tile and the size of the memory (M). The first
type, called processing tile, contains a processor which executes the code of
the applications running on the platform. The application code and some of the
data structures needed when executing it are stored in the local memory of the
tile. Multimedia applications may require access to large data structures. A video
processing application may for example require access to a complete video-frame.
A single frame at HDTV resolution consists of over two million pixels each using
three bytes of memory. The memories in a processing tile will typically not be
large enough to store this amount of data [116]. Therefore a second type of tiles
that contains large memories is included in the architecture template. These tiles
are called memory tiles. A memory tile contains besides a large memory also a
small processing element (P) that schedules the request from multiple, different
processing tiles to access its local memory. From the memory’s perspective, only
the local NI and P try to access this memory. Arbitration between these two
elements is performed by the local CA.

The interconnect between the tiles in the platform template should offer uni-
directional point-to-point connections between pairs of NIs. In a predictable
platform, these connections must provide guaranteed bandwidth, and a tightly
bounded propagation delay per connection - i.e. they must provide a guar-
anteed throughput. The connections must also preserve the ordering of the
communicated data. A Network-on-Chip (NoC) can provide all these properties.
The NoC consists of a set of routers which are connected to each other in an
arbitrary topology. Each tile is connected through its NI with a router (R) in the
NoC. The connections between routers and between routers and NIs are called
links. Examples of NoCs providing the required properties are Æthereal [122] and
Nostrum [93].

3. NETWORK-ON-CHIP-BASED MULTI-PROCESSOR PLATFORM 29

3.3 Resource Arbitration Strategies

Resources in the NoC-based MP-SoC platform may have to be shared between
tasks (i.e. actors in case of an SDFG) of one or more applications that are execut-
ing on the platform. This may lead to resource conflicts when multiple tasks want
to access a resource at the same time. A resource arbitration strategy should re-
solve these conflicts. This requires that the accesses of tasks to a shared resource
are ordered (scheduled) in time.

To allow analysis of the timing behavior of applications, a predictable platform
must provide a guarantee on the maximum amount of time between the moment
that the task is ready to be executed and the completion of its execution. This
amount of time is called the worst-case response time (WCRT) of a task. A
predictable design flow has to consider the worst-case response times of tasks that
form an application when it analyzes the timing behavior of this application when
mapped to the platform. From a cost perspective (i.e. area, energy), the resource
usage should be minimized. Therefore, a resource arbitration strategy should try
to minimize the worst-case response time. This reduces the over-allocation of
resources needed for an application to meet its timing constraints.

When building a predictable system, it is also important that the timing be-
havior of one application is not influenced by other applications running on the
same platform. This enables analysis of the timing behavior of applications in
isolation. A resource arbitration strategy that allows this is called composable
[81]. Another important aspect that needs consideration when comparing re-
source arbitration strategies is the flexibility of a strategy to handle potentially
changing dependencies between tasks of an application. A strategy is said to be
flexible when it can deal with dynamically changing dependencies between tasks.
In this section, three commonly used resource arbitration strategies (static-order,
round-robin and time-division multiple-access) are compared on their worst-case
response time, composability and flexibility.

Static-order. Following [100], a static-order schedule for a set T of tasks
(i.e. actors of potentially different SDFGs) is defined as a finite or infinite se-
quence t1t2t3... ∈ T . Practical infinite static-order schedules consist of a (possible
empty) sub-sequence which is seen once followed by a finite sub-sequence which is
infinitely often repeated. A resource arbitration strategy that uses a static-order
schedule starts with waiting till the first task in the sequence is ready to execute.
After executing this task, the scheduler executes the next task in the sequence
if it is ready, or it waits till the task becomes ready to be executed. Once this
task is executed, it continues with the next task. This process is repeated till the
schedule is finished or indefinitely in the case of an infinite schedule.

A static-order schedule is not flexible nor composable as it can only be con-
structed when all dependencies between the tasks are fixed and known. Depen-
dencies that are not taken into account can lead to a deadlock of the schedule.
For example consider a task t2 which is scheduled after another task t1. If for

30 3.3. RESOURCE ARBITRATION STRATEGIES

some reason at some point t1 needs data of the execution of t2 that is scheduled
after t1, the schedule will never make progress. So, the worst-case response times
of the tasks in a deadlocked schedule are infinite. When deadlock is avoided, the
worst-case response time depends on the moment a task becomes ready to execute
and the time it takes till all other tasks which are scheduled before this task finish
their execution.

In an SDFG, all dependencies between actors (tasks) are specified in the graph.
A static-order schedule can exploit the fact that the dependencies between tasks
are known in advance. Tasks can be ordered in such a way that the waiting time
of tasks is minimized. Furthermore, a static-order schedule only waits when the
task that should be executed next is not ready yet. Minimizing both the waiting
time of actors and the waiting time in the schedule limits the amount of resource
needed in the system to meet the timing constraints of an application. So, these
aspects limit the over-allocation of resources from the system.

Round-robin. A round-robin schedule uses, similar to a static-order sched-
ule, a list of ordered tasks. The difference between the two strategies is the order
in which tasks from the list are executed. The round-robin scheduler repeatedly
checks all tasks in the list in the specified order. When a task is ready to execute
at the moment it is checked, its execution is started. After completion of the exe-
cution, or when the task is not ready to execute, the scheduler continues checking
the next task in the list. This avoids that a round-robin scheduler deadlocks and
it reduces waiting time due to the schedule. This gives the scheduling strategy
the required flexibility to handle tasks (e.g., applications) for which the order of
execution or data dependencies are not known when constructing the schedule.

The worst-case response time of a task t from a set T of tasks occurs when t
becomes enabled directly after it is checked by the scheduler and all other tasks in
the round-robin schedule are executed before t is checked again. The execution of
t is then only completed after all tasks from the list are executed. The worst-case
response time is thus equal to:

WCRT (t) =
∑

ti∈T

τ(ti), (3.1)

where τ(ti) is the execution time of task ti.

The response time of a task depends on the execution time of all tasks in the
round-robin schedule. When a task is added to the schedule, the response time
will increase. This scheduling technique is therefore not composable.

TDMA. A time-division multiple-access (TDMA) scheduler uses the concept
of a periodically rotating time wheel w. A time slice ωi, a fraction of the wheel w,
is allocated to each task ti from the set T of tasks (see Figure 3.2). The scheduler
executes ti when this task is ready to be executed and the scheduler is within
the time slice ωi. When the end of the time slice is reached and a task has not

3. NETWORK-ON-CHIP-BASED MULTI-PROCESSOR PLATFORM 31

ωi

w

Figure 3.2: TDMA time wheel.

finished its execution, the execution is pre-empted and continued during the next
period.

The worst-case response time of a task ti to which a slice ωi is allocated on
a time wheel with size w occurs when the task becomes enabled directly after
the end of the slice. The execution of ti is then started after the non-reserved
portion of the time wheel has passed, i.e. it is started after w − ωi time units.
The execution of the task ends when the total elapsed time that is reserved on
the time wheel is equal to the task’s execution time (τ(ti)). Note that this may
require multiple iterations of the time wheel. This worst-case response time for
the ready task ti is given by:

WCRT (ti) =

⌈

τ(ti)

ωi

⌉

· w (3.2)

The equation shows directly that there is no dependency between the response
time of a task and the other tasks executed in the same TDMA schedule. This
implies that new tasks can be added to the TDMA schedule, as long as there
are unreserved slices available on the time wheel, without affecting the worst-case
response time of the already scheduled tasks. The TDMA scheduling technique
is therefore composable.

Table 3.1 compares the three resource arbitration strategies on the properties
that are important when designing a predictable platform. The column ‘over-
allocation’ gives for each strategy the over-allocation of resources relative to the
other strategies. It assumes that in all cases a deadlock-free schedule is used that
is optimized for the set of tasks that must be executed. The entries for the over-
allocation of the round-robin and TDMA resource arbitration strategies require a
small explanation. When TDMA scheduling is used on a resource, part of the time
wheel may be unoccupied. This part can be used to schedule new tasks on the
resource without affecting the worst-case response times of the already scheduled
tasks. However, when part of a time wheel is unoccupied, the set of tasks that is
scheduled on the resource using TDMA scheduling will have a larger worst-case
then when round-robin scheduling is used to schedule the same set of tasks on
the resource. To compensate for these larger worst-case response times, more
resources may have to be allocated for TDMA scheduling as compared to round-
robin scheduling. Therefore, TDMA resource arbitration leads to a (potentially)
larger over-allocation then round-robin resource arbitration.

32 3.4. RESOURCE ARBITRATION IN THE PLATFORM

Table 3.1: Comparison of the resource arbitration strategies.
strategy over-allocation composable flexible
static-order small no no
round-robin medium no yes
TDMA large yes yes

3.4 Resource Arbitration in the Platform

Virtualization of the platform resources is important when designing a system
with a predictable timing behavior. It enables analysis of the timing behavior of
an application without the need to consider other applications that are simulta-
neously executing on the platform. The resource arbitration strategies that are
used on the resources in the platform should provide this virtualization. At the
same time, these strategies should avoid too much over-allocation of resources.

The resource arbitration strategies used for the different resources in the plat-
form template are summarized in Table 3.2. Selection of the resource arbitration
strategies is done considering the situation that the mapped applications are de-
scribed with an SDFG. The dependencies between actors (tasks) of an SDFG
are known in advance. This property can be exploited to reduce the allocation
of resources needed for an application to meet its timing constraints. For this
reason, some resources use a different strategies to schedule actors that belong
to the same SDFG (application) and actors that belong to different applications.
The choices for the different resource arbitration strategies on the resources of the
platform are motivated in the remainder of this section.

The processors in the platform use a TDMA scheduler to order the execution
of different applications. This guarantees that the timing behavior of one appli-
cation is not influenced by other applications running on the same resources. A
TDMA scheduler can also be used to schedule multiple actors of the same ap-
plication on a single processor [17]. Time slices are then reserved for individual
actors. This gives very conservative estimates on the worst-case response time
of actors [128]. It assumes that two dependent actor executions, executed on
the same processor, can only occur with a complete time wheel rotation in be-
tween. In practice, when a large enough time slice is reserved, it may never be
needed to wait for this period of time. Throughput analysis performed using these
worst-case response times may falsely suggest that an application cannot meet its
throughput constraints. If throughput constraints are met, usually more resources
than strictly needed are claimed. The timing behavior and resource usage is also
negatively influenced by the fact that a time slice reserved for an individual actor
cannot be used for other actors which belong to the same application. So, as
an alternative to guarantee actor response times and at the same time obtain an
efficient resource utilization, static-order scheduling is used between the actors of

3. NETWORK-ON-CHIP-BASED MULTI-PROCESSOR PLATFORM 33

Table 3.2: Resource arbitration in the NoC-based MP-SoC platform.
within an application between applications

Processor static-order TDMA
Memory round-robin round-robin
NoC static-order TDMA

an SDFG.

The accesses to the memory inside a tile are controlled by the CA. It uses
a round-robin scheduler to arbitrate memory accesses that are requested by the
processor and NI inside the tile. This resource arbitration strategy allows efficient
usage of the memory resource. It avoids stalling when only the NI or processor
needs access to the memory. This results in a good average case response time. It
also has a worst-case response time which is smaller than the worst-case response
time of a TDMA strategy. Using a static-order schedule is not possible as it is
not known when the processor or NI need to access the memory.

Round-robin scheduling is not composable (see Table 3.1). To still obtain a
platform that offers a composable behavior to the applications mapped on it, the
worst-case access time to the memory should be taken into account in the exe-
cution times of the tasks (actors). When the resource requirements of a task are
determined (e.g., using using the technique proposed in Section 2.4), the execution
time of an instruction that accesses the memory is determined by the worst-case
time needed on the processor to execute this instruction plus the worst-case time
needed for the memory and its arbitration mechanism to complete the access.

The NoC uses a TDMA scheduling strategy to send streams of data from
different applications between the tiles in the platform. This scheduling strat-
egy virtualizes the communication resources. This makes it possible to provide
guarantees on the bandwidth and latency of a connection through the NoC to an
application. As such, it provides the required composability for mapping multiple
applications to the NoC.

Dependencies between actors in an SDFG are known in advance. Furthermore,
the actors of an SDFG have a predictable (worst-case) timing behavior when
executed on the tiles of the platform. This makes it possible to derive worst-case
time bounds on the availability of data for communication over the NoC and
the maximal amount of time that a communication may take. Based on these
time bounds, it is possible to derive a static-order schedule for all communication
between the actors of an SDFG that takes place via the NoC. This static-order
schedule has typically lower resource requirements than when a TDMA or round-
robin schedule would be used to schedule the communication between actors of
the same SDFG on the NoC resources.

34 3.5. SUMMARY

3.5 Summary

This chapter introduces a NoC-based MP-SoC platform template that offers a
predictable timing behavior. It consists of multiple tiles connected with each other
by a NoC. Each tile contains both processing and storage resources. To provide
timing guarantees, the resources inside the tiles and the NoC resources must use an
arbitration mechanism that offers worst-case time bounds on its behavior. Several
resource arbitration mechanisms are compared in this chapter on their worst-
case behavior, composability and flexibility. Based on this comparison, resource
arbitration mechanisms are selected for the various resources in the platform
template.

Chapter 4

Dataflow Preliminaries

4.1 Overview

This chapter introduces terminology and definitions used in this thesis, and for-
malizes, in Section 4.2, the synchronous dataflow (SDF) model of computation
that was introduced informally in the first chapter. A variant of the SDF model
that takes time into account is presented in Section 4.3. Throughput analysis
techniques for these timed SDF graphs (SDFGs) are discussed in Section 4.4.
Existing scheduling techniques for SDFGs are presented in Section 4.5. A tool
that implements most of the existing SDFG analysis and scheduling techniques is
introduced in Section 4.6. A comparison between SDF and a number of related
dataflow models of computation is made in Section 4.7. The section motivates
also the choice made in this thesis to model applications with SDFGs.

4.2 Synchronous Dataflow

Let N denote the positive natural numbers, N0 the natural numbers including 0,
and N

∞
0 the natural numbers including 0 and infinity (∞). Formally an SDFG is

then defined as follows. Assume a set Ports of ports; with each port p ∈ Ports a
finite rate Rate(p) ∈ N is associated.

Definition 1. (Actor) An actor a is a tuple (I, O) consisting of a set I ⊆ Ports
of input ports (denoted by I(a)) and a set O ⊆ Ports of output ports with I∩O =
∅.

Definition 2. (SDFG) An SDFG is a tuple (A, D) consisting of a finite set
A of actors and a finite set D ⊆ Ports2 of dependency edges. The source of a
dependency edge is an output port of some actor, the destination is an input port of
some actor. The operator SrcA (DstA) gives the source (destination) actor of a
dependency edge and the operator SrcP (DstP) gives the source (destination) port

35

36 4.2. SYNCHRONOUS DATAFLOW

1 2d23d1
a3a2

a1
2

1
2

2

d4

2

4

3

d3

1 1

1

1 1

1

1 1

1

Figure 4.1: An example SDFG.

of a dependency edge. All ports of all actors are connected to precisely one edge,
and all edges are connected to ports of some actor. For every actor a = (I, O) ∈ A,
we denote the set of all dependency edges that are connected to the ports in I (O)
by InD(a) (OutD(a)).

Figure 4.1 shows an example of an SDFG with three actors a1, a2 and a3.
The actors a1 and a2 are connected to each other through the dependency edge
d1 and d3. The edges d2 and d4 connect a2 and a3 to each other. The dependency
sources and destinations are annotated with port rates. The execution of an actor
is called a firing. When an actor a starts its firing, it removes Rate(q) tokens
from all (p, q) ∈ InD(a). At the end of the firing, it produces Rate(p) tokens on
every (p, q) ∈ OutD(a). The rates determine how often actors have to fire with
respect to each other such that the distribution of tokens over all dependency
edges is not changed. This property is captured in the repetition vector of an
SDFG.

Definition 3. (Repetition vector and consistency) A repetition vector of
an SDFG (A, D) is a function γ : A → N0 such that for every edge (p, q) ∈ D
from a ∈ A to b ∈ A, Rate(p)·γ(a) = Rate(q)·γ(b). A repetition vector γ is called
non-trivial if and only if for all a ∈ A, γ(a) > 0. An SDFG is called consistent if
it has a non-trivial repetition vector. The smallest non-trivial repetition vector of
a consistent SDFG is called the repetition vector.

The repetition vector of the SDFG shown in Figure 4.1 is equal to (a1, a2, a3)→
(3, 2, 1). This shows that the graph is consistent as the repetition vector is non-
trivial. Consistency and absence of deadlock are two important properties for
SDFGs which can be verified efficiently [23, 86]. Any SDFG which is not con-
sistent requires unbounded memory to execute or deadlocks. When an SDFG
deadlocks, no actor is able to fire, which is due to an insufficient number of tokens
in a cycle of the graph. Any SDFG which is inconsistent or deadlocks is not useful
in practice. Therefore, only consistent and deadlock free SDFGs are considered
in this thesis.

There exists a special class of SDFGs in which all rates associated to ports
equal 1. These graphs are called Homogeneous Synchronous Data Flow
Graphs (HSDFGs) [86]. As all rates are 1, the repetition vector for an HSDFG
associates 1 to all actors. Any consistent SDFG G = (A, D) can be converted to an

4. DATAFLOW PRELIMINARIES 37

a3,1

a2,2

a1,1

a1,2

a1,3

a2,1

1

1

1

1

1

1

1

1

1

Figure 4.2: HSDFG of the example SDFG.

equivalent HSDFG GH = (AH , DH) [86, 128], by using the conversion algorithm
in [128, Section 3.8]. Equivalence in this context means that there exists a one-
to-one correspondence between the SDFG and HSDFG actor firings. Figure 4.2
shows the HSDFG that corresponds to the SDFG shown in Figure 4.1, with rates
one omitted for readability. The number of copies of an actor ai of the SDFG in
the HSDFG is equal to its entry in the repetition vector. Therefore, three copies
of actor a1 are present in the HSDFG of Figure 4.2.

4.3 Synchronous Dataflow and Time

The firings of actors in an SDFG, as defined in the previous section, are atomic.
There is no notion of time associated with it. Many system properties like
throughput and latency require a notion of time to be associated with the firings
of actors in an SDFG. A timed SDFG and its execution are defined as follows.

Definition 4. (Timed SDFG) A timed SDFG is a triple (A, D, Υ) consisting of
an SDFG (A, D) and a function Υ : A→ N that assigns to every actor a ∈ A the
time it takes to execute the actor once.

An example of a timed SDFG is shown in Figure 4.3. The execution time of
each actor is denoted with a number in the actor. The execution of a timed SDFG
is formalized through a labeled transition system. This requires appropriate no-
tions of states and of transitions. To measure quantities related to dependency
edges, such as the number of tokens present in, read from or written to edges, the
following concept is defined.

Definition 5. (Edge quantity) An edge quantity on the set D of dependency
edges is a mapping δ : D → N0. If δ1 is an edge quantity on D1 and δ2 is an edge

38 4.3. SYNCHRONOUS DATAFLOW AND TIME

1 2d23d1
a3,2a2,2a1,1

2

1
2

2

d4

2
4

3

d3

1 1

1

1 1

1

1 1

1

Figure 4.3: A timed SDFG example.

quantity on D2 with D1 ⊆ D2, we write δ1 � δ2 if and only if for every d ∈ D1,
δ1(d) ≤ δ2(d). Edge quantities δ1+δ2 and δ1−δ2 are defined by pointwise addition
of δ1 and δ2 and subtraction of δ2 from δ1; δ1 − δ2 is only defined if δ2 � δ1.

The amount of tokens read at the start of a firing of some actor a can be
described by an edge quantity Rd(a) = {((q, p), Rate(p))|(q, p) ∈ InD(a)} and
the amount of tokens produced at the end of a firing by an edge quantity Wr(a) =
{((p, q), Rate(p))|(p, q) ∈ OutD(a)}.

Definition 6. (State) The state of a timed SDFG (A, D, Υ) is a pair (δ, υ). Edge
quantity δ associates with each dependency edge d ∈ D the amount of tokens in
that edge in that state. To keep track of time progress, an actor status υ : A→ N

N

associates with each actor a ∈ A a multiset of numbers representing the remaining
times of different ongoing firings of a. We assume that the initial state of an
SDFG is given by some initial token distribution δ, which means the initial state
equals (δ, {(a, {}) | a ∈ A}) (with {} denoting the empty multiset).

The dynamic behavior of the SDFG is described by transitions. Three different
types are distinguished: start of actor firings, end of firings, and time progress in
the form of clock ticks. The following definition interprets time as processing
time; that is, at any point in time, an arbitrary subset of the executing actors
may progress depending e.g. on the allocation of sufficient resources. This is in
contrast to the interpretation of time as runtime or real time, in which time always
progresses for all active firings.

Definition 7. (Transition) A transition of a timed SDFG (A, D, Υ) from state

(δ1, υ1) to state (δ2, υ2) is denoted by (δ1, υ1)
β
→ (δ2, υ2) where label β ∈ (A ×

{start, end}) ∪ {clk} denotes the type of transition.

• Label β = (a, start) corresponds to the firing start of actor a ∈ A. This
transition may occur if Rd(a) � δ1 and results in δ2 = δ1 − Rd(a), υ2 =
υ1[a 7→ υ1(a) ⊎ {Υ(a)}], i.e., υ1 with the value for a replaced by υ1(a) ⊎
{Υ(a)} (where ⊎ denotes multiset union).

• Label β = (a, end) corresponds to the firing end of a ∈ A. This transition
can occur if 0 ∈ υ1(a) and results in υ2 = υ1[a 7→ υ1(a)\{0}] (where \
denotes multiset difference), and δ2 = δ1 + Wr(a).

4. DATAFLOW PRELIMINARIES 39

(a2, start) clkclk(a1, start) clk clk(a1, start)

clk

(a3, start)clk(a1, start)clk

(a2, start)

(a3, end)

clk

clk(a1, start)
(a1, end) (a1, end) (a2, end) (a1, end)

(a1, end)

(a1, end) (a1, start)

(a2, end)

(a2, start)

((0, 0, 4, 2), ({}, {}, {}))

((0, 0, 2, 2), ({1}, {}, {}))

((0, 0, 2, 2), ({0}, {}, {}))

state vector (δ, υ) is encoded via pairs where δ corresponds to edges d1, d2, d3, d4

resp. and the tuple υ defines the multiset for a1, a2, a3 resp.; for readability the
self-edges are omitted from the state vector.

((1, 0, 0, 1), ({}, {2}, {}))

((2, 0, 0, 2), ({1}, {}, {}))

Figure 4.4: State-space of the example SDFG.

• Label β = clk denotes a clock transition. It is enabled if no end transition is
enabled. Clock transitions can occur for any submultiset of executing actors
and nondeterministically results in δ2 = δ1, υ2 = {(a, M)|a ∈ A} with M
equal to υ1(a) with some arbitrary submultiset of its members decremented
by one.

A clock transition decreases the remaining execution time of an arbitrary sub-
multiset of ongoing actor firings with one time-unit. The ability to select different
submultisets in different clock transitions makes it possible to take resource con-
straints (e.g. static-order schedules or TDMA schedules) into account (see Section
6.6.2).

Definition 8. (Execution) An execution of an SDFG is an infinite alternating

sequence of states and transitions s0
β0

→ s1
β1

→ . . . from some designated initial
state s0.

There exists one type of execution, namely self-timed execution, which gives
maximal throughput [128]. It requires that each actor fires as soon as it is enabled
and that always all active firings make progress.

Definition 9. (Self-timed execution) In a self-timed execution, clock tran-
sitions only occur if no start transition is enabled and only clock transitions that
reduce the remaining execution time of all active firings can occur.

Figure 4.4 shows the transition system of the self-timed execution of the timed
SDFG shown in Figure 4.3. All clock transitions are shown explicitly. Between
clock transitions, there can be multiple start and/or end transitions enabled si-
multaneously. These start and end transitions are independent of each other.
Independent of the order in which they are applied, the final state before each

40 4.4. THROUGHPUT ANALYSIS

clock transition, and the first state after each clock transition, are always the
same. Therefore, all start and end transitions are shown as one annotated step.
The only exception to this in Figure 4.4 is the gray state, which is made explicit to
facilitate the illustration of throughput calculations below. The transition system
consists of a finite sequence of states and transitions, called the transient phase,
followed by a sequence of states and transitions which is repeated infinitely often
and is called the periodic phase. In [46], it is proved that the state-space of
the self-timed execution of any consistent and strongly connected timed SDFG
consists of a finite sequence of states and transitions followed by a sequence that
is periodically repeated. This is done by proving the following proposition (see
[46, Proposition 11]).

Proposition 1. For every consistent and strongly connected timed SDFG, the
self-timed state-space consists of a transient phase, followed by a periodic phase.

An important concept related to the execution of an SDFG is the notion of
an iteration.

Definition 10. (Iteration) Given a timed SDFG (A, D, Υ) with a repetition
vector γ. An iteration is a set of actor firings such that for each a ∈ A, the set
contains γ(a) firings of a.

In the execution of Figure 4.4, the periodic phase consists of precisely one
iteration. In general, it is possible that iterations in an execution of an SDFG
overlap in time.

4.4 Throughput Analysis

Throughput is an important design constraint for embedded multimedia systems.
Intuitively, the throughput of an SDFG refers to how often an actor produces an
output token. The throughput of an SDFG is traditionally defined as 1 over the
maximal cycle mean (MCM) of the corresponding HSDFG (see e.g., [128]). In
the literature on cycle mean algorithms, the HSDFG is often seen as a weighted
directed graph. This is a directed graph in which the weight, called cost, of each
node is equal to the execution time of the actor in the HSDFG and the weight,
called transit time, of each edge is equal to the number of initial tokens on the
edge in the HSDFG. The cycle mean of some cycle of such a weighted directed
graph is defined as the total cost of the nodes over the total transit time of the
edges in that cycle. The maximum cycle mean over all cycles in the graph is
called the MCM of the graph. To distinguish the case in which all edges in the
directed graph have unit transit time from the general case in which arbitrary
edge weights are allowed, in the latter context one sometimes uses the terms cycle
ratio and maximum cycle ratio (MCR) for the general case and cycle mean
and MCM for the restricted case.

4. DATAFLOW PRELIMINARIES 41

To compute the throughput of an SDFG, the SDFG is traditionally converted
to an equivalent HSDFG. The throughput can then be computed using a Maxi-
mum Cycle Ratio (MCR) algorithm or a Maximum Cycle Mean (MCM) algorithm
that operates on a directed graph with unit transit time for the edges [34, 76].
In Section 2.5.3 and Section 2.5.4 of [11] an approach is suggested to convert
an HSDFG to a weighted directed graph with unit transit time. Existing MCR
and MCM algorithms are quite efficient. In [33], state of the art algorithms for
MCR/MCM analysis are compared. Although MCR/MCM analysis can be done
efficiently, it can only be applied to an HSDFG and the HSDFG can be exponen-
tially larger in size (in terms of the number of actors) than the original SDFG,
making the approach as a whole not particularly efficient for SDFG throughput
analysis. For this reason, an alternative approach to compute the throughput of
an SDFG is introduced in [46]. A self-timed execution of the SDFG is used for
the throughput analysis. As already mentioned, this type of execution is known
to give maximal throughput [128]. Throughput analysis is usually restricted to
strongly connected SDFGs. In this thesis, throughput analysis is also only per-
formed on strongly connected SDFGs. This is not a very limiting assumption as
the storage space of edges in an SDFG is finite when the SDFG is implemented
on a real system. Modeling storage space constraints on the edges of a connected
SDFG transforms this SDFG into a strongly connected SDFG (see Section 7.3).
A generalization to perform throughput analysis for arbitrary, connected SDFGs
can be found in [45]. The throughput of a strongly connected SDFG is defined as
follows.

Definition 11. (Throughput) The throughput Th(a) of an actor a for the
self-timed execution σ of a consistent and strongly connected timed SDFG G =
(A, D, Υ) is defined as the average number of firings of a per time unit in σ. The
throughput of G is defined as

Th(G) =
Th(a)

γ(a)
,

where γ is the repetition vector of G and a an arbitrary actor. The throughput of
G gives the average number of iterations of the graph per time unit in σ.

In [46], this notion of throughput for an SDFG is proved to be equivalent to
one over the maximal cycle mean of the corresponding HSDFG. It also provides a
technique to compute the throughput of an actor from the self-timed state-space.
It uses Proposition 1 and the following proposition (see [46, Lemma 14]):

Proposition 2. For every consistent and strongly connected timed SDFG (A, D,
Υ), the throughput of an actor a ∈ A is equal to the average number of firings per
time-unit in the periodic part of the self-timed state-space.

The throughput of actor a3 of the example SDFG shown in Figure 4.3 is
computed as follows. Consider again its self-timed state-space as shown in Figure

42 4.4. THROUGHPUT ANALYSIS

4.4. Actor a3 ends its firing for the first time after 9 clock transitions in the gray
state. At that moment, the actor is in the periodic phase of the schedule and
fires each 7 time units. The periodic phase is repeated indefinitely. Hence, the
average time between two firings over the whole schedule converges to the average
time between two firings in the periodic phase. So, the throughput of a3 is 1/7.
The throughput of the graph can then be computed using Definition 11. It uses
the repetition vector of the graph which equal to (a1, a2, a3) → (3, 2, 1). Using
this repetition vector, it is found that the throughput of the graph is equal to the
throughput of a3. The throughput of the actors a1 and a2 can now be computed
by multiplying the graph throughput with their entry in the repetition vector.
The SDFG shown in Figure 4.3 models an application. Typically, a designer is
interested in the throughput with which the application produces output data.
Definition 11 gives a normalized throughput that can easily be converted to the
rate at which output data is produced. Assume that actor a3 produces this output
data at a rate of 70 bytes per firing (on some output port of the application that is
not shown in the figure). When a time-unit is equal to 1ms, the throughput with
which output data is produced is equal to 1/7 firings/time-unit · 70 bytes/firing
= 10 bytes/ms.

States visited during the execution of a timed SDFG G = (A, D, Υ) need to be
stored in order to detect the periodic phase. However, the lengths of the transient
and periodic phases can be fairly long and a large number of states may have to be
stored. Fortunately, due to the determinism in the state-space, only a selected set
of states needs to be stored. Suppose that a state that is not stored is revisited.
The execution continues then in the same way as the first time, revisiting the same
states. If at least one of the states in the periodic part is actually stored, it will
be encountered and a cycle in the state-space will be detected. Only a single state
of every iteration has to be stored as the periodic behavior consists of a whole
number of iterations ([46, Proposition 12]). In this way, the periodic behavior
always includes at least one state that is stored. (To detect deadlock, it must also
be checked whether a clock transition remains in the same state.) The throughput
of G is now calculated as follows. First, an arbitrary actor a ∈ A is picked. Every
iteration of the SDFG includes γ(a) start and end transitions of a. All the states
reached immediately after every γ(a)-th execution of an end transition of a are
stored. Using this method, the period can be detected and also the number of
iterations of the period. The length in clock transitions can be easily calculated
if additionally the number of clock transitions between each two stored states
is kept. With this information and using Proposition 2 and Definition 11, the
throughput of an SDFG can be calculated. Note that to compute the throughput
for the example (see Figure 4.4), only the gray state must be stored as this is the
only state in which a firing of a3 ends.

4. DATAFLOW PRELIMINARIES 43

4.5 Scheduling

A multi-processor platform will be used in future embedded multimedia systems.
Multiple actors will often be mapped to a single processor from the platform.
The firing of these actors must be ordered (scheduled) on the processor. Many
multi-processor scheduling techniques are based on single-processor scheduling
techniques. This section gives an overview of basic scheduling techniques for
single- and multi-processor platforms. It also discusses the modeling of an or-
dered schedule in an SDFG.

Scheduling of SDFGs for single-processor systems was introduced in [86]. The
objective of single-processor scheduling strategies is to minimize the code size
and/or the required storage-space for the tokens communicated between the actors
of the SDFG.

Bhattacharyya introduces in [22] the class of single appearance schedules.
These schedules can be described with a regular expression in which each ac-
tor appears only once. This guarantees that the schedule has minimal code size.
An acyclic SDFG has always a single appearance schedule. Initially there is al-
ways at least one actor which can fire as many times as indicated by the repetition
vector. Firing this actor this number of times enables at least one other actor to
fire as often as indicated by the repetition vector. Repeating this scheduling/firing
strategy for all actors in the graphs yield a single appearance schedule. In [23, p.
85], it is shown that an arbitrary SDFG has a single appearance schedule if and
only if each strongly connected component has a single appearance schedule. It
is also shown that a strongly connected SDFG has a single appearance schedule
only if the actors can be partitioned into two sets A1 and A2 such that any edge
directed from A1 to A2 contains sufficient tokens to perform as many firings of
every actor in A2 as indicated by the repetition vector before firing any actor from
A1. Note that multiple, different single appearance schedules may exist. These
schedules differ in the amount of storage-space required for the tokens commu-
nicated between the actors. A heuristic to minimize the required storage-space
of a single appearance schedule is presented in [100]. A variant on the single ap-
pearance schedule using dynamic loop counts is presented in [108]. It is claimed
that this allows the construction of schedules with minimal code and data size for
arbitrary SDFGs. However, the overhead of storing all dynamic loop counts is
neglected. The size of arrays used to store these loop counts can be exponentially
large with respect to the number of actors in the graph.

SDFGs can also be scheduled onto multi-processor systems. When sufficient
resources are available, schedules with a throughput equal to the maximal achiev-
able throughput can be constructed. Existing scheduling techniques for multi-
processor systems use HSDFGs [128, Section 3.8]. The conversion of an SDFG
to an HSDFG can lead to an exponential increase of the number of actors in the
graph. To limit the impact of the increase in the number of actors in the conver-

44 4.5. SCHEDULING

a3,1

a2,2

a1,1

a1,2

a1,3

a2,1

Figure 4.5: Acyclic precedence graph of the example SDFG.

1 2 3 4 5 6 7 8 9
a1 a1 a2 a2 a1 a2 a2 a3 a3

a1 a1

Figure 4.6: Self-timed schedule of the example SDFG of Figure 4.3.

sion, clustering algorithms are used [87, 114]. These algorithms cluster a set of
actors into a single actor. All actors in the cluster are then scheduled onto a sin-
gle processor using a single-processor scheduling technique. Only across clusters
a multi-processor scheduling technique is used.

Two different forms of multi-processor schedules for HSDFGs exist: non-
overlapping schedules and overlapping schedules. Both scheduling forms distin-
guish different iterations of an HSDFG from each other. The i-th iteration of an
HSDFG is defined as the set of actor firings that contains the i-th firing of all
actors in the HSDFG. In non-overlapping schedules, the HSDFG is converted to
an Acyclic Precedence Graph (APG). This conversion removes all edges from the
HSDFG that contain one or more initial tokens. In other words, it removes those
edges which model a dependency between the i-th firing of some actor ai and the
(i+n)-th firing of some actor aj where n > 0. The APG for the HSDFG of Figure
4.2 is shown in Figure 4.5. The APG shows only the intra-iteration precedences
between the actor firings. It does not exploit the inter-iteration parallelism. This
parallelism can be exploited by scheduling the SDFG over multiple iterations. A
blocked schedule with blocking factor N is a non-overlapping schedule of the
SDFG graph which is unfolded N times. Unfolding an SDFG N times means
considering N successive iterations of the graph. The blocking factor which al-
lows scheduling of the SDFG with the maximal achievable throughput is called
the optimal blocking factor. A technique to compute the optimal blocking factor
for blocked, non-overlapping schedules is presented in [102]. Not all SDFGs have
a finite optimal blocking factor. For those SDFGs, it is not possible to construct
a non-overlapping schedule which achieves maximal throughput. An example of

4. DATAFLOW PRELIMINARIES 45

a3,1

a2,2

a1,1

a1,2

a1,3

a2,1

1

1

1

1

1

1

1

1

1

1

Figure 4.7: Static-order schedule ((a1)
2a2a1a2a3)

∗ modeled in the HSDFG.

such a graph is the SDFG shown in Figure 4.3. The self-timed schedule, which
achieves maximal throughput, is shown in Figure 4.6. The schedule starts with
firing actor a1 at time-step 1. This actor is fired a second time at time-step 2.
The firing of a2 is started in the 3th time-step and continued in the 4th time-step.
The continuation of an actor firings is denoted with an underscore in front of the
actor’s name. After 9 time-steps, the first iteration of the graph is completed. The
schedule continues with repeatedly firing the actors scheduled in the time-steps 3
through 9. To achieve maximal throughput, the two firings of actor a1 which occur
at time-steps 8 and 9 must always overlap with the firing of a3. Any finite block-
ing factor will force the firings of a1 to be non-overlapping with the firing of a3 at
some point in time. This results in a lower throughput than the maximal achiev-
able throughput. In overlapped scheduling, the inter-iteration parallelism is fully
taken into account. When resource constraints are absent, maximal throughput
can always be achieved with this type of schedule [118]. This makes overlapped
scheduling fundamentally more powerful than non-overlapped scheduling.

In [129], it is shown how a static-order schedule of an HSDFG G = (A, D)
can be modeled into an HSDFG Gs(A, Ds) such that in the self-timed execution
of Gs actors are fired in the order specified by the static-order schedule. The
method that derives Gs from G does not change the set of actors. It only adds
additional edges to Gs when compared to G (i.e. Ds ∩ D = D). These edges
form a cycle in Gs that enforces the ordering in which the actor firings should
occur. Assume that the actors a1a2a3 · · · an are scheduled in this order in a
static-order schedule. To enforce this schedule, the method of [129] adds a cycle
((a1, a2), (a2, a3), · · · , (an−1, an), (an, a1) with one initial token on (an, a1) to Gs.
An example of an HSDFG that enforces the static-order schedule ((a1)

2a2a1a2a3)
∗

on the HSDFG of Figure 4.2 is shown in Figure 4.7. The constructed HSDFG Gs

46 4.5. SCHEDULING

a1

r1 r2d2

r1 r2
d1

a2

α

β

Figure 4.8: Counter example SDFG.

can be used to analyze the throughput that can be achieved with G under the
given static-order schedule. The following theorem shows that it is not always
possible to model a static-order schedule in an SDFG without using more actors
than used in this schedule.

Theorem 1. (Modeling of static-order schedules) Not every static-order
schedule for N different actors can be modeled with a consistent SDFG (A, D) of
which the ordering of the actor firings in its self-timed execution is equal to the
static-order schedule and with |A| = N .

Proof. The proof is given with a counter example. Consider the static-order
schedule (((a1)

3a2)
2a1a2)

∗. This schedule contains two different actors; a1 and
a2. The SDFG shown in Figure 4.8 contains also two actors. The edges d1 and d2

form a cycle which expresses the cyclic dependency of a1 and a2 that is required
by the schedule. The rates on the ports of the actors fix the ratio of the number
of actor firings between the different actors in the graph (i.e. repetition vector,
Definition 3). Every edge going from an actor ai to an actor aj must have the
same ratio. Otherwise the graph is inconsistent. This implies that in a consistent
SDFG the rates on different edges going from ai to aj can only be a multiple of
each other. So, without loss of generality it can be assumed that only the smallest
possible rates are used to model the firing ratio of the actors. Note that it is not
useful to have multiple edges from a1 to a2 or vice versa with different numbers
of initial tokens on them. The reason for this is that the execution of the graph
is only determined by the edge from ai to aj that has the smallest number of
initial token on it amongst all edges from ai to aj . It remains to compute the
rates of the actors and the number of initial tokens on the edges d1 and d2. It
follows from the schedule that actor a1 fires 7 times for each 3 firings of a2. This
implies r1 = 3 and r2 = 7. The number of initial tokens α and β on d1 and d2 can
be derived from the static-order schedule. Consider the constraint that the first
firing of a2 takes place after three firings of a1. Actor a2 fires once before the 4th,
5th and 6th firing of actor a1 occur. To allow these 6 firings of a1 it must hold
that α− 9 + 7 ≥ 9 which is equal to α ≥ 11. To avoid that more than 3 firings of
a1 could occur at the start of the schedule, it is required that α < 12. So, it must
hold that α = 11. The number of initial tokens on d2 can be derived in the same
way. When β > 0, the actor a2 can fire after two (or less) firings of a1. So, it
must hold that β = 0. The rates and initial token distribution of the SDFG have
been fixed based on the requirements of the static-order schedule. Note that this

4. DATAFLOW PRELIMINARIES 47

Table 4.1: Tokens in the edges d1 and d2 of the SDFG shown in Figure 4.8.
a3
1 a2 a3

1 a2 a1 a2

d1 11 2 9 0 7 4 11
d2 0 9 2 11 4 7 0

a1

3 7d2

3 7
d1

a2

11

7 1d4

7 1
d3

3

a3

Figure 4.9: Static-order schedule (((a1)
2a2)

2a1a2)
∗ modeled in an SDFG.

is the only SDFG that contains two actors and that satisfies the above mentioned
criteria from the static-order schedule.

It remains to verify whether these values satisfy all constraints of the schedule.
This is only true when the self-timed execution of the graph is equal to the static-
order schedule. It is now shown that these requirements are not fulfilled by the
constructed SDFG. Consider the number of tokens in the edges d1 and d2 when
the SDFG is executed following the given static-order schedule and with r1 = 3,
r2 = 7, α = 11 and β = 0. The distribution of the tokens over d1 and d2 after
every step of the schedule is shown in Table 4.1. It shows that there are seven
tokens on d1 after four steps of the schedule (shown bold). According to the
static-order schedule, one firing of a1 should occur after this step. However, two
firings of a1 are enabled. So, this SDFG does not realize the given static-order
schedule. Hence, this example shows that not any arbitrary static-order schedule
can be realized with an SDFG that contains a number of actors equal to the
number of actors used in the schedule.

This theorem leaves the possibility that the number of actors in an SDFG Gs

that models a static-order schedule for an SDFG G may contain more actors than
G. For example, the SDFG shown in Figure 4.9 realizes the static-order schedule
that is used in the proof. One extra actor is used to enforce the static-order
schedule (((a1)

3a2)
2a1a2)

∗ in the self-timed execution of the graph. Currently, no
method is known that tries to minimize the number of actors that are needed to
model a given static-order schedule of a graph G. The only known technique is to
convert the SDFG to its corresponding HSDFG and apply the method from [129].
This can lead to an exponential increase in the number of actors in the graph.

4.6 SDF3: Synchronous Dataflow for Free

Development of new SDF-based design techniques is hampered by the availability
of only a limited set of test graphs. Inspired by Task Graphs For Free [35] that

48 4.6. SDF3: SYNCHRONOUS DATAFLOW FOR FREE

can only generate acyclic task graphs with non-pipelined point-to-point commu-
nication, a tool called SDF For Free (SDF3) [138] was developed. It generates
random sets of SDFGs, with support to analyze and visualize these graphs. The
tool with C++ source code is freely available from http://www.es.ele.tue.
nl/sdf3.

SDF3 implements an SDFG generation algorithm that constructs graphs which
are connected, consistent, and deadlock-free. Unconnected SDFGs can always be
constructed by combining two or more SDFGs generated with the algorithm. A
user specifies in a configuration file the most important parameters determining
the characteristics of the graph. These parameters are the fixed number of actors
in the graph and the average and variance of their degree (i.e., the number of
input and output ports) and port rates. The actual degree of actors and the port
rates are random values picked by a random number generator [92]. To get a
better control over the characteristics of the generated graphs, a minimum and
maximum value, bounding the range of possible values, can also be specified.
For many SDFG analysis algorithms, properties must be assigned to the actors,
tokens, and edges, or the SDFG as a whole. For example, algorithms which deal
with the throughput of a graph require timing annotations on actors. Buffer siz-
ing algorithms typically require token sizes which can be annotated to the edges.
SDF3 contains functions to assign randomly selected values to actors and edges
which represent these properties. Currently, it can assign an execution time and
memory requirement to each actor, token sizes, latencies and buffer sizes to edges,
and sets a throughput constraint on the graph. This annotation mechanism can
easily be extended by users of the tool.
By default, the generated SDFGs are connected in an arbitrary way. If desired,
the tool can restrict the connections between the actors making the graph a chain,
a-cyclic, or strongly connected. DSP and multimedia applications, which are of-
ten of these forms, can easily be mimicked in this way.

Besides generation of random graphs, the tool offers a library that contains all
SDFG analysis and transformation techniques discussed in this chapter. This
includes implementations of Karp’s, Howard’s, and Young-Tarjan-Orlin’s MCM
algorithms. SDF3 uses an XML-based format for SDFGs which enables simple
exchange of graphs between different tools. It also offers a function to visualize
SDFGs through the popular graph visualization tool dotty [41]. Furthermore,
all techniques and algorithms presented in this thesis have been integrated into
the tool. This makes it a versatile tool that can be used for DSP synthesis and
designing multi-processor systems with a predictable timing behavior. The latter
aspect is studied in this thesis.

http://www.es.ele.tue.nl/sdf3
http://www.es.ele.tue.nl/sdf3

4. DATAFLOW PRELIMINARIES 49

4.7 Comparison of Dataflow Models

Various dataflow Models of Computation (MoCs) exist. These MoCs differ in
their expressiveness and succinctness, analyzability and implementation efficiency.
The expressiveness and succinctness of a model indicate which systems can
be modeled and how compact these models are. For example, the behavior of
an H.263 decoder can be modeled with an SDFG consisting of 4 actors. Alterna-
tively, the same behavior can be modeled with an HSDFG containing 4754 actors.
Clearly, constructing the SDF model is easier than constructing the large HSDF
model. This example illustrates that the SDF model is more succinct than the
HSDF model. Furthermore, some properties (e.g., data-dependent behavior) can
be modeled in some dataflow MoCs but not in others, which is a difference in
expressiveness. The second aspect that differentiates MoCs is their analyzabil-
ity. The analyzability of a MoC is determined by the availability of analysis
algorithms and the run-time needed for an algorithm on a graph with a given
number of nodes, independent of the MoC considered. The third aspect that is
relevant when comparing MoCs is their implementation efficiency. This is
influenced by the complexity of the scheduling problem and the (code) size of the
resulting schedules. Also for this aspect it is important that different MoCs are
compared assuming a graph with an equal number of nodes. This decouples the
succinctness of a MoC from the other aspect that is considered. In this section,
the most important dataflow MoCs are compared on the three aforementioned
aspects. The result of this comparison is visualized in Figure 4.10. The objective
of the comparison is to motivate the choice made in this thesis to model an ap-
plication with an SDFG.

The first two dataflow MoCs considered are HSDFGs and SDFGs. As a note
aside, it is interesting to remark that HSDFGs and SDFGs correspond to sub-
classes of Petri nets, which is a well known general purpose MoC, not limited to
dataflow, with a rich literature [112, 117]. These subclasses are marked graphs
[29] and weighted marked graphs [139] respectively. The Petri net literature
may provide theoretical results and analysis algorithms that are applicable to
(H)SDFGs.

The important difference between SDFGs/weighted marked graphs and HSD-
FGs/marked graphs is that the former MoCs can deal with multi-rate dependen-
cies. This makes these MoCs more succinct. However, existing analysis algorithms
for HSDFGs/marked graphs for properties like throughput or latency have a poly-
nomial time complexity. Similar algorithms for SDFGs/weighted marked graphs
have a non-polynomial time complexity. This implies that the analyzability of
SDF/weighted marked graphs is less. The fact that these MoCs support multi-
rate dependencies makes their schedules and the scheduling problem also more
complex. So, their implementation efficiency is less than that of a graph modeled
in the HSDF or marked graph MoC.

Karp and Miller introduced in 1966 the computation graph model [77].

50 4.7. COMPARISON OF DATAFLOW MODELS

Expressiveness and Succinctness

Analyzability Implementation efficiency

KPN
SADF
BDF

CSDF

Computation graphs
SDF / Weighted marked graphs
HSDF / Marked graphs

Figure 4.10: Comparison of dataflow models of computation.

Similar to SDFGs, actors in a computation graph consume and produce a fixed
amount of tokens on each firing and edges may contain initial tokens. To each
input port of an actor, a threshold parameter is attached. This threshold indicates
that the connected actor is only allowed to fire if the number of tokens on the edge
is at least equal to the threshold. An SDFG can be seen as a computation graph
in which this threshold is equal to the number of tokens consumed by the input
port during a firing. Karp and Miller provide necessary and sufficient conditions
for liveness of a computation graph. Liveness indicates that all parts of the graph
can execute infinitely often. The article proves also conditions under which buffer
sizes on the edges remain bounded when executing a computation graph. Similar
conditions exist for SDFGs. In [45], all necessary and sufficient conditions for
liveness and boundedness of an SDFG are given.

The distinction made in the computation graph model between the number
of tokens needed for an actor to fire and the actual number of tokens consumed
by a firing does not make it more expressive than SDFGs but it does make it
more succinct. However, this makes the conditions under which an actor can be
scheduled (fired) more complex. For the same reason, analysis algorithms become
more time consuming.

An important property of the MoCs discussed so far is that the rate at which
actors consume tokens from their inputs and produce tokens on their outputs is

4. DATAFLOW PRELIMINARIES 51

constant. The Cyclo-Static Dataflow (CSDF) MoC [84, 24] relaxes this con-
straint. In this model, the rate of a port may change between subsequent firings.
The sequence of the rates of the port must be finite and periodically repeated.
Using the algorithm from [84], any CSDFG can be converted into an equivalent
HSDFG. This guarantees that a static-order, periodic schedule can be constructed
for a CSDF graph (CSDFG). It also shows that CSDF is not more expressive then
SDF, but it is more compact for certain aspects. The complexity of CSDF sched-
ules will typically be larger than the schedule that results from an SDFG with
an equal number of actors. Existing state-space based analysis techniques for
SDFGs can be extended to CSDFGs by considering the rate sequences as part of
the state. As CSDFGs have more information in their state when compared to
SDFGs, the analysis algorithms will be slower.

It is not possible to model data-dependent behavior in any of the MoCs dis-
cussed so far. This makes it impossible to express the property that an actor
chooses between two inputs depending on the value of a token on a third in-
put. The Boolean Dataflow (BDF) MoC allows the modeling of this type of
data-dependent behavior. This model was introduced by Lee in [85] and studied
extensively by Buck in [27]. BDF extends SDF with a switch and select construct.
The switch copies the data it reads from its input to one of its outputs based on
the value of a boolean control token. The select reads, based on the value of a
control token, data from one of its inputs and copies this data to the output.
The switch and select introduce data-dependent behavior, which makes a BDF
graph (BDFG) in general non-analyzable at design time. The data-dependent be-
havior makes it also impossible to construct a static-order schedule for a BDFG.
Therefore, a run-time scheduling mechanism must be used when implementing an
application modeled with a BDFG. This makes the implementation of a BDFG
less efficient than any of the MoCs mentioned before.

The Scenario-Aware Dataflow (SADF) model, introduced in [140], is an-
other dataflow MoC which enables modeling and analysis of data-dependent be-
havior. In an SADF graph (SADFG) the rates of the actors are data-dependent
and controlled with a control actor. Both the BDF model and the SADF model
are Turing complete. This implies that they can both model the same behav-
ior. However, an SADFG will often be more compact than a BDFG that models
the same functional behavior, as control actors in SADF allow modeling of more
complex control structures than the simple switch and select from the BDF model.

Recently a number of analysis algorithms have been developed for SADFGs.
These algorithms have a non-polynomial time complexity. The execution time
of these algorithms is larger as the time needed to execute a similar analysis
algorithm on an equally sized CSDFG or SDFG. This is because typically more
different behaviors are possible in an SADFG and all these behaviors need to be
analyzed. SADFGs can be partially scheduled at design-time and must partially
be scheduled at run-time.

The Kahn Process Network (KPN) MoC is proposed by Kahn in [75]. In
this model, processes communicate with each other by sending data to each other

52 4.8. SUMMARY

over edges. A process may write to an edge whenever it wants. When it tries
to read from an edge which is empty, it blocks and must wait till the data is
available. The amount of data read from an edge may be data-dependent. This
allows modeling of any continuous function from the inputs of the KPN to the
outputs of the KPN with an arbitrarily small number of processes. Continuity
corresponds informally to the expected dataflow property that extra input can
only lead to extra output (not to less). KPN in fact is sufficiently expressive to
capture precisely all data dependent dataflow transformations. This implies that
it is not possible to analyze properties like the throughput or buffer requirements
of a KPN without considering all possible inputs. Every input may require a
different schedule. So, run-time scheduling must be used when a KPN is imple-
mented.

A MoC that is used in the predictable design flow described in this thesis must
have sufficiently fast analysis techniques. Furthermore, the model should allow
an efficient implementation as the application modeled in the MoC should be
realized on a platform while minimizing resource usage. Modeling applications in
the used MoC should also be as simple as possible to allow application designers
to describe their application in the most natural way.

The first requirement is fulfilled by the HSDF, SDF, computation graphs,
and CSDF MoC. The HSDF MoC was not chosen because models of realistic
applications can be very large. Consider for example the H.263 decoder discussed
at the beginning of this section. This makes the analysis algorithms too time-
consuming to be useful in practice despite their polynomial time complexity.

When this research began, analysis algorithms for SDFGs, computation graphs
and CSDFGs did not exist (e.g. for exact buffer sizing). Development of a design
flow that uses the SDF MoC required the development of novel, sufficiently fast
analysis techniques. Efficient analysis techniques for more general MoCs like
CSDF are inherently more difficult to develop. For this reason, SDF was selected
as the MoC that is used in the predictable design flow.

The analysis techniques that have been developed over the last few years for
the SDF MoC are fast enough to be used in a predictable design flow, as this
thesis shows. These techniques can most likely be extended to the CSDF MoC
with limited execution time overhead. Therefore, it seems logical to consider in
future work an extension of the design flow and techniques proposed in this thesis
to CSDFGs.

4.8 Summary

This chapter formalizes the SDF model and it extends the model to take time
into account. It presents analysis techniques to compute the throughput of timed
SDFGs. Throughput is an important design constraint when building embed-
ded multimedia systems. The chapter discusses also different single and multi-

4. DATAFLOW PRELIMINARIES 53

processor scheduling techniques for SDFGs. It is shown that modeling static-order
schedules in an SDFG requires, in general, a conversion of the graph to its equiv-
alent HSDFG. The chapter briefly presents the SDF3 tool for SDFG generation,
scheduling, analysis, and visualization. It ends with a comparison between some
of the most widely used dataflow models for their use in a predictable design flow.
This comparison shows that the SDF model is suitable for use in such a design
flow.

54 4.8. SUMMARY

Chapter 5

Modeling Memory Mappings

5.1 Overview

The first step of the design flow sketched in Chapter 1 concerns the memory
mapping and dimensioning. This chapter explains the details of this step.

Until now, embedded systems designers lived comfortably with dedicated mem-
ory close to the computational logic, thereby allowing predictable and short access
times. For cost reasons, it is no longer affordable for different sub-systems to have
separate, large memories. This suggests the need for a high level of re-use of these
memories. In future platforms, memories will be distant and shared among po-
tentially many computational resources. The platform, introduced in Section 3.2,
follows this trend as it contains large, shared memories in so-called memory tiles.
These memory tiles have limited processing capabilities. Therefore, actors that
perform a computation cannot be executed on these tiles.

An SDFG that models a multimedia application may communicate large to-
kens. An actor in a video encoder may, for example, require access to a complete
video frame which can be modeled with one token. A frame in HDTV-resolution
has a size of several megabytes. Memories in processing tiles are typically not
large enough to contain a complete frame. The frame (token) must therefore be
stored in a memory tile. The actor that uses this token must be mapped to a
processing tile as insufficient processing capabilities are available in the memory
tile. The memory tile might be shared by a number of actors potentially of differ-
ent applications. To build a system with a predictable timing behavior, memory
accesses to a distant and shared memory should be modeled in the application
SDFG. This chapter presents an SDF model that can be used to model the mem-
ory access pattern of actors. The model allows analysis of the timing behavior of
an SDFG when an actor uses tokens stored in a memory tile.

Figure 5.1 shows an SDFG with an actor a that has a self-edge ds with one
token and that consumes c tokens during its firing from the dependency edge

55

56 5.2. RELATED WORK

di
a

do

ds

pc

1

1

1

Figure 5.1: Example SDFG with large tokens on di and ds.

di. Actor a produces during a firing also p tokens on the dependency edge do.
Assume that the tokens on do can be stored in the memory inside the processing
tile to which a is mapped, but the tokens on di and ds cannot be stored in this
memory. These tokens must be stored in a memory tile. The SDFG of Figure
5.1 is used in this chapter to show how the remote memory accesses of a to the
tokens on the edges di and ds are modeled in an SDFG. The resulting model can
be used to refine an application model; the refined model then serves as input to
the remainder of the design flow, which makes remote memory accesses analyzable
and predictable. Models for other distributions of the tokens over the memories
in the processing and memory tiles can be constructed in a similar way.

The next section discusses related BDF and HSDF models that capture mem-
ory accesses of an actor in a memory tile. The SDF memory access model is
presented in Section 5.3. A technique to extract the SDF memory access model
from an actor is outlined in Section 5.4. The SDF memory access model is used
in Section 5.5 to model the remote memory accesses of a real application.

5.2 Related Work

An actor represents a code segment in an application that can be executed without
blocking when all its input tokens (data) are available. This chapter addresses
the problem that the data needed to execute a code segment (actor) does not fit
into the memory of the tile on which the code is executed (i.e. the data does not
fit in the memory of a processing tile). The solution to this problem is to split
the code segment in several parts (also actors) such that the data needed for each
individual part fits into the memory of the processing tile. All other data is stored
in a memory tile. Between the execution of the various code segments, data must
be transfered between the processing and memory tile. To allow timing analysis,
both the splitting of a code segment into a set of smaller code segments and the
introduced memory transfers must be modeled into the application SDFG.

The problem of modeling memory accesses in a memory tile was first identified
in [136]. A BDF and HSDF model for this problem were presented in [135]. The
BDF model describes a generic memory access pattern in which repeatedly data is
read from and written to the memory tile. After an unknown number of read/write
iterations, a result (token) is produced on the output edge(s) of the model. The
timing behavior of this model cannot be analyzed due to the unknown number of

5. MODELING MEMORY MAPPINGS 57

a1

a

di

doa2 an

m1 m2 mn

1

1

1

Figure 5.2: HSDF model for remote memory access.

read/write iterations. In multimedia applications, the number of iterations is often
bounded or even fixed. In those situations, the BDF model can be transformed
into an HSDF model. The HSDF memory access model that results from this
transformation, when applied on the simple example of Figure 5.1, is shown in
Figure 5.2. Actor a is split in this model into a sequence of n actors ai that
perform all part of the computation done by a. The model therefore in fact is
a parameterized model. It assumes that a data element needed by actor ai+1

(computation) must explicitly be fetched from actor mi (memory). When actor
ai requests some data elements from actor mi, the firing of ai+1 is postponed till
the memory returns the requested data. In case the access pattern to the remote
data token is known in advance, the data can be prefetched from the memory
while actor ai is still performing its transformation on the previously fetched data
elements. In [135], it is shown how this prefetching can be taken into account in
the HSDF memory access model. For this purpose, both the ai and mi actors are
subdivided into two separate parts. The resulting HSDF model is shown in Figure
5.3. The actors ai,1 and mi,1 deals with the prefetching of data from the memory
tile, actor ai,2 performs the computation on the data and actor mi,2 deals with
fetching data from the memory tile. It is important to note that not all edges
in the graph shown in Figure 5.2 and Figure 5.3 represent an actual transfer of
data in the system. Only tokens that are sent over the bold edges must physically
be transfered from one memory location to another. Tokens sent over the non-
bold edges require no actual transfer of data (i.e. transformations can be done in
place). This convention is used in the remainder of this chapter for all edges.

The HSDF model contains a pair of actors ai, mi for each access that is
performed on the memory inside the memory tile. This way of modeling memory
access patterns can result in very large HSDFGs. In [135], a case study is presented
on a motion vector computation algorithm. Such an algorithm is typically used
in video encoders. The original SDFG that models the algorithm is similar to the
SDFG shown in Figure 5.1. Both the token on the edges di and do model a frame
with HDTV resolution and must be stored in a memory tile. The HSDFG that
models all memory accesses contains 28800 actors. When prefetching from the

58 5.3. SDF MODEL FOR MEMORY ACCESSES

1
a1,1

a

di

do

m1,1

1

1

a1,2

m1,2

a2,1

m2,1

a2,2

m2,2

an,1

mn,1

an,2

mn,2

1

Figure 5.3: HSDF model for remote memory access with prefetching.

memory tile is taken into account, the number of actors increases to 57600.

5.3 SDF model for Memory Accesses

The number of actors in the HSDF memory access model is proportional to the
number of accesses to the memory tile. For realistic applications, this can result
in very large HSDFGs. These large graphs can result in very time consuming
throughput computations. This section abstracts the HSDF memory access model
of [135] into an SDF model that takes into account the prefetching of data from a
memory tile. The abstraction is based on the observation that the execution times
of the actors ai and mi in the HSDF model of Figure 5.2 are often independent
of the index i. Typically, the actors have a very similar (or even equal) execution
time for different indices. To analyze the timing behavior of the graph, it is
not necessary to distinguish the different actions from each other. Using this
observation, it is possible to construct an SDF memory access model in which the
number of actors is independent of the number of accesses to the memory tile.

The HSDF memory access model split the original actor a (see Figure 5.1)
in n pairs of actors ai and mi. The functionality of a is split over the ai actors.
The mi actors model the operations that need to be performed on the memory
tile. To deal with prefetching in the HSDF model, both the ai and mi actors
are subdivided into two separate parts (see Figure 5.3). One part deals with the
prefetching of data from the memory tile (actors ai,1 and mi,1). The other part
deals with performing the computation on the data and fetching data from the
memory tile (actors ai,2 and mi,2). The SDF memory access model shown in
Figure 5.4 makes the same division. The parameter n that is used in this SDF
memory acccess model is in line with the parameter used in the model of Figure
5.3. Actor a2 models the time needed to execute the functionality of ai,2. It
receives the data needed for its firing from the memory (i.e. from m1 and m2)
and it sends a request to the memory tile for the data needed in its next firing.
Before a2 fires for the i-th time, actor a1 sends a request to prefetch data from

5. MODELING MEMORY MAPPINGS 59

n
n

a1 a2

n

n
n

c

p

ri

ro

m1 m2

na

do

di
1

1

1

1 1

1 1

1

1

1 1

1

1 1

1

1

1

1 1

1

1

1

1

Figure 5.4: SDF model for remote memory access of tokens on an input and
self-edge.

the memory needed for the (i + 1)-th firing of a2 to m1. The firing of m1 can
then occur in parallel with the firing of a2. Note that the initial tokens on the
edge from m1 to a2 and on the edge from m2 to a2 make the first firing of a2

independent of any firing of m1 and m2. This models the initial (possibly empty)
code segment that is executed in the source code, modeled by a2, before the first
remote memory access occurs. The parallel firing of m1 and a2 makes it possible
that part of the data needed for the (i+1)-th firing of a2 is fetched in parallel with
the i-th firing of a2. This reduces the amount of data that needs to be fetched for
the (i+1)-th firing of a2 after its i-th firing has finished. The amount of data that
can be prefetched depends obviously on whether the data access pattern of the
application is known in advance. It also depends on the available storage space in
the local tile memory. This should be sufficiently large to hold all data requested
to be prefetched by a1 and the data needed for the firing of a2. It is interesting to
observe that the (pre)fetching model is independent of the prefetching strategy. A
designer can choose which strategy to use and use the SDF model of Figure 5.4 to
analyze its timing behavior. The actor ri and the cycle through ri and a1 enforce
the input behavior of the actor a in Figure 5.1. When c tokens are available on
the edge di, the actor ri fires and consumes these tokens. This firing produces
also n tokens on the edge from ri to m1. These tokens enable n successive firings
of the actors m1, m2, a1 and a2. After the n firings of m1, m2, a1 and a2 have
ended, the actor ro produces p tokens on the edge do. It also produces n tokens
on the edge from ro to a2. This enables the next set of firings of the actors a1,
a2, m1 and m2.

The SDF memory access model can be optimized in certain situations. It is
possible that due to storage-space constraints or data-dependencies in the code
segments no data can be prefetched from the memory. In that situation, the
actors a1 and m1 can be removed from the memory access model shown in Figure
5.4. The edges between ri and a1 should then be connected to a2. Furthermore,
self-edges with one initial token must be added to a2 and m2. These tokens

60 5.4. MEMORY ALLOCATION

n
n

a1 a2

n
nc p

ri ro

m1 m2

n na

di do

1

1

1

1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

Figure 5.5: SDF model for remote memory access of tokens on a self-edge.

model the data stored in the memory of the processing and memory tile. Another
optimization is possible when all data can be prefetched. In this situation, actor
a2 never requests data from the memory tile that it needs for its next firing (i.e.
the size of the tokens send from m2 to a2 is zero). To avoid that resources are
allocated for the empty memory access, the actor m2 and all edges connected to
it should be removed from the SDF memory access model. To model the memory
inside the memory tile, a self-edge with one initial token should be added to actor
m1. This optimization is applied in the experiment presented in Section 5.5.

The SDF memory access model shown in Figure 5.4 deals with the situation
sketched in Figure 5.1. In this SDFG, the tokens on the edges di and ds, which
are needed for a firing of a, are stored in a memory tile. Similar SDF models can
be constructed for any combination of input, output and self-edges whose tokens
are stored in a memory tile. Figure 5.5 shows, for example, the SDF model for an
actor of which only the token(s) on the self-edge are stored in the memory tile.
The tokens on the actor’s input and output edges are stored into the memory of
the processing tile that executes the actors a1 and a2.

5.4 Memory Allocation

Section 5.1 introduced the problem that tokens needed to fire an actor may not
fit in the processing tile on which the actor is executed. To solve this problem,
the actor must be split into a set of actors that use smaller tokens which fit
in the memory of the processing tile. An actor represents a code segment of an
application that can be executed without blocking when all its input tokens (data)
are available. Splitting an actor implies dividing the code segment into smaller
code segments. The requirement for each individual code segment is that the data
needed to execute this segment fits into the memory of the processing tile. This
behavior is often referred to as the non-blocking actor semantics. A technique
is needed to partition a code segment into smaller segments that respect the non-
blocking actor semantics. In other words, the data used by each of these smaller

5. MODELING MEMORY MAPPINGS 61

code segments should fit in the memory of the processing tile that executes these
code segments. This technique must also decide when data is moved between
the processing tile that executes the code segments and the memory tile that is
used as an additional storage resource. In other words, the technique should take
a code segment that can be modeled with a single SDF actor (e.g., Figure 5.1)
as input and it must output a set of code segments that can be modeled with
the SDF memory access model presented in Section 5.3. This section outlines
a technique that can perform this transformation. The implementation of this
technique in the design flow that is presented in this thesis is left as future work.

Several techniques have been developed in the field of scratch-pad memories for
similar problems. A scratch-pad is a fast compiler-managed memory that replaces
the hardware managed cache. Scratch-pads are becoming more popular in em-
bedded systems [14] as they offer, compared to caches, considerable energy saving
and tighter worst-case execution time bounds [2, 148]. Various algorithms exist
to distribute variables used in a code segment over a scratch-pad and background
memory. These algorithms can be split into two different classes: static allocation
algorithms [9, 131] and dynamic allocation algorithms [143, 144, 146]. Static allo-
cation algorithms decide for each variable that is used in a code segment whether
it should be placed in the scratch-pad or background memory. This placement
is static during the whole execution of the code segment. Dynamic allocation
algorithms move variables in and out of the scratch-pad during the execution of
a code segment. These algorithms enable a compiler-controlled swapping of the
data stored in a scratch-pad memory. The objective of these algorithms is to swap
data in and out of the scratch-pad such that the total time needed to execute a
code segment is minimized.

The problem addressed in this chapter is closely related to the allocation
problem of scratch-pad memories. The memory inside a processing tile can be seen
as a scratch-pad memory and the memory inside a memory tile as the background
memory. The main difference between both problems is that both the static and
dynamic allocation problem of scratch-pads do not require that all variables, which
are used in a code segment, are stored in the scratch-pad. In fact, this need not
even be an optimal solution to the scratch-pad allocation problem. However, all
data used in the executed code segment must be available in the scratch-pad to
realize the non-blocking actor semantics of the SDF model. A static scratch-pad
allocation algorithm does not move data at run-time between the scratch-pad and
background memory. When part of the data needed for a code segment does not
fit in the scratch-pad it is placed in the background memory and accessed from this
memory. This violates the non-blocking actor semantics. In other words, the code
segments constructed by a static scratch-pad allocation algorithm provides only
non-blocking actor semantics when all data used by the original code segment fits
already in the scratch-pad memory. In this situation, it is not needed to partition
the original code segment. Segmentation of the original code is required when not
all data needed for a code segment (actor) fits at the same time in the scratch-pad
(memory inside a processing tile). Dynamic memory allocation algorithms can

62 5.4. MEMORY ALLOCATION

decide to move data between the scratch-pad and background memory between
the execution of code segments. This makes it possible to guarantee the non-
blocking actor semantics on the code segments that are constructed by such an
allocation algorithm. The remainder of this section present the changes that
should be made to an existing dynamic memory allocation algorithm to guarantee
the non-blocking actor semantics for the code segments it constructs.

In [143], a dynamic memory allocation algorithm is presented that partitions
a code segment into smaller code segments. This algorithm can be adapted such
that all variables that are used in a code segment are stored in the scratch-pad
before the code segment is started. In other words, the adapted version of the
algorithm can partition a code segment (actor) in smaller code segments (set of
actors) for which it can guarantee an execution that behaves according to the
non-blocking actor semantics. Between the execution of the actors, data is moved
between the memory in the processing tile and the memory in a memory tile.
When sufficient storage space is available in the processing tile, (part of) these
data movements can actually be done in parallel with the actor executions (i.e.
data can be prefetched). The dynamic allocation algorithm from [143] starts
with a heuristic that partitions a code segment into smaller segments that are
called regions. For each region, it identifies which variables are used. Next, it
allocates space in the scratch-pad memory for the variables that are used in the
first region. It then continues with the second region etcetera. At some point, not
all variables that are used in a region may fit into the scratch-pad. Some variables
that are not used in this region should then be moved to the background memory
to create space in the scratch-pad. The decision which variables to swap out of the
scratch-pad memory into the background memory is made by a function called
FindSwapoutSet. This function computes for every variable V that is used in
the region a set of variables that should be moved from the scratch-pad to the
background memory in order for V to fit into the scratch-pad. It uses a function
called FindBenefit to compute for every variable that it considers as candidate
to be moved out of the scratch-pad the benefit of this move. This benefit depends
on the execution time that is saved by having V in the fast scratch-pad instead
of the slow background memory. It also takes into account the time lost when it
has to access variables from the background memory during the execution of the
region. To achieve actor semantics, variables used in the region should be placed
inside the scratch-pad. To enforce this, the execution time needed to access data
from the background memory should be set to ∞ in the algorithm from [143].
As a result, the execution time of the region is infinite when it uses at least one
variable that is not placed in the scratch-pad memory. The algorithm from [143]
attempts to avoid this situation by moving as many variables out of the scratch-
pad till all variables needed for the considered region fit into the scratch-pad.
When it is impossible to put all variables needed for this region into the scratch-
pad, the algorithm will abort. In this case, the actor should be mapped to a
different tile with a larger memory, or the memory inside the processing tile must
be enlarged to get sufficient space to store all variables that are used in the region

5. MODELING MEMORY MAPPINGS 63

in its memory, or the region should be split into a set of regions that each have
smaller memory requirements.

The result of the adapted dynamic memory allocation algorithm that is pro-
posed above is a code that is partitioned in regions. Each region has a non-
blocking execution semantics as all its data (tokens) are stored in the memory
of the processing tile. Between the execution of actors, transfers between the
memory of the processing tile and memory tile are scheduled. This execution
behavior is captured in the SDF memory access model presented in the previous
section. The execution time of the actors in the model can be obtained by using
an analysis technique on the regions as discussed in Section 2.4.

5.5 Experimental Evaluation

This section shows how the SDF memory access model can be used to analyze
the timing properties of a motion estimation application that uses data stored in
a memory tile. It shows also how the model can be refined to take other architec-
tural aspect (e.g., the interconnect) into account. As demonstrated, this enables
analysis of resource requirements like storage-space allocations and interconnect
bandwidth usage.

A motion estimator computes a set of motion vectors for a video frame. These
motion vectors describe the motion of a block of pixel data from one frame to
another. They are typically used to perform spatial up-conversion or to achieve
a higher data compression (e.g., in an H.263 encoder). The motion estimation
algorithm divides the current frame into a sequence of blocks of typically 8 by 8
pixels. It then takes for each block in the current frame a window of typically
32 by 32 pixels centered around the block’s position from the previous frame.
The motion vectors are determined by the best match, using the sum-of-absolute
differences, between the pixels in the block from the current frame and the pixels
in the window. The computation of all motion vectors for a frame can be modeled
with the SDF actor shown in Figure 5.1. The actor reads in the current frame from
the input (di) and the previous frame from the self-edge (ds). Both frames are
modeled with a single token. Next, it computes and outputs all motion vectors,
and it outputs the current frame on the self-edge. The current frame becomes in
this way the previous frame in the next firing.

Consider the situation in which the tokens that model the current and previous
frame do not fit into the memory of the tile to which the motion estimation actor is
mapped. These tokens must be stored in a memory tile and the motion estimation
actor has to access them via the interconnect. This situation can be modeled with
the SDF model shown in Figure 5.4. On each firing, actor a2 computes a motion
vector and it also requests data from the memory it needs for its next firing. The
latter is done by sending a token to actor m2. The actor a1 sends requests to the
remote memory to prefetch data. The handling of these requests in the remote
memory is modeled by actor m1.

64 5.5. EXPERIMENTAL EVALUATION

1584

1584

a1 a2

1584

1584

ri

ro

m1

1584

1

1

1
1584

CA2

CA1

NI 1

NI 2

Lc

Lp

CA4

CA3

1

1

1 1

136

136
136

136

S

S − 136136

Figure 5.6: SDFG for motion estimation with remote memory access.

Assume now that the video frames that are used have a resolution of 352 by
288 pixels (CIF resolution) and that a window of 32 by 32 pixels is used. Actor a2

computes one motion vector at a time. So, it must fire 1584 times to compute all
motion vectors of one frame (i.e. n = 1584 in Figure 5.4). To compute one motion
vector, the actor a2 needs storage space for one window from the previous frame
and a block from the current frame in the tile to which it is mapped. Assume
that this tile offers sufficient storage space to store at least two windows and two
blocks. In that case, the window (10124 pixels) and the block (64 pixels) needed
for the next firing a2 can be prefetched completely while a2 is firing. Prefetching
this data is modeled in the SDFG of Figure 5.4 with the transfer of one token
from m1 to a2. This token has a size of 1088 bytes, assuming that each pixel has
a size of one byte.

The bold edges in Figure 5.4 represent data that is transfered over the inter-
connect. In the SDF Model-of-Computation it is assumed that edges introduce
no delay (see Section 4.3). In an actual implementation, the transfer of data over
the interconnect has a delay. To take this delay into account, the bold edges in
Figure 5.4 should be replaced with an SDF model of the interconnect. In [94],
an SDF model is presented that models a guaranteed-throughput connection in
the Æthereal NoC [123]. Assume that the architecture onto which the motion
estimation actor is mapped uses Æthereal guaranteed throughput connections to
implement the bold edges in Figure 5.4. The edge from m1 to a2 is the only bold
edge in Figure 5.4 that involves the transfer of a large token over the interconnect.

5. MODELING MEMORY MAPPINGS 65

The tokens on the other bold edges model only data transfers of a few bytes that
introduce a negligible delay. To take the delay on tokens send over the edge from
m1 to a2 into account, this edge must be refined with the connection model of
[94]. Figure 5.6 shows the SDFG that models the remote memory accesses of
the motion compensator to the current and previous frame. (Rates 1 have been
omitted for clarity.) The SDFG contains no actor m2 since all data needed for
the firings of a2 can be prefetched. Instead, a self-edge with one token is added
to m1. This token models the data stored in the memory tile. This optimization
was already explained in Section 5.4. The edge from m1 to a2, present in the
SDF memory access model shown in Figure 5.4, has been refined in the SDFG of
Figure 5.6 with the connection model of [94]. This connection model takes into
account the delay introduced by the network (actors Lp and Lc), the network
interfaces (actors NI 1 and NI 2) and the communication assists at the sending
and receiving side (actors CA1, CA2, CA3 and CA4). The tokens sent between
the CAi, NI i, Lc and Lp actors model a flit in the NoC. A flit contains 64 bits of
data (assuming a flit-size of 96 bits of which 32 bits are needed for the header).
The tokens on the edge between m1 and a2 in Figure 5.4 represent 1088 bytes
of data. To send this data through the NoC, a total of 136 flits is needed. The
edge from CA2 to m1 and the edge from a2 to CA3 model the amount of storage
space, S, that is allocated in the tiles onto which a2 and m2 are mapped. The
number of initial tokens on these edges constrain the number of tokens that can
be present in the edge from m1 to CA1 and the edge from CA4 to a2. Initially,
there are already 136 tokens in the edge from CA4 to a2. These tokens correspond
to the initial token in the edge from m1 to a2 in the SDFG shown in Figure 5.4.
The execution time Υ(NI 2) of actor NI 2 models the bandwidth assigned to the
guaranteed throughput connection that is used between the tile to which m1 is
mapped and the tile to which a2 is mapped.

The number of frames that can be processed by the SDFG shown in Figure 5.6
depends on the allocated storage space S and allocated bandwidth (i.e. execution
time of NI 2). Figure 5.7 shows the trade-off space of the storage space allocations,
bandwidth allocation and the throughput of the motion estimation application.
This trade-off space has been computed by repeatedly performing a throughput
computation on the SDFG shown in Figure 5.6 for different values of S and
Υ(NI 2). The execution times of the other actors in the graph are kept constant.
These actors have the following execution times: Υ(CA1) = Υ(CA2) = Υ(CA3) =
Υ(CA4) = Υ(NI 1) = Υ(Lp) = Υ(Lc) = 0.1µs, Υ(m1) = 20µs, Υ(a1) = 10µs, and
Υ(a2) = 40µs. The results show that allocating storage space for more than
170 flits has no impact on the throughput. They also show that the throughput
decreases drastically when a bandwidth below 100Mbit/s is allocated.

This experiment shows that the SDF memory access model allows reasoning
about the timing aspects of using memory tiles in the system. It also demonstrates
how an SDF model can be refined to take other architectural aspects into account.
This makes it possible to reason about storage space and interconnect bandwidth
requirements. Exploration of this storage-space/bandwidth/throughput trade-

66 5.6. SUMMARY

0

500

1000

1500

120

140

160

180
0

1

2

3

4

5

6

7

8

Bandwidth [Mbit/s]Storage space [flits]

T
hr

ou
gh

pu
t [

fr
am

es
/s

]

Figure 5.7: Trade-offs for motion estimation application.

off space and selecting an appropriate point from this space for a throughput-
constrained application are studied in the remainder of this thesis.

5.6 Summary

This chapter presents an approach to deal with large data structures in on-chip
multi-processors while guaranteeing performance. It assumes a tile-based multi-
processor architecture with small memories close to the processing resources and
large memories that are shared by different subsystems and applications. An SDF
model is presented that allows reasoning about the timing aspects of using large,
shared memories in the system. A technique is also outlined to extract the SDF
memory access model from a code segment. The SDF model can take prefetching
of data from shared memories into account. This prefetching is important as it
allows hiding of the delay introduced by using shared memories that are distant
from the processing resources.

Chapter 6

Resource Allocation

6.1 Overview

The multi-processor systems-on-chip platform presented in Chapter 3 meets with
the growing computational demands of modern embedded multimedia applica-
tions. It allows multiple applications to execute concurrently. To guarantee the
performance of these applications, it is required that every application running
on the platform has a predictable timing behavior which is independent of other
applications running on the same platform. A resource allocation strategy, which
binds tasks from an application to the resources and schedules the tasks and the
inter-task communication on the assigned resources, should offer this predictabil-
ity.

Existing resource allocation strategies for time-constrained applications are
based on HSDFGs or acyclic dependency graphs (acyclic HSDFGs). Techniques
for acyclic graphs, as opposed to SDFGs, often do not take streaming (itera-
tive, overlapping execution of the graph) into account, which makes them not
very suitable for throughput-constrained multimedia applications. Moreover, an
SDFG model of an application must be converted to an HSDFG to apply any
of these techniques. This conversion can drastically increase the problem size,
rendering this approach often infeasible. For example, the HSDFG corresponding
to the SDFG shown in Figure 6.1 contains 4754 actors. The biggest problem with
working on an HSDFG instead of on its corresponding SDFG is the time needed
to compute the throughput. A resource allocation strategy must compute the
throughput of an application bound to the system at least once in order to verify
whether the throughput constraint is met. Throughput is determined by the cy-
cles in a graph. The fastest method to compute the throughput of an HSDFG is
the use of a maximum cycle ratio algorithm [128]. The fastest known variant has
a run-time of 21 minutes on a P4 at 3.4GHz for the HSDFG of the H.263 decoder
shown in Figure 6.1. So any HSDFG-based resource allocation strategy runs for

67

68 6.2. RELATED WORK

1

2544

1 1

4
1 2376

2544

IDCTIQVLD 1
2376

1 1

1

2376

1 1 1 1 1 1

1 1 1

Motion

Comp.

2376

Figure 6.1: SDFG of an H.263 decoder.

at least 21 minutes on the H.263 decoder. Typically, a resource allocation strategy
performs a throughput computation more than once in order to get a notion of the
critical cycles in the application and tune the resource allocation. This chapter
presents a novel technique for task binding and scheduling directly on SDFGs.
This technique is used in step 7, 8 and 9 of the design flow introduced in Section
1.4. Because it works directly on SDFGs, it keeps the problem size typically much
smaller and allows resource allocation for a larger class of applications within a
limited run-time. For example, the proposed strategy has a run-time of less than
2 seconds on the H.263 decoder. It performs 21 throughput checks directly on
the provisionally mapped SDFG during the trajectory to find the binding and
scheduling.

The remainder of this chapter is organized as follows. The next section dis-
cusses related work in the field of resource allocation for dataflow graphs. The
platform, introduced in Chapter 3, is formalized in Section 6.3 and the application
model, a refinement of the SDFG MoC that annotates an SDFG with resource
requirements, is formalized in Section 6.4. The resource allocation problem is
defined in Section 6.5. Throughput computation for an SDFG bound to an MP-
SoC is explained in Section 6.6. An SDFG-based resource allocation strategy is
described in Section 6.7. An experimental evaluation is presented in Section 6.8.

6.2 Related Work

An overview of traditional scheduling and binding techniques for dataflow graphs
can be found in [128]. These techniques range from fully static to fully dynamic
scheduling and consider both single-processor and multiprocessor systems. All
mentioned techniques for MP-SoCs use acyclic graphs in which every task must
be executed once. SDFGs contain tasks (actors) that are repeatedly executed
and different tasks may be executed with different rates. SDFGs also allow cyclic
dependencies between different (pipelined) executions of the same task.

Resource allocation for acyclic graphs with timing guarantees is studied in
[65, 82, 124]. Hu et. al assume that every task can only be bound to a single
processor type [65]. The strategy decides on which processor (i.e. location) to
use. It also constructs a schedule for communication on the NoC interconnect.
The strategy presented in this chapter has to decide on both the processor type
and its location and works, as explained, for a larger class of models. However, it
abstracts from the NoC scheduling problem. It is assumed that this problem can

6. RESOURCE ALLOCATION 69

be solved in a later phase of the design flow (see Chapter 9). In [82], the resource
allocation problem is formulated as a constraint satisfaction problem. Cyclic
dependencies which determine, for example, the throughput of an application
cannot be expressed in this framework. Another resource allocation strategy for
acyclic graphs is presented in [124]. The strategy maps a throughput constrained
graph onto a homogeneous platform. This chapter presents a strategy that targets
a heterogeneous platform.

A multi-objective evolutionary algorithm to bind an application described as
a Kahn Process Network to a heterogeneous MP-SoC is presented in [37]. The
approach can deal with cyclic task graphs, but no timing guarantees are provided
on the resulting binding.

In [95], an approach is presented to perform resource allocation for a time-
constrained HSDFG on a homogeneous MP-SoC. Binding is done using a multi-
dimensional bin-packing algorithm that considers the same resources as the strat-
egy presented in this chapter does. However, the latter can handle arbitrary
SDFGs while targeting a heterogeneous MP-SoC.

A method to bind an application described as a Cyclo-Static Dataflow graph
onto a heterogeneous MP-SoC is given in [24]. It tries to maximize the through-
put which can be realized with the available resources. Only a single application
can be mapped to the system. Resource allocation to multiple applications with
throughput guarantees for each of them is not considered. The strategy pre-
sented in this chapter tries to minimize resource usage under given throughput
constraints, thus maximizing the number of applications that can run concurrently
on the system while providing throughput guarantees.

6.3 Platform Graph

The multi-processor platform template described in Chapter 3 consists of a collec-
tion of tiles that are connected by an interconnection network. Each tile contains
one processor (P) and a local memory (M). A tile contains also a set of commu-
nication buffers, called the network interface (NI), that are accessed both by the
local processor and the interconnect. The resources in a tile can be described as
follows. Let PT be the set of all processor types.

Definition 12. (Tile) A tile is a 6-tuple (pt, w, m, c, i, o) with pt ∈ PT the pro-
cessor type, w ∈ N0 the size of the processor’s TDMA time wheel (in time units),
m ∈ N0 the memory size (in bits), c ∈ N0 the maximum number of connections
supported by the NI, and i, o ∈ R the maximum incoming and outgoing bandwidth
(in bits/time-unit) of the tile.

In practice, a time wheel may already be partially occupied when binding an
application to a tile. The function Ω : T → N0, with T the set of tiles, gives for a
tile the size of the time wheel which is already occupied. Other resources in a tile
may also be (partially) occupied. For simplicity, it is assumed that all memory

70 6.3. PLATFORM GRAPH

P1

M1 NI

t1 P2

M2 NI

t2c1

c2

Figure 6.2: Example platform.

Table 6.1: Properties of the example platform.
pt w m c i o L(c)

t1 p1 10 700 5 100 100 c1 1
t2 p2 10 500 7 100 100 c2 1

(m), connections (c), and incoming (i) and outgoing (o) bandwidth specified by
a tile are available for an application. Resources that are not available (i.e., used
by other applications) should not be specified.

The tiles in the multi-processor platform are connected through a NoC. The
NoC provides timing guarantees on the maximal latency encountered when send-
ing data between the tiles. In this chapter, the links and routers in the NoC are
ignored. It is assumed that the NoC provides point-to-point connections with a
fixed latency between the tiles. When scheduling the communication of the data-
elements sent through the connection on the NoC, the NoC scheduling strategy
has to guarantee that the latency of the data-elements is within the latency bound
of the connection. Using this assumption, the internal structure of the NoC can
be abstracted away into these connections. Given this abstraction, the multi-
processor platform can be described with the following graph structure.

Definition 13. (Platform Graph) A platform graph (T, C,L) consists of a
set T of tiles, a set C ⊆ T 2 of connections and a latency function L : C → N. A
connection is a tuple c = (u, v) through which data can be sent from a tile u to a
tile v with a latency L(c) (in time units).

The connections between tiles introduce a latency when data is sent between
them. Each connection can have a different latency. In this way, the latency of
different connections through a NoC can be taken into account. The amount of
data which can be sent per time-unit (i.e. bandwidth) is limited by the incoming,
i, and outgoing bandwidth, o, of the tiles. Table 6.1 gives the values of all elements
in the platform of Figure 6.2.

The platform template described in Chapter 3 contains a communication assist
(CA) that is ignored in the platform graph. The CA acts as a memory arbiter
between the processor and NI inside a tile. In this thesis, it is assumed that the
worst-case timing behavior of the CA is taken into account in the execution time
of the actors (see Section 3.4). Hence, the CA can be abstracted away in the
platform graph.

6. RESOURCE ALLOCATION 71

a1
1 2d21 1d1

a3a2

1

1

1

d3

Figure 6.3: Example resource-aware graph.

6.4 Resource-Aware Application Graph

The structure of an application can be described with an SDFG. A resource
allocation strategy needs also information on the resource requirements of the
actors and edges in the graph. It must, for example, know to which processor
types an actor can be bound and how many CPU cycles it requires on these
processors. Furthermore, the model must also provide a throughput constraint
which must be satisfied when the application is bound to the platform graph. An
application with its resource requirements and throughput constraint is described
by a resource-aware (application) graph.

Definition 14. (Resource-aware application graph) A resource-aware ap-
plication graph (A, D, Γ, Θ, λ) is a 5-tuple of an SDFG (A, D), the functions
Γ : A × PT → N

∞ × N
∞
0 and Θ : D → N

5
0 × R, and the throughput constraint

λ ∈ R. Function Γ gives for each actor a ∈ A and each processor type pt ∈ PT
a tuple (τ, µ) with τ and µ respectively the execution time (in time units) and
memory requirement (in bits) of a when assigned to a processor of type pt or ∞ if
a cannot be assigned to a processor of type pt. Function Θ gives for each depen-
dency edge d ∈ D from an actor ai = SrcA(d) to an actor aj = DstA(d) a 6-tuple
(sz, αtile, αsrc, αdst, ρ, β) with sz the size of a token (in bits), αtile the memory
(in tokens) required when ai and aj are assigned to a single tile, αsrc and αdst

the memory (in tokens) required in the source and destination tile when ai and
aj are assigned to different tiles, ρ the minimal latency (in time units) between
the production and consumption of a token on d when ai and aj are assigned to
different tiles and β the bandwidth (in bits/time-unit) required when ai and aj are
assigned to different tiles.

The minimal latency can capture timing constraints on the allowed intercon-
nect (NoC) schedules, which will be added later in the design flow (see Chapter 8).
The higher the minimal latency, the higher the interconnect scheduling freedom.

Table 6.2 shows the values of the functions Γ and Θ for the actors and edges
of the resource-aware graph shown in Figure 6.3. The resource requirements can
be obtained for an application using the techniques described in Section 2.4. The
throughput constraint is usually a user requirement.

72 6.5. RESOURCE ALLOCATION PROBLEM

Table 6.2: Properties of the example resource-aware graph.
p1(τ, µ) p2(τ, µ) sz αtile αsrc αdst ρ β

a1 (1, 10) (4, 15) d1 7 1 2 2 3 100
a2 (1, 7) (7, 19) d2 100 2 2 2 1 10
a3 (3, 13) (2, 10) d3 1 1 0 0 0 0

6.5 Resource Allocation Problem

A resource allocation strategy must bind each actor from the resource-aware graph
(A, D, Γ, Θ, λ) to a tile in the platform graph (T, C,L). As a consequence, also
each dependency edge in the resource-aware graph is assigned to a connection
between two tiles or to the memory inside a tile. The binding of actors to tiles is
given by the binding function.

Definition 15. (Binding function) A binding function is a function B : A→ T
which gives for every actor a ∈ A the tile t ∈ T to which it is bound.

Multiple applications are scheduled on a tile using a TDMA scheduler, as
explained and motivated in Section 3.4. For each resource-aware graph, a time
slice should be reserved on each tile which executes actors from the graph. A
static-order schedule, ordering the actor execution of a resource-aware graph on
a processor, must also be constructed for each tile. Both the size of the time slice
and the static order schedule are given for each tile by the scheduling function.

Definition 16. (Scheduling function) A scheduling function is a function
S : T → N0 × SO, where SO is the set of all static order schedules. It gives for a
tile t ∈ T from the platform graph a tuple (ω, S), where ω is the size of the TDMA
time slice reserved for the resource-aware graph and S is a static order schedule
for the actors from the resource-aware graph which are bound to t.

The following notations are used in the remainder. For each tile t ∈ T , t =
(ptt, wt, mt, ct, it, ot) and S(t) = (ωt, St); for each actor a ∈ A and processor
type pt ∈ PT , Γ(a, pt) = (τa,pt, µa,pt), and, for each dependency edge d ∈ D,
Θ(d) = (szd, αtile,d, αsrc,d, αdst,d, ρd, βd). The set of all actors a ∈ A bound to
t ∈ T is denoted with At. Using the set At, three sets of dependency edges are
defined. The first set Dt,tile contains all dependency edges of which both the
source and destination actor are bound to t. Set Dt,src contains all dependency
edges of which the source actor is bound to t and the destination actor is bound
to a different tile; Dt,dst contains all dependency edges of which the destination
actor is bound to t and the source actor is bound to a different tile.

Binding and scheduling functions give a resource allocation for a resource-
aware graph on a platform graph. This allocation is called valid if and only if the
throughput constraint is met and not more resources are allocated than available.
The next section explains how throughput is computed. To guarantee that not

6. RESOURCE ALLOCATION 73

more resources are allocated than available, the following must hold for each tile
t ∈ T :

1. the allocated time slice is available:
ωt ≤ wt − Ω(t),

2. not more memory is allocated than available:
∑

d∈Dt,tile

αtile,d ·szd+
∑

d∈Dt,src

αsrc,d ·szd+
∑

d∈Dt,dst

αdst,d ·szd+max
a∈At

µa,pt ≤ mt,

3. not more connections are allocated than available:
|Dt,src|+ |Dt,dst| ≤ ct,

4. not more input and output bandwidth is allocated than available:
∑

d∈Dt,dst

βd ≤ it ∧
∑

d∈Dt,src

βd ≤ ot.

The second constraint guarantees that the amount of memory allocated on a tile
does not exceed the total amount of memory available on the tile. The constraint
uses the assumption that edges cannot share memory space. However, actors from
the same application are assumed to share their memory space. The static-order
schedule on the actors guarantees that only one actor is firing at the same tile.
So, only this actor needs memory space to store its state. When the actor firing
ends, the state can be discarded. Any data that is needed for a next firing of
this actor should be outputted on a self-edge of the actor. Doing so, makes the
memory requirements explicit.

6.6 Throughput Analysis

In Section 4.3, the timed SDFG model with its operational semantics is presented
along with a technique to compute the throughput of the graph. It assumes a
platform with infinite resources (i.e. actors do not share processors and commu-
nication does not introduce a delay). Various aspects of resource sharing can be
modeled into a timed SDFG. Other aspects like the timewheel and static order
schedules of tiles, must be handled in the operational semantics. This reduces the
number of possible ways to fire an actor in an SDFG to those who respect the
constraints that come from the resource allocation.

6.6.1 Modeling Resource Allocations in SDFGs

A resource allocation for a resource-aware graph (A, D, Γ, Θ, λ) on the resources
in platform graph (T, C,L) is given by a binding function B and a scheduling
function S. The resource allocation decisions are modeled as follows into a timed
SDFG Gb = (Ab, Db, Υ). For every actor a ∈ A there is a corresponding actor
ab ∈ Ab. Its execution time, Υ(ab), is equal to the execution time of a on the

74 6.6. THROUGHPUT ANALYSIS

ai

1

1

1

(a) Actor bound to a tile.

p q
aj

qp
αtile − n

dai
n

db

(b) Edge bound to a tile.

p q
aj

1
ac

q

1

1 1

1

1

1

p αdstαsrc − n

d

as
1 1

p q

aρ

p q

1 1

ai

n

n

n

(c) Edge bound to a connection.

Figure 6.4: Modeling of resource constraints in a timed SDFG.

processor type contained in the tile t = (pt, w, m, c, i, o) ∈ T to which a is bound
(i.e. Υ(ab) = τ(Γ(a, pt)). Only one instance of ab can be executing at the same
moment in time on a tile (i.e. no auto-concurrency). This is modeled by adding
a self-edge on ab with rate one to the set Db (see Figure 6.4(a)) and having
one token on it in the initial state of the SDFG. Every edge d ∈ D with Θ(d) =
(sz, αtile, αsrc, αdst, ρ, β) of which both the source and destination actor are bound
to the same tile (B(SrcA(d)) = B(DstA(d))), is modeled in Gb with two edges
as shown in Figure 6.4(b). The edge db with initially αtile − n tokens, with n
the number of tokens in the initial state of the resource-aware graph, limits the
storage space of the edge d to the memory size allocated for the edge d by the
resource allocation strategy. Any edge d ∈ D, with n initial tokens, whose source
and destination actor are bound to different tiles (B(SrcA(d)) 6= B(DstA(d)))
uses a connection c ∈ C in the platform graph. The delay and memory constraint
introduced by this resource binding are modeled with the graph shown in Figure
6.4(c). The memory constraint at the source (destination) tile is modeled with
the dependency edge from ac to ai (aj to ac). The self-edge on ac enforces
that tokens are sent sequentially over the connection. Actor ac is used to model
the delay for sending a token over the connection. Its execution time, Υ(ac),
is equal to L(c) + ⌈sz/β⌉. Actor ac is a very simple connection model. It can
be replaced with a more detailed model, such as the network-on-chip connection
model of [94]. Actor aρ models the minimal latency ρ between the production and
consumption of a token on the dependency edge d when it is bound to a connection
in the platform graph. The execution time of aρ is equal to Υ(aρ) = ρ. TDMA
scheduling guarantees that the throughput of an application is not influenced by
other applications running on the same platform. No assumptions are made on

6. RESOURCE ALLOCATION 75

2
a3ac

2

αdst,d2
= 2αsrc,d2

= 2

d2

as
2

1

aρ

2

1

a2

1

a1

1

αtile,d1
= 1

d1

Figure 6.5: Binding-aware SDFG for the example SDFG of Figure 6.3.

the position of a time slice on the time wheel. This guarantees that a time wheel
can always be defragmented in one rotation and it leaves flexibility for the run-
time scheduling of applications on a platform. Consider the worst-case situation
in which a token needed to fire actor aj running at a tile t = (pt, w, m, c, i, o) ∈ T
arrives exactly at the end of the time slice with size ω allocated to the application
by scheduling function S. In that situation, aj has to wait at most w − ω time
steps before it can fire. To guarantee that the throughput analysis of the model
is conservative with respect to an implementation, it is assumed that a token sent
between actors bound to different tiles is always delayed by this amount of time.
This is modeled by as, which has an execution time Υ(as) = w − ω. The model
shown in Figure 6.4(c) contains an edge d that expresses the dependency of actor
aj on actor ai, which was also present in the resource-aware SDFG. The same
dependency between the two actors is also captured with the two edges going
from ai via aρ to aj . Therefore, an efficient implementation can ignore the edge
d.

Definition 17. (Binding-aware SDFG) A binding-aware SDFG is a 6-tuple
(Ab, Db, Υ, T,B,S) consisting of a timed SDFG (Ab, Db, Υ) that models the bind-
ing of a given application graph to a set of tiles T , by binding function B and the
time-slice allocation given by scheduling function S, as explained above.

Consider as an example the resource-aware graph shown in Figure 6.3 and the
platform of Figure 6.2. Assume that the actors a1 and a2 are bound to tile t1 and
actor a3 to t2. The dependency edge d1 is then bound to t1 and the edge d2 is
bound to the connection c1. The binding-aware SDFG that models these binding
decisions is shown in Figure 6.5 (omitting rates 1 for clarity). The execution time
of a1 and a2 is then equal to 1 and the execution time of a3 is equal to 2 (see
Table 6.2). The execution time, Υ(ac), of the actor ac that models the delay for
sending a token over the connection, is equal to L(c1) + ⌈szd2

/βd2
⌉. Actor as,

modeling the worst-case delay due to time slice allocations, has an execution time
Υ(as) = wt2 − ωt2 , which depends on the schedule function S. Note that the
actors ac, as and aρ are not bound to a processor, as these actors only model the
interconnect between two tiles.

76 6.6. THROUGHPUT ANALYSIS

6.6.2 Operational Semantics

One option to model static order schedules in dataflow graphs is proposed in
[13]. As shown in Section 4.5, this requires a conversion of the SDFG to an
HSDFG. This conversion leads to an increase in the time needed for the through-
put computation. To avoid this issue, the scheduling function, i.e., the time
wheel allocations and static-order schedules, is not modeled into the binding-
aware SDFG. Instead, these aspects are taken as constraints on the execution of
the binding-aware SDFG. This requires an extension of the state of a timed SDFG
(see Definition 6) to keep track of the state of the static-order schedules and time
wheels. Recall the definition of a static-order schedules introduced in Section
3.3; a static-order schedule for a set A of actors is defined as a finite or infinite
sequence a1a2a3... ∈ A. Practical infinite static-order schedules consist of a (pos-
sible empty) sub-sequence which is seen once followed by a finite sub-sequence
which is infinitely often repeated. The initial position of a static-order schedule
is denoted with s0, and the function ̺ gives the next position of a static-order
schedule.

Definition 18. (State) The state of a binding-aware SDFG (Ab, Db, Υ, T,B,S)
is a 4-tuple (δ, υ, ι, κ). The pair (δ, υ) represents the state of the timed SDFG
(Ab, Db, Υ). For each tile t ∈ T , the position of the time wheel in that state is
given by ι : T → N0. The function κ associates to every tile t ∈ T the state
of the schedule (i.e. position in the static-order schedule). The initial state of a
binding-aware SDFG is given by some initial token distribution δ and the initial
position of the static-order schedules, which means that the initial state equals
(δ, {(a, {}) | a ∈ A}, {0 | t ∈ T }, {s0(S(S(t))) | t ∈ T }).

The dynamic behavior of a timed SDFG is described by transitions. Three
different types are distinguished: start of actor firings, end of firings, and time
progress in the form of clock ticks. The binding and scheduling functions B and
S impose additional constraints when these transitions are allowed to occur in a
binding-aware SDFG as compared to a timed SDFG.

Definition 19. (Transition) A transition of a binding-aware SDFG (Ab, Db, Υ,
T,B,S) from state (δ1, υ1, ι1, κ1) to state (δ2, υ2, ι2, κ2) is denoted by (δ1, υ1, ι1, κ1)
β
→ (δ2, υ2, ι2, κ2) where label β ∈ (A × {start, end}) ∪ {clk} denotes the type
of transition. The change from (δ1, υ1) to (δ2, υ2) in the various transitions of
a binding-aware SDFG is identical to the state change in the timed SDFG and
therefore omitted in the following.

• A start of firing transition of a ∈ A is enabled in a binding-aware SDFG if
it is enabled in the corresponding timed SDFG and when t = B(a) 6= NIL;
it must further hold that ̺(κ1(t)) = a. It results in ι2 = ι1, and κ2 = κ1.

• An end of firing transition of a ∈ A is enabled in a binding-aware SDFG
if it is enabled in the corresponding timed SDFG. It results in ι2 = ι1, and

6. RESOURCE ALLOCATION 77

κ2 = κ1 if B(a) = NIL or if B(a) 6= NIL, κ2(t) = ̺(κ1(t)) for t = B(a)
and κ2(t) = κ1(t) for t 6= B(a).

• A clock transition is enabled in a binding-aware SDFG if it is enabled in the
corresponding timed SDFG. It results in ι2 = {(ι1(t) + 1) mod w(t)|t ∈ T },
κ2 = κ1 and the set M of actors whose remaining execution time is reduced
contains all actors a ∈ A for which t = B(a) = NIL or ι1(a) ≥ w(t) −
ω(S(t)).

In a clock transition, the position of all time wheels is advanced with one
position and after a complete rotation it is set to zero. The transition reduces
the remaining execution time of all active firings of actors which are not bound
to a tile and of those which are bound to a tile on which the current TDMA time
slot is reserved. The reason to advance the time for actors not bound to a tile
is to ensure proper progress of delay actors like as in Figure 6.5. The transition
system guarantees that when an actor a ∈ A is bound to a tile t ∈ T , its remaining
execution time is lowered if and only if the position of the time wheel of tile t
is larger or equal to the size of the wheel minus the time slice reserved for the
application. In practice, an actor firing on a tile will never occur later than this
moment. This guarantees that the throughput analysis, which is explained below,
is conservative. Whenever an actor is firing when the time slice of the application
ends, the firing is pre-empted and continued in the next rotation of the time wheel.

6.6.3 Throughput Computation

Similar to the self-timed execution of a timed SDFG (see Definition 9), the con-
strained self-timed execution of a binding-aware SDFG is defined as follows. Note
that Definition 19 already guarantees that the proper set of actor firings makes
progress, so it is only necessary to prohibit clock transitions when actor firings
are enabled.

Definition 20. (Constrained self-timed execution) A constrained execu-
tion is self-timed if and only if clock transitions only occur if no start transition
is enabled.

Theorem 2. (Periodic behavior) The state space of a constrained self-timed
execution of a binding-aware SDFG (Ab, Db, Υ, T,B,S) contains always exactly
one cycle (in terms of macro steps from one clock transition to another clock
transition).

Proof. The binding-aware SDFG (Ab, Db, Υ, T,B,S) is by definition strongly
connected as every edge has a bounded storage space which is modeled in the
graph using the constructs of Figure 6.4. This means that every actor depends
on tokens from every other actor, which limits the difference between the number
of firings of actors with respect to each other. This implies that there exists a
bound on the number of simultaneous actor firings and the number of tokens in

78 6.6. THROUGHPUT ANALYSIS

any edge. Furthermore, every tile has a static-order schedule of finite length and
a time wheel with only a finite number of slices. Hence, there is only a finite
number of different reachable states. Further, in the transition system, there is
always at least one transition enabled (even in a deadlock state, there is still a
clock transition enabled), which implies that the number of transitions that will
occur is infinite. By the pigeon hole principle, at least one of the finite number
of reachable states is visited infinitely often. Since the self-timed execution is
deterministic (when considering the execution in ‘macro steps’ from one clock
transition to another), there is only one transition to leave any (recurrent) state.
Hence, there is exactly one cycle in the state space (in terms of macro steps).

The throughput of a graph refers to how often an actor produces an output
token. In a constrained self-timed execution, actors fire as soon as possible while
respecting the constraints from the binding and scheduling functions B and S.
This guarantees that the execution gives maximal throughput under the resource
constraints.

Definition 21. (Throughput) The throughput Th(a) of an actor a for the con-
strained self-timed execution σ of a binding-aware SDFG G = (Ab, Db, Υ, T,B,S)
is defined as the average number of firings of a per time unit in σ. If SDFG
(Ab, Db) is consistent, then the throughput of G is defined as

Th(G) =
Th(a)

γ(a)
,

for some arbitrary actor a ∈ Ab, where γ is the repetition vector of (Ab, Db).

As explained in Section 4.4, the throughput of an actor in an SDFG can be
computed by executing the SDFG in a self-timed manner while remembering all
visited states until a state is revisited. At that point, the periodic phase is reached
and the throughput of an actor a is equal to the number of firings of a in one
period of the periodic phase divided by the number of clock transitions in the
period. The throughput of a binding-aware SDFG can be computed in the same
way.

As an example, a comparison is made between the throughput found when
analyzing the self-timed execution of the resource-aware graph shown in Figure
6.3 or the self-timed execution of the corresponding binding-aware SDFG shown in
Figure 6.5 (assuming execution times 1, 1, and 2 for the actors respectively) or the
constrained self-timed execution of this binding-aware SDFG. Figure 6.6(a) shows
the state-space of the resource-aware graph. As before, states are represented by
black dots and state transitions are indicated by edges. The label with a transition
indicates which actors start their firing in this transition and the elapsed time till
the next state is reached. The continuation of an actor firing is indicated by a
tilde in front of the actor label. Actor a3 executes once every 2 time-units in
the self-timed execution of the resource-aware SDFG (i.e. its throughput is 1/2).

6. RESOURCE ALLOCATION 79

a1, 1 a1, a2, 1 a1, a2, a3, 1

a1, a2,∼a3, 1

a1, a2, 1

(a) Resource-aware graph.

a2, 1 a1, ac, aρ, 1 a2, 1 a1, aρ, 9 a2, ac, as, 1 a1, aρ, 10

a2, as, 1

a1, aρ, 4a3, 2

ac, 11

a1, 1

(b) Binding-aware SDFG.

a2, 1 a1, ac, aρ, 1 a2, 1 a1, aρ, 9 a2, ac, as, 1 a1, aρ, 10

a2, as, 1

a1, aρ, 4a3, 3

ac, 11

a1, 6

(c) Constrained execution.

Figure 6.6: State-space of the resource-aware graph, binding-aware SDFG and
the constrained self-timed execution.

Since a3 occurs only once in the repetition vector, also the graph throughput is
1/2. This is the maximal achievable throughput taking into account only the
dependencies inherent in the SDFG. The self-timed state-space of the binding-
aware SDFG is shown in Figure 6.6(b). The limited storage space of d1 causes a1

and a2 to fire in sequence and communication and synchronization is taken into
account via firings of actors c and s. Actor a3 executes once every 29 time-units,
which is the maximal achievable throughput of the actor and the graph that can
be guaranteed under the worst-case synchronization conditions while taking the
binding into account. The explored state-space which considers the other resource
constraints on the execution of the SDFG is shown in Figure 6.6(c). The chosen
static-order schedules (a1a2)

∗ and a∗
3 are in line with the self-timed schedule, so

they do not affect the result. 50% of the TDMA time wheels are allocated to the
application. These time slot allocations cause actor a1 and a3 to post-pone their
firings for respectively 5 and 1 time-unit in the worst case (see boxes in Figure
6.6(c)). As a result, actor a3 fires only once every 30 time-units. The throughput
is therefore equal to 1/30.

In [17], TDMA time slice allocations are modeled by increasing the execution
time of every actor firing with the fraction of the TDMA time wheel which is not
reserved by the application. This increases the execution time of actor a3 in the
example with 5 time units. This is the maximum time the constrained self-timed
execution will post-pone the firing of an actor. In many situations, the time with

80 6.7. RESOURCE ALLOCATION STRATEGY

which a firing is post-poned is less. Hence, the constrained self-timed execution
gives a more accurate throughput result. This reduces the resource requirements
of the application while guaranteeing its timing behavior.

6.7 Resource Allocation Strategy

The resource allocation strategy consists of three main steps which are each ex-
ecuted once. First, an actor binding is constructed, then a static order schedule
for each tile containing actors of the resource-aware graph, and finally time slices
are allocated.

6.7.1 Resource binding

The resource binding step must bind every actor from the resource-aware graph
to a tile in the platform graph. An important objective in the resource allocation
strategy is to meet the throughput constraint specified by the resource-aware
graph. For this reason, it is important that actors whose execution time have
a large impact on the throughput of the application are considered first. The
throughput of an SDFG is known to be limited by its critical cycle [128]. This is
a cycle in the corresponding HSDFG with the maximal ratio between the sum of
the execution time of the actors on the cycle and the sum of the number of tokens
on the edges of the cycle. The conversion of an SDFG to an HSDFG can lead to an
exponential increase in the number of actors in the graph [46]. This may make it
infeasible to analyze the HSDFG of a resource-aware graph to identify the actors
on its critical cycle. Therefore, the binding step tries to estimate the criticality
of all cycles in the graph (and the actors on them) directly on the SDFG. This is
done with the cost function given by Equation 6.1, with a ∈ A an actor, C the
set of cycles through a, γ the repetition vector of the resource-aware SDFG and
n the number of tokens on edge d in the initial state of the SDFG.

cost(a) = max
c∈C

∑

actors b∈c

γ(b) · avg
{pt∈PT |τb,pt 6=∞}

τb,pt

∑

edges d=(u,v)∈c

n/Rate(v)
, (6.1)

After sorting the actors in decreasing order, the resource allocation strategy tries
to bind the actors in the given order to the tiles. For each actor a ∈ A, it may have
to choose from a number of different tiles T ′ ⊆ T . The objective of the resource
allocation strategy is to balance the load of the application equally over all tiles
and to minimize the latency of the connections that are used. The load of a tile
is estimated by the amount of processing performed on its processor relative to
the total amount of processing needed for the application, the fraction of memory
used and the average fraction of occupied connections and bandwidth. Given a
(partial) binding, and the corresponding sets At, Dt,tile, Dt,src, Dt,dst (see Section

6. RESOURCE ALLOCATION 81

6.5), these aspects are captured in the following definitions, with t a tile and γ
the repetition vector of the resource-aware graph.

lp(t) =

∑

a∈At

γ(a) · τa,pt

∑

a∈A

γ(a) · max
{pt∈PT |τa,pt 6=∞}

τa,pt

lm(t) = (max
a∈At

µa,pt +
∑

d∈Dt,tile

αtile,d · szd +
∑

d∈Dt,src

αsrc,d · szd

+
∑

d∈Dt,dst

αdst,d · szd)/mt

lc(t) = avg

∑

d∈Dt,src

βd

ot
,

∑

d∈Dt,dst

βd

it
,
|Dt,src|+ |Dt,dst|

ct

Besides the load of the resources in a tile, the resource allocation strategy must
also consider the latency of the connections between the used tiles. It should
try to minimize the sum of the latencies of the connections that are used. This
minimizes the time spent on communication. Furthermore, the latency of a con-
nection is typically related to the locality of the two tiles it connects. Mini-
mizing latency results then in binding actors to tiles which are physically close
to each other. The latency load of binding an actor a to a tile t is estimated
by the relative latencies of the connections used with this binding compared to
binding the actor to alternative tiles. Given a (partial) binding and the corre-
sponding sets At, Dt,tile, Dt,src, Dt,dst (see Section 6.5). The latency load when
binding an actor a to a tile t is given by the following definition. It uses a set
Dt,a = {Dt,src

⋃

Dt,dst|SrcA(d) = a∨DstA(d) = a} that contains all dependency
edges connected to a that are bound to a connection in the platform graph.

ll(t, a) =

∑

d∈Dt,a

L(B(SrcA(d)),B(DstA(d)))

max
t∈T ′

∑

d∈Dt,a

L(B(SrcA(d)),B(DstA(d)))

Equation 6.2 combines the processing load, memory load, communication load
and latency load into in a single cost function for binding an actor a to a tile t.

cost(t, a) = c1 · lp(t) + c2 · lm(t) + c3 · lc(t) + c4 · ll(t, a) (6.2)

The constants in the function are specified by the user of the binding step. This
enables the user to trade-off how the various loads of the tile are weighted with
respect to each other. The algorithm tries to bind actor a to a tile t ∈ T ′ in
the increasing order given by the tile cost function based on the current partial

82 6.7. RESOURCE ALLOCATION STRATEGY

Table 6.3: Binding of actors to tiles.
c1, c2, c3, c4 a1 a2 a3

1, 0, 0, 0 t1 t1 t2
0, 1, 0, 0 t2 t1 t1
0, 0, 1, 0 t1 t1 t1
0, 0, 0, 1 t1 t1 t1
1, 1, 1, 1 t1 t1 t2

binding with a bound to t. When a tile t ∈ T ′ is found for which it holds that
the binding of a to t does not conflict with the constraints given in Section 6.5 it
binds a to t and the algorithm continues with the next actor. When all tiles are
tried and no valid binding is found, the problem is considered infeasible. Table 6.3
shows the resulting binding of actors of the running example for various settings
of the constants.

After binding all actors to a tile, an optimization is performed to improve the
load balance of the tiles. This is done by considering all the actors in reverse
order. When reconsidering the binding of an actor a ∈ A which is bound to a tile
t ∈ T , its binding is first removed. Next, all tiles T ′ to which a can be bound
are sorted using Equation 6.2, considering the load of all tiles when the whole
application graph except actor a is bound. The algorithm then tries to bind a
to a tile t ∈ T ′ in the increasing order given by the cost function. Note that it
will always be possible to find a valid binding as the original binding is one of the
bindings which is tried.

6.7.2 Constructing static-order schedules

For each tile, a static-order schedule must be constructed that orders the firings
of all actors bound to it. A list-scheduler is used to construct these static-order
schedules for all tiles at once. The schedules are constructed via an execution of
the binding-aware SDFG, assuming that for each tile 50% of the available time
wheel is allocated to the resource-aware graph. Experiments have shown that the
percentage of the time wheels that is assumed to be allocated to the resource-
aware graph has little influence on the constructed static-order schedules because
typically only a few actors, which are mapped to the same processor, are ready to
fire at the same moment in time. Through actors like as in Figure 6.5 the delay
for tokens sent between tiles is taken into account in the schedule construction.
When an actor becomes enabled in the execution of the binding-aware SDFG,
it does not start its firing immediately. Instead the actor is added to the ready
list of the tile it is bound to. When no actor is firing on the tile, the first ac-
tor is removed from the list and its firing is started. At this moment, the actor
is added to the schedule of the tile. The execution ends as soon as a recurrent
state is found. At this point, a finite-length schedule has been constructed for

6. RESOURCE ALLOCATION 83

each tile. For the example, the scheduler constructs for tile t1 a schedule with 17
states - a1a2a1a2a1a2a1a2a1(a2a1a2a1a2a1a2a1)

∗. After constructing the sched-
ule, an optimization is performed to remove all recurrent occurrences of the same
scheduling sequence. In this way, the schedule on t1 is reduced to (a1a2)

∗.
After the static-order scheduling, it is possible to perform life-time analysis on

the tokens in the dependency edges that are bound to a tile. This allows tighter
memory allocation for these edges. This optimization is left as future work.

6.7.3 Time slice allocation

The final step of the resource allocation strategy involves the allocation of time
slices for all tiles. A binary search algorithm is used, which guarantees that a
time slice allocation satisfying the throughput constraint is found if it exists. The
search between the initial bounds of 1 time slice and the entire (remaining) time
wheel continues until the throughput of the binding-aware SDFG constrained by
the current slice allocation is at most 10% larger than the throughput constraint.
The stop criterion makes a trade-off between the run-time of the resource alloca-
tion strategy and the resource usage of the mapped application. The time slice
allocation ends unsuccessfully if the allocation of the entire remaining time wheels
is insufficient to meet the throughput constraint.

If successful, the slice allocation step so far allocates equal fractions of the
remaining time wheel for each tile to which at least one actor is bound. This
is based on the assumption that the processing load is perfectly balanced over
the tiles. However, in case of an imperfect load balance it may be possible to
reduce the allocated time slices using another binary search. The upper bound
for every tile t ∈ T is equal to the slice found in the previous step (i.e. ωt) and the

lower bound for every tile t is
⌊

lp(t)·ωt

maxt∈T lp(t)

⌋

which takes into account the relative

load of each tile. The binary search is continued on all tiles simultaneously using
the above mentioned bounds. The binary search is ended when the slices can no
longer be reduced without violating the throughput constraint.

6.8 Experimental Evaluation

6.8.1 Experimental setup

A benchmark is needed to evaluate the run-time and quality of the resource alloca-
tion strategy and explore the impact of different parameter values in the tile-cost
function. A benchmark of four sets of resource-aware graphs was generated using
SDF3 (see Chapter 4.6). The first set contains processing intensive graphs that
have large execution times, do not communicate too often and have small token
sizes and states. The second and third set are memory and communication in-
tensive. The fourth set contains both SDFGs which are balanced with respect
to their processing, memory and communication requirements and graphs which

84 6.8. EXPERIMENTAL EVALUATION

Table 6.4: Average number of resource-aware graphs bound.
cost function c1, c2, c3, c4 set 1 set 2 set 3 set 4

1: 1, 0, 0, 0 16.89 5.22 9.78 9.33
2: 0, 1, 0, 0 18.67 8.56 12.67 11.33
3: 0, 0, 1, 0 25.56 8.44 14.00 13.22
4: 0, 0, 0, 1 16.44 3.33 7.11 6.33
5: 1, 1, 1, 1 17.00 5.78 11.00 11.56
6: 0, 1, 4, 0 22.67 8.56 13.76 14.11

are dominated by one or two of these aspects. The sets were ordered to mimic
the order in which applications are considered for mapping. For each set, three
different sequences of graphs were generated to eliminate effects from the random
generator.

Three different platform graphs are used in the experiments. Each platform
graph is a 3x3 mesh-based platform with 3 different types of processors. The
graphs differ in the memory size and number of supported connections. All pro-
cessors have an equally sized time wheel. The connections between the tiles are
assigned a latency which is small compared to the execution time of the actors.
This is realistic as the latency of an interconnect in an MP-SoC is typically much
smaller than the execution time of the executed tasks.

Each set of graphs from our benchmark has been tested with six different
settings for the tile-cost function (see first column Table 6.4). For a given tile-
cost function, platform graph, and sequence of resource-aware graphs, resources
are allocated to resource-aware graphs till no valid resource allocation is found
for a graph. This gives a conservative estimate on the number of applications for
which resources can be allocated on the platform. A design-time pre-processing
step that orders the applications to optimize the order in which they are handled, a
(run-time) mechanism that rejects an application and continues with the next one
or another implementation version of the rejected application, and/or a platform
dimensioning step may improve the results.

6.8.2 Experiments on the benchmark

Table 6.4 shows the number of resource-aware graphs which could be bound for
each tile-cost function and set of graphs from the benchmark. It averages over the
three sequences of graphs contained in each set and the three platform graphs used
in the experiments. The average run-time of the strategy for a single resource-
aware graph on a P4 at 3.4GHz is 5 seconds. On average, each run of the algorithm
invokes 16.1 times the throughput computation technique described in Section 6.6
which would make a trajectory based on a conversion to HSDFG very expensive.
The result of the set with computation intensive tasks (set 1) shows that it is
important to consider not only the processing (1st tile-cost function), but also

6. RESOURCE ALLOCATION 85

the communication (3rd tile-cost function). The reason for this is that when the
processing load is balanced, many dependency edges are bound to a connection,
requiring synchronization between tiles. As a result, larger time slices need to be
allocated on the tiles to meet the throughput constraint than when more actors
of a single resource-aware graph are bound to the same tile. The latter effect is
achieved by the 3rd tile-cost function. In-line with its objective, the 2nd tile-cost
function, which considers the memory resources, performs well on the memory
constrained graphs (set 2). As expected, the 3rd tile-cost function, which consid-
ers the connection and bandwidth resources, performs best on the communication
intensive graphs (set 3). The 4th tile-cost function, which tries to minimize the
interconnect latency, performs worst on all sets. It tries to bind as many actors
as possible to the same tile, given the memory, connection and bandwidth con-
straints. However, the time slice allocation step quickly fails to find large enough
time slices to meet the throughput constraint. As no iteration is performed be-
tween the steps of the resource allocation, the strategy fails to find a valid resource
allocation. The results show further that the 5th tile-cost function, which consid-
ers all resources, gives an average result for all sets. This is to be expected as it
balances all resources and as such does not give priority to the most constrained
resource in any of the sets. The results show that it is important to minimize
the number of connections in order to limit the synchronization overhead. They
also show that balancing the memory usage is an important secondary objective
as the 2nd tile-cost function gives good results for most sets. Based on these ob-
servations, a 6th tile-cost function (0, 1, 4, 0) was devised. This tile-cost function
emphasizes minimization of the number of connections while balancing memory
usage. Using this cost function, the largest number of application graphs is al-
located onto the architecture for the set with mixed resource requirements (set
4). This shows that it is possible to guide the resource allocation through the
tile-cost function. The number of mapped applications is however close to the
number of applications mapped with the 3th tile-cost function. This confirms
that the most important objective is the minimization of the number of connec-
tions. Connections have a large impact on the memory requirements (storage
space must be reserved in two tiles) and on the time slice allocation (large enough
slices are needed to compensate for the worst-case synchronization time when
communicating between tiles).

The objective of the resource allocation strategy is to perform resource allo-
cation for as many graphs as possible while keeping the total amount of resources
used as low as possible. Table 6.5 shows the resource usage after resource al-
location for the graphs from the 4th set. For comparison, the resource usage
of each resource is normalized with respect to the largest usage of this resource
when using any of the 6 tile-cost functions. The results show that the 3rd tile-cost
function achieves a good result by allocating the largest number of resource-aware
graphs (see Table 6.4) to the smallest amount of resources. It shows also that the
6th tile-cost function effectively uses the available resources. These results con-
firm that communication has a major impact on resource usage (or reservations).

86 6.8. EXPERIMENTAL EVALUATION

Table 6.5: Resource efficiency for set 4.
cost function timewheel memory connections input bw output bw

1: 0.46 0.78 0.82 0.81 1.00
2: 0.93 0.96 1.00 1.00 1.00
3: 0.91 0.88 0.67 0.67 0.63
4: 0.08 0.50 0.30 0.30 0.29
5: 0.97 0.89 0.94 0.94 0.93
6: 1.00 1.00 0.96 0.96 0.94

This is as expected because no synchronization is assumed between time wheels,
meaning that communication has a large impact on the guaranteed throughput
that can be obtained under worst-case synchronization conditions. Communica-
tion needs to be balanced by allocation of large time slices on the communicating
processors. The table also shows that for all tile-cost functions, except the 4th,
the resource occupancy of the various resources is similar, indicating that all these
tile-cost functions give a balanced resource utilization. It also shows that focusing
only on minimization of the interconnect latency results in a very poor resource
utilization.

When doing resource allocation using the 6th tile-cost function on the graphs
from the 4th set of the benchmark, on average 67% of the resources in the plat-
form graphs are used. This result is reasonable because it is achieved without any
optimizations. Resource utilization can be increased when doing system dimen-
sioning, re-ordering applications before allocation and/or applying mechanisms to
transform applications or to continue allocating applications after one application
fails to be bound. If, for example, the mapped applications have a mugh higher
processing/memory requirement ratio then the ratio present in the platform, a
high resource utilization is not possible. Note that the resource utilization can,
for example be increased by redimensioning the platform.

6.8.3 Experiments on a multimedia system

Besides the synthetic graphs, a multimedia system consisting of three H.263 de-
coders (each 4 actors) and an MP3 decoder (13 actors) is used to evaluate the
resource allocation strategy. The four resource-aware graphs are bound and sched-
uled on a platform with 2 generic processors and 3 accelerators. The used tile-cost
function (2, 0, 1, 0) focuses on balancing the processing load and it tries to limit
the communication. The memory usage is ignored as the total amount of memory
needed in every potential bindings is similar and sufficient memory resources are
available. The strategy finds a resource allocation with a balanced resource uti-
lization. The run-time of the strategy is 8 seconds of which approximately 87%
is spent on the time slice allocation. The time slice allocation step performs 85
times a throughput computation in order to minimize the slices used by the appli-

6. RESOURCE ALLOCATION 87

cations. Resource allocation techniques that convert the SDFG to an HSDFG and
compute throughput on the HSDFG would take several hours when performing a
similar amount of throughput checks. (Recall that one throughput computation
for the H.263 decoder takes in that case 21 minutes.) This experiment shows that
the resource allocation strategy can handle SDFGs whose corresponding HSDFGs
are large (14275 actors) within a limited run-time. It also shows that through a
combination of modeling resource allocation decisions in the SDFG (as proposed
e.g. in [13, 24]) and by constraining the execution of the graph it becomes feasible
to analyze the throughput of realistic applications when bound to a heterogeneous
MP-SoC.

6.9 Summary

This chapter presents the first resource allocation strategy that can bind multi-
ple SDFGs to a heterogeneous multi-processor system while giving throughput
guarantees to each individual application, also in a context of resource sharing.
The technique can deal with multi-rate and cyclic dependencies between actors
without converting it to a homogeneous SDFG. The strategy uses generic cost-
functions to steer the binding of the application to the architecture and incorpo-
rates an efficient technique to compute the throughput of a bound and scheduled
SDFG. The experiments show that this enables a balanced resource allocation of
time-constrained applications bound to a multi-processor system-on-chip, which
makes the resource allocation technique a versatile tool in any SDFG mapping
flow aiming to provide throughput guarantees.

The technique presented in this chapter assumes that buffering requirements
between actors are given, and that the interconnect is abstracted into point-to-
point connections with given latency guarantees. Buffer sizing under throughput
constraints and a NoC scheduling technique that provides latency guarantees are
considered in the next two chapters.

88 6.9. SUMMARY

Chapter 7

Throughput-Buffering Trade-Off

Exploration

7.1 Overview

The actors in an SDFG communicate tokens with each other. Storage space,
buffers, must be allocated for these tokens. At design time, the allocation (size)
of this storage space must be determined. The predictable design flow, introduced
in Section 1.4, computes the storage space allocations for the edges of an SDFG
in its first phase, the memory dimensioning phase. The objective is to minimize
the storage space allocated for the graph as the available storage space in an
embedded system is usually very limited. Minimizing storage has the additional
advantage that it saves energy.

Consider the timed SDFG shown in Figure 7.1. This figure shows the same
graph as earlier introduced in Chapter 4. Storage space must be allocated for the
dependency edges d1 and d2. The self-loops model absence of auto-concurrency
and will not require storage space in a real implementation and can thus be
ignored. The amount of storage space that is allocated to the edges influences the
throughput that the graph can achieve. Figure 7.2 shows the complete trade-off
space between allocated storage space and the achieved throughput for the SDFG.
The points in Figure 7.2 represent the smallest distributions of storage space over
the dependency edges that achieve a certain throughput. These points provide
optimal trade-offs (Pareto points) between the throughput and buffer size of the
SDFG.

Traditionally, research has been done on finding the smallest amount of storage
space needed to execute an SDFG on a single processor. The left-most point of the
trade-off space gives the minimal storage requirements for this type of execution.
Also techniques have been studied to find the smallest amount of storage space
needed to execute an SDFG while it realizes its maximal throughput. With this

89

90 7.2. RELATED WORK

1 2d23d1
a3,2a2,2a1,1

2

1 1

1

1 1

1

1 1

1

Figure 7.1: Example SDFG.

storage space allocation, the SDFG realizes the same throughput as if the graph
is executed without any bounds on its storage space. The right-most point of
the trade-off space gives the minimal storage space requirements to execute the
SDFG with its maximal throughput.

For multimedia applications, it is interesting to find the complete trade-off
space between the buffer requirements and the throughput of an SDFG. This
allows a designer or run-time QoS manager to trade-off resource requirements
(storage space) with quality (throughput).

This chapter presents a technique to find all trade-off points between the
throughput and buffer size of an SDFG. The experimental evaluation shows that
the technique completes on real applications within milliseconds or seconds, ex-
cept for one case. For an H.263 decoder with 3255 throughput-buffering Pareto
points, the technique takes 53 minutes. To improve scalability, an approximation
technique is presented that can be used to explore the design space while trading
off run-time of the algorithm with quality of the end result, in terms of buffer size
overestimation. An analytical bound on the overestimation of the heuristic is also
provided. The results show that the approximation heuristic scales well. When
applied to the H.263 decoder, it approximates the throughput-buffering trade-off
space within a few milliseconds. The minimal buffer size needed for maximal
throughput is then approximated with less than 0.2% overestimation.

In line with earlier work on buffer sizing for SDFGs, the technique considers
only constraints which come from the dependencies between the actor firings.
Other constraints, such as resource sharing between actors, are not taken into
account. In Section 7.8, it is explained how the technique can be extended to take
resource constraints into account.

7.2 Related Work

NoC-based MP-SoCs use buffers to decouple communication and computation
elements in the architecture (see Section 3.2). Minimization of the buffer re-
quirements is important as buffers have a large influence on the area and power
consumption of a NoC [28]. Techniques to minimize buffer sizes in a NoC have
been studied before. In [28], a buffer sizing algorithm is presented that is based
on network calculus. An analytical method for sizing buffers is presented in [40].
This method assumes that an application has a periodic behavior with some jit-
ter. An approach to minimize buffers using queuing theory is presented in [66]. In

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 91

5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

th
ro

ug
hp

ut
 [i

te
ra

tio
ns

/ti
m

e−
un

it]

storage distribution size [tokens]

〈 4,2 〉

〈 5,3 〉
〈 6,2 〉

〈 6,3 〉

〈 7,3 〉

Figure 7.2: Pareto space for SDFG shown in Figure 7.1.

this thesis it is assumed that applications are modeled with an SDFG. The SDF
MoC is different from the before mentioned MoCs. Therefore, the solution to
the buffer minimization problem is also different. This chapter studies the buffer
sizing problem for the SDF MoC.

Minimization of buffer requirements in SDFGs has been studied before, see
for example [4, 23, 21, 44, 54, 67, 101, 104, 109]. The proposed solutions tar-
get mainly single-processor systems. Modern media applications, however, often
target multi-processor systems. Furthermore, they have timing constraints ex-
pressed as latency or throughput constraints. Only looking for the minimal buffer
size which gives a deadlock-free schedule as done in [4, 23, 21, 44, 101, 109]
may result in an implementation that cannot be executed within these timing
constraints. It is necessary to take the timing constraints into account while min-
imizing the buffers. Several approaches have been proposed for minimizing buffer
requirements under a throughput constraint. In [54], a technique based on lin-
ear programming is proposed to calculate a schedule that realizes the maximal
throughput while it tries to minimize buffer sizes. Hwang et al. propose a heuris-
tic that can take resource constraints into account [67]. This method is targeted
towards a-cyclic graphs and it always maximizes throughput rather than using a
throughput constraint. Thus, it could lead to additional resource requirements.
In [104], buffer minimization for maximal throughput of a subclass of SDFGs (ho-
mogeneous SDFGs) is studied. The proposed algorithm is based on integer linear
programming. In general, the buffer sizes obtained with this approach cannot
be translated to exact minimal buffer sizes for arbitrary SDFGs. A technique to
schedule an SDFG under a given throughput constraint is presented in [150, 151].
The scheduling algorithm tries to minimize the required storage space. The tech-
nique does not always find the minimal storage space for the given throughput

92 7.3. STORAGE REQUIREMENTS

constraint. Also no results are presented on the over-dimensioning of the storage
requirements for realistic applications. This chapter presents, in contrast to exist-
ing work, an exact technique to determine all trade-offs (Pareto points) between
the throughput and buffer size for an SDFG, as well as an approximation tech-
nique to approximate this space, while providing guarantees on throughput and
worst-case buffer size overestimation. An interesting observation is that both the
exact and the approximation technique can also be applied after the search space
has been pruned by a heuristic, which may in general lead to reduced buffering re-
quirements for the given throughput. For the mentioned heuristic of [151], one of
the experiments shows that the technique presented in this chapter can compute
the exact result within four second when starting from the result of the heuristic.
This makes the work presented in this chapter complementary to fast heuristics.

In [23], it is shown that the buffer minimization problem of SDFGs is NP-
complete. Both the exact and the approximation technique are based on state-
space exploration. Explicit state-space exploration techniques are frequently ap-
plied successfully to solve NP-complete (and sometimes worse) scheduling prob-
lems [5, 7, 127]. For buffer minimization, [44] proposed a state-space explo-
ration technique to find minimal buffer requirements to execute an SDFG with
a deadlock-free schedule. The results presented in [44] indicate that it might
be feasible to apply a state-space exploration based technique to the problem of
storage-throughput trade-off analysis. However, the technique presented in this
chapter is in general not exhaustive. It prunes the search space in an efficient
way, as confirmed by the experiments, without loosing any Pareto points.

7.3 Storage Requirements

Dependency edges in an SDFG are assumed to have unbounded storage space.
However, in practice storage space must be bounded. Bounded storage space for
edges can be realized in different ways. One option is to use a memory that is
shared between all edges. The required storage space for the execution of an
SDFG is then determined by the maximum number of tokens stored at the same
time during the execution of the graph. Murthy et al. use this assumption to
schedule SDFGs with minimal storage space [101]. This is a logical choice for
single-processor systems in which actors can always share the memory space. A
second option is to use a separate memory for each edge, so empty space in one
cannot be used for another. This assumption is logical in the context of multi-
processor systems, as memories are not always shared between all processors. The
edge capacity must be determined per edge over the entire schedule, and the total
amount of memory required is obtained by adding the edge capacities up. Mini-
mization of the memory space with this variant is considered in [4, 21, 44]. Hybrid
forms of both options can be used [44]. In this thesis, it is assumed that edges
cannot share memory space. This gives a conservative bound on the required
memory space when the SDFG is implemented using shared memory. In that

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 93

1 2d23d1
a3,2a2,2a1,1

2

1
2

2

d4

2
4

3

d3

1 1

1

1 1

1

1 1

1

Figure 7.3: SDFG with storage distribution 〈4, 2〉.

case, the SDFG may require less memory, but it will never require more memory
than determined by the method presented in this chapter.

The maximum number of tokens which can be stored in an edge (edge ca-
pacity) is given by a storage distribution.

Definition 22. (Storage distribution) A storage distribution of an SDFG
(A, D) is an edge quantity δ, as defined in Definition 5, that associates with every
d ∈ D, the capacity of the edge.

The storage space required for a storage distribution is called the distribution
size. Note that if tokens on different edges represent different amounts of data,
this can easily be accounted for in the definition of distribution size. In the
remainder, it is assumed that all tokens are of equal size.

Definition 23. (Distribution size) The size of a storage distribution δ of an
SDFG (A, D) is given by: |δ| =

∑

d∈D δ(d).

A possible storage distribution for the SDFG shown in Figure 7.1 would be
δ(d1) = 4 and δ(d2) = 2, denoted as 〈d1, d2〉 7→ 〈4, 2〉. It has a distribution size of
6 tokens.

In an SDFG state, an edge (p, q) from actor a1 to actor a2 does not contain
an arbitrary number of tokens. Assume that the edge contains in the initial state
of the execution n tokens. The number of tokens in the edge after x firings of a1

and y firings of a2 is given by the following equation:

n + x · Rate(p)− y ·Rate(q)

This can be re-written to:
⌊

n + x ·Rate(p)− y · Rate(q)

k

⌋

· k + n mod k,

with k = gcd(Rate(p), Rate(q)). The equation shows that the number of tokens
in an edge, and hence the storage space which can be used usefully, depends on
the gcd of the rate at which the actors a1 and a2 produce and consume tokens.

94 7.4. STORAGE DEPENDENCIES

This gcd is called the step size of the edge.

The bound on the storage space of each edge can be modeled in an SDFG
(A, D) by adding for edge (p, q) ∈ D from an actor a1 ∈ A to an actor a2 ∈ A
an edge (qδ, pδ) from a2 to a1 with Rate(p) = Rate(pδ) and Rate(q) = Rate(qδ).
This modeling construct was already used in Section 6.6.1. The number of ini-
tial tokens on the edge (qδ, pδ) determines the storage space of the edge (p, q).
Subscript ‘δ’ denotes elements used to model storage space. The SDFG which
models the storage distribution δ in an SDFG (A, D) is denoted (Aδ, Dδ). Figure
7.3 shows the timed SDFG which encodes the storage distribution 〈4, 2〉 for the
timed SDFG shown in Figure 7.1. Note that no storage space is allocated for the
self-loops on the actors. These self-loops are introduced to model absence of auto-
concurrency and will not require storage space in a real implementation and can
thus be ignored. In fact, the technique presented in this chapter allows in general
to specify which edges should be considered buffers, and which edges model other
dependencies. The self-loop dependencies added to limit auto-concurrency are
just one example of this flexibility.

At the start of a firing, an actor consumes its input tokens. This includes
the tokens it consumes from the edges which model the storage space of edges
to which the actor will write. The consumption of these tokens can be seen as
allocation of storage space for writing the results of the computation. At the end
of the firing, the actor produces its output tokens. This includes the production
of tokens on edges which model the storage space of edges from which the actor
has read tokens at the beginning of the firing. The production of these tokens can
be seen as the release of the space of the input tokens. In other words, the model
assumes that space to produce output tokens is available when an actor starts
firing and the space used for input tokens is released at the end of the firing. The
chosen abstraction is conservative with respect to storage and throughput if in a
real implementation space is claimed later, or released earlier or data tokens are
written earlier.

7.4 Storage Dependencies

The maximal throughput of an SDFG is limited by the availability of tokens
on edges. In the self-timed execution of the SDFG an actor may, for example,
be waiting for tokens on an edge dδ (modeling the storage space of edge d).
Adding tokens to dδ (i.e. increasing the storage space of d) might enable the actor
to fire earlier and possibly increase the maximal throughput of the SDFG. The
dependency of an actor firing on tokens produced by the end of another firing is
called a causal dependency.

Definition 24. (Causal Dependency) A firing of an actor ai causally depends
on the firing of an actor aj via an edge d if and only if the firing of ai consumes a

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 95

(a2, start) clkclk(a1, start) clk clk(a1, start)

clk

(a3, start)clk(a1, start)clk

(a2, start)

(a3, end)

clk

clk(a1, start)
(a1, end) (a1, end) (a2, end) (a1, end)

(a1, end)

(a1, end) (a1, start)

(a2, end)

(a2, start)

((0, 0, 4, 2), ({}, {}, {}))

((0, 0, 2, 2), ({1}, {}, {}))

((0, 0, 2, 2), ({0}, {}, {}))

state vector (δ, υ) is encoded via pairs where δ corresponds to edges d1, d2, d3, d4

resp. and the tuple υ defines the multiset for a1, a2, a3 resp.; for readability the
self-edges are omitted from the state vector.

((1, 0, 0, 1), ({}, {2}, {}))

((2, 0, 0, 2), ({1}, {}, {}))

Figure 7.4: State-space of the example SDFG.

token from d produced by the firing of aj on d without a clock transition between
the start of the firing of ai and the end of the firing of aj.

Recall from Section 4.3 that the self-timed execution of an SDFG is periodic
(after some initial phase). If a causal dependency appears in the periodic phase of
the execution, the actor will repeatedly (infinitely often) not be able to fire earlier
which on its turn may influence the throughput. Throughput may increase if these
dependencies are resolved. All causal dependencies between the actor firings of
the periodic phase can be captured in a causal dependency graph. It is sufficient
if only the dependencies between actor firings in one period of the periodic phase
are considered as the dependencies are equal in all periods.

Definition 25. (Dependency Graph) Given a timed SDFG (Aδ, Dδ, Υ) in-
corporating a storage distribution δ and a sequence of states and transitions p
corresponding to one period of the self-timed execution of (Aδ, Dδ, Υ) (starting at
some arbitrary state in the period). The causal dependency graph (N, E) contains
a node ni,k for the k-th firing in p of actor ai ∈ Aδ. The set of dependency edges
E contains an edge if and only if there exists a causal dependency between the
corresponding firings.

The state-space of the self-timed execution of the running example is shown in
Figure 7.4. The corresponding dependency graph is shown in Figure 7.5, assuming
the gray state as the start state.

The throughput of an SDFG is limited by an infinite sequence of causal de-
pendencies between the actor firings, captured by a causal dependency cycle in
the dependency graph.

Definition 26. (Causal Dependency Cycle) A causal dependency cycle is a
simple cycle in the causal dependency graph.

96 7.4. STORAGE DEPENDENCIES

n3,1

n2,1
n1,3 n2,2

n1,2 n1,1

Figure 7.5: Dependency graph of the example SDFG.

A causal dependency cycle is a sequence of actor firings that causally depend
on each other, starting and ending with the same actor firing. Causal dependencies
caused by edges which model storage space are of interest when looking at the
trade-off between storage space and throughput. Adding more tokens to these
edges (i.e. increasing the storage space of the corresponding edge) may resolve
causal dependency cycles and increase throughput.

Definition 27. (Storage Dependency) Given a timed SDFG (Aδ, Dδ, Υ) in-
corporating a storage distribution δ and its dependency graph ∆. An edge d ∈ Dδ

has a storage dependency in ∆ if and only if there exists a causal dependency via
edge dδ in some dependency cycle of ∆.

Consider again the dependency graph shown in Figure 7.5. Every edge in the
graph belongs to a causal dependency cycle. A firing of actor a1 causally depends
on a firing of a2. This causal dependency goes via the dependency edge d3 in
the SDFG (see Figure 7.3). This dependency edge models the storage space of
dependency edge d1. So, edge d1 has a storage dependency in the dependency
graph shown in Figure 7.5. Also dependency edge d2 has a storage dependency
as a firing of actor a2 causally depends on a firing of a3.

Storage dependencies can be used to determine which storage capacities can
be enlarged to increase the throughput of the graph. However, two issues remain
to be solved. First, if the graph deadlocks (because of lack of storage space or
an inherent deadlock due to the dependencies), the dependency graph is empty
and provides no information about which edge capacities to enlarge. Second,
having a node for every firing of every actor, the dependency graph may become
prohibitively large (a multiple of the sum of entries in the repetition vector). The
latter issue is solved first and subsequently the deadlocking case is considered.

Cycle detection in the dependency graph can become very time consuming.
To solve this, an abstract version of the dependency graph can be constructed in
which the number of nodes is equal to the number of actors in the SDFG. There-
fore, the abstract dependency graph allows faster cycle detection as compared to
the dependency graph.

Definition 28. (Abstract dependency graph) Given a timed SDFG (Aδ, Dδ,
Υ) incorporating a storage distribution δ and its dependency graph (N, E). The

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 97

n1 n2 n3

Figure 7.6: Abstract dependency graph of the example SDFG.

abstract dependency graph (Na, Ea) contains an abstract dependency node ni ∈ Na

for each actor ai ∈ Aδ. For each dependency edge (ai,k, aj,l) ∈ E, there is an edge
(ni, nj) in Ea.

The abstract dependency graph of the running example is shown in Figure 7.6.
It contains fewer nodes than the dependency graph (see Figure 7.5). Compared to
the SDFG of the example (see Figure 7.3), the abstract dependency graph contains
an equal number of nodes but fewer edges. In practice, the abstract dependency
graph can be constructed by traversing through the cycle in the state-space of
the self-timed execution once. Initially, an abstract dependency graph must be
constructed which contains a node for every actor in the SDFG and no edges.
When during the traversal of the cycle in the state-space a causal dependency
is found, a corresponding edge is added to the abstract dependency graph. An
important property of the abstract dependency graph is that it includes at least
all storage dependencies present in the full dependency graph. (The definition of
a storage dependency carries over to the abstract dependency graph.)

Theorem 3. (Preservation of storage dependencies) The set of storage
dependencies of an abstract dependency graph contains all storage dependencies
of the corresponding dependency graph.

Proof. Given a dependency graph ∆ = (N, E) and its corresponding abstract
dependency graph ∆a = (Na, Ea). Any dependency edge (ai,k, aj,l) ∈ E from a
node which corresponds to the k-th firing of actor ai to the l-th firing of actor
aj maps in ∆a to an edge from the abstract dependency node of actor ai to
the abstract dependency node of actor aj . Any cycle of dependencies in ∆ is a
sequence of dependency edges which in the abstract dependency graph (using the
mapping of dependency nodes in ∆ to nodes in ∆a) is also a sequence starting
and ending in one node, i.e. it is also a cycle in ∆a. Hence, the edge is also on
some cycle in ∆a and thus also on some simple cycle.

In the case that the SDFG deadlocks, the regular dependency graph is empty
by definition. To find out which edge capacities need to be increased, if any, the
following alternative definitions are used in that case.

Definition 29. (Causal Dependency in Deadlock) In a deadlocked state,
an actor ai causally depends on an actor aj via an edge d from aj to ai if and
only if a firing of ai is prohibited by lack of tokens on edge d.

98 7.5. DESIGN-SPACE EXPLORATION

Based on this definition, a causal dependency graph for the deadlock case
can be defined. Via Definition 26 and Definition 27, this defines the storage
dependencies for the deadlock case.

Definition 30. (Causal Dependency Graph in Deadlock) Given a timed
SDFG (Aδ, Dδ, Υ) incorporating a storage distribution δ, with throughput zero
(i.e., self-timed execution (eventually) deadlocks). The causal dependency graph
(D, E) contains a node a for every actor a ∈ Aδ. The set of dependency edges
E contains an edge if and only if there exists a causal dependency between the
corresponding actors in the deadlock state.

In the remainder, (causal) dependency graph refers to either the abstract
causal dependency graph in case of SDFGs with positive throughput and the
causal dependency graph in deadlock for the case when the graph deadlocks.

7.5 Design-Space Exploration

Section 7.3 explained how a storage distribution δ can be modeled into an SDFG
G. The throughput of G under the storage distribution δ can be computed with
the technique presented in Section 4.4. In this way, the throughput for a given
storage distribution can be found. Using this approach, it is possible to find the
trade-offs between the distribution size and the throughput, i.e., the Pareto space.
Figure 7.2 shows this Pareto space for the example SDFG. It shows that storage
distribution 〈4, 2〉 is the smallest distribution with a throughput for actor a3 larger
than zero. The throughput can never go above 0.25. This can be seen as follows.
The repetition vector for the graph is (3, 2, 1). Thus, actor a2 always has to fire
twice per iteration of the SDFG, which requires four time steps. Therefore, the
throughput of a2 is limited to 0.5, and the normalized graph throughput to 0.25.
It is not difficult to check that other actors are constraining the throughput less
than a2. With a distribution size of 10 tokens (or more), the maximal throughput
can be achieved.

Definition 31. (Minimal Storage Distribution) A storage distribution δ
with throughput Th is minimal if and only if for any other storage distribution δ′

with throughput Th ′, |δ′| < |δ| implies Th ′ < Th and |δ′| = |δ| implies Th ′ ≤ Th.

Distributions 〈0, 0〉, 〈4, 2〉, 〈5, 3〉, 〈6, 2〉, 〈6, 3〉 and 〈7, 3〉 in the example are
minimal, but distribution 〈5, 2〉 is not.

Algorithm 1 is used to find all minimal storage distributions for an SDFG
G with maximal throughput Thmax. It uses a set U which contains all storage
distributions which it may explore. Initially, the set U contains only the stor-
age distribution 〈0, . . . , 0〉. The algorithm explores all storage distributions in U
with a size sz before it explores a storage distribution with size sz + 1. When
a storage distribution δ with size sz exists in the set U , it is removed from U .
Next, the algorithm computes the storage dependency graph ∆ and throughput

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 99

Algorithm 1 Find all minimal storage distributions

Input: A timed SDFG G with maximal throughput Thmax

Result: A set P of pairs (storage distribution, throughput) containing precisely all
minimal storage distributions

1: procedure findMinStorageDist(G,Thmax)
2: Let U be the set of unexplored storage distributions
3: U ← [〈0, ..., 0〉]
4: P ← ∅
5: sz ← 0
6: while no (δ,Th) ∈ P with Th = Thmax do
7: while a storage distribution δ with size sz in U do
8: U ← U\δ
9: Create SDFG Gδ which models δ in G

10: Compute throughput Th and dependency graph ∆ of Gδ

11: P ← P ∪ {(δ,Th)}
12: Let S be the set of storage dependencies in ∆
13: for each edge d in S do
14: δn ← δ
15: δn(d)← δ(d) + step(d)
16: U ← U ∪ {δn}
17: end for
18: end while
19: sz ← sz + 1
20: end while
21: Remove non-minimal storage distributions from P
22: end procedure

100 7.5. DESIGN-SPACE EXPLORATION

Th for this distribution. The distribution-throughput pairs are kept in a set P .
The algorithm continues by constructing a new storage distribution δn for each
edge d which has a storage dependency in ∆. In storage distributions δn, the
storage space of d is increased by the step size of the edge, as explained in Sec-
tion 7.3. All other dependency edges have the same storage space in δn as in δ.
The storage distribution δn is then added to the set U . Because the algorithm
explores storage distributions with increasing size and because the step size is
always a positive number, it is guaranteed that all storage distributions with size
sz which will be explored are added to U before the algorithm starts exploring
distributions of this size. The outermost while loop of the algorithm terminates
when some storage distribution realizing the maximal throughput has been found.
Due to the loop nesting, no other storage distributions of equal size remain to be
explored. Finally, all non-minimal storage distributions are removed from P . Ob-
serve that this can be done via a single traversal through all the explored storage
distributions stored in P by keeping this set sorted according to throughput. In
an efficient implementation, also set U is kept sorted according to distribution size.

A few lemmas are needed to prove that Algorithm 1 finds all minimal distri-
butions for an SDFG.

Lemma 1. Given a storage distribution δi with throughput Thi. For any storage
distribution δj � δi with throughput Thj < Thi and dependency graph ∆, there is
a dependency edge d with a storage dependency in ∆ such that δi(d) > δj(d).

Proof. If δj is such that the graph deadlocks, the result is straightforward to
prove using the dependency graph for the deadlock case. The case that Thj is
positive is discussed in more detail below.

In a self-timed execution, each actor firing has a causal dependency with at
least one earlier actor firing (unless it is one of the first firings consuming the
initial tokens). This gives chains of causal dependencies between all actor firings
that occur during the execution. These chains of causal dependencies start with
the initial firings of the graph, and either end at some point, or they are of
infinite length. In a self-timed execution however, there must be at least one such
chain of infinite length. (Otherwise, the graph would have delayed some firing
unnecessarily.) Such infinite chains determine the throughput.

There is a finite number of states in the periodic phase and states in this
phase are revisited each period. Hence, also the same causal dependencies are
encountered again and again. In other words, each infinite chain of causal depen-
dencies implies a cycle in the dependency graph and conversely, every cycle in the
dependency graph corresponds to an infinite chain of causal dependencies in the
execution.

To increase the throughput, each of the causal dependency cycles must be
broken. Since δi has a higher throughput than δj , it is known that every causal
dependency cycle of δj includes a storage dependency in ∆j (because otherwise
Thj would be maximal, contradicting Thj < Thi). Since decreasing the capacity

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 101

δ0

δj

δk

δi
P

Figure 7.7: Distributions reached by Algorithm 1.

of edges can never increase throughput, to achieve throughput Thi > Thj , at least
one storage dependency of each causal dependency cycle in ∆j has been resolved
by increasing the capacity of the corresponding edge. Hence, there must be some
edge d with a storage dependency in ∆j such that δi(d) > δj(d).

Lemma 2. Given a storage distribution δi with throughput Th i and a storage
distribution δj ∈ P such that δj � δi with throughput Thj < Thi. Then Algorithm
1, from distribution δj, explores a storage distribution δk for which δj � δk � δi,
|δj | < |δk| and Thj ≤ Thk ≤ Thi.

Proof. Let Sj be the set of storage dependencies of δj . From Lemma 1, it follows
that there exists a dependency edge d ∈ Sj for which δj(d) < δi(d). So, d can
be enlarged with at least one step before the storage space becomes equal to the
storage space assigned to it in δi. Because d ∈ Sj , Algorithm 1 does increase
the storage space of d, which results in a new storage distribution δk. As (only)
the storage space of d is increased, but not beyond its capacity in δi, it must
hold that δj � δk � δi and |δj | < |δk|. From δj � δk � δi, it also follows that
Thj ≤ Thk ≤ Thi.

Theorem 4. (Correctness of Algorithm 1) The set of all storage distribu-
tions contained in P which is constructed using Algorithm 1 contains precisely all
minimal storage distributions.

The proof of Theorem 4, the correctness of Algorithm 1, is illustrated by Figure
7.7.

Proof. For throughput 0, δ0 = 〈0, . . . , 0〉 is the (only) minimal storage dis-
tribution. Therefore, let δi be some minimal storage distribution with positive
throughput Thi. It must be shown that δi ∈ P , i.e., that the algorithm will
explore distribution δi. Initially, Algorithm 1 starts from the storage distribu-
tion δ0 = 〈0, . . . , 0〉 which satisfies the conditions of Lemma 2. Repeatedly using
Lemma 2, it can be shown that the algorithm explores a series δk of storage dis-
tributions with δ0 � δ1 � δ2 � . . . � δm � δi and for each k, |δk| < |δk+1|. From

102 7.6. EXPERIMENTAL EVALUATION

δk � δi, it follows that |δk| ≤ |δi| and hence, after a finite number of m steps
it must be that Lemma 2 no longer applies. Thus, it follows that Thm = Thi

and, because δi is minimal, that |δm| = |δi|. For a distribution δm � δi such
that |δm| = |δi|, it must be that δm = δi, which shows that δi is explored by the
algorithm.

So far, it is shown that set P contains all minimal storage distributions. How-
ever, it may also contain non-minimal distributions. The last line of the algorithm
removes non-minimal storage distributions, completing the proof.

From the literature on SDFGs, lower bounds on the storage space required
for each edge to avoid deadlock (i.e., throughput equal to zero) are known [4,
101]. These bounds can be used to speed up the initial phase of Algorithm
1. Distribution 〈0, . . . , 0〉 with all zero entries is by definition the only minimal
storage distribution realizing zero throughput. Thus, to find all Pareto points with
non-zero throughput, it is sufficient to start from the mentioned lower bounds.

An important and relevant question that remains is whether Algorithm 1 ter-
minates. It can be shown that when at least one actor has a bounded throughput,
then Algorithm 1 terminates. If all actors can increase their firing rate indefinitely,
then there are infinitely many minimal storage distributions, and the algorithm
cannot terminate.

Theorem 5. (Termination) For any connected SDFG G that contains an actor
with bounded throughput, Algorithm 1 terminates.

Proof. Given a connected SDFG G, Thmax is equal to the minimum of the
throughput of all strongly connected components in G. As there is at least one
actor with bounded throughput, it must hold that Thmax <∞. The throughput
Thmax is achievable within finite memory. This implies that there exists some
storage distribution δmax of size N <∞ which reaches throughput Thmax.

Algorithm 1 explores the storage distributions with increasing size. There
are only a finite number of storage distributions of some size n and only a finite
number of different sizes are explored before the algorithm explores the storage
distributions with size N . This implies that only a finite number of different
storage distributions exist that have a size at most |δmax|. Within a finite number
of steps, all distributions with size up to N are explored and a storage distribution
with throughput Thmax is found, causing the algorithm to terminate.

7.6 Experimental Evaluation

Experiments have been performed to see how the approach performs in practice
on a number of real DSP and multimedia applications modeled as SDFGs. From
the DSP domain, the set contains a modem [21], a satellite receiver [121] and a
sample-rate converter [21]. From the multimedia domain, an H.263 decoder (see

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 103

Figure 1.5), an H.263 encoder [110], an MP3 decoder (see Figure 2.3(b)) and an
MP3 playback application [151]. The MP3 decoder graph models the parallelism
inside an MP3 decoder, while the MP3 playback application models the MP3
decoder as a single actor and adds to this actors which model a sample-rate
converter, an audio post processing filter and a digital-to-analog converter. The
test bench includes also the example SDFG shown in Figure 7.1 and the often
used bipartite SDFG from [21]. For each of the SDFGs, the complete design-space
was explored. This resulted in a Pareto space showing the trade-offs between the
throughput and distribution size for each graph.

The results of the experiments are summarized in Table 7.1. It shows the
number of actors in each graph and the number of edges for which the buffers are
being sized, the minimal distribution size for the smallest positive throughput,
the maximum throughput that can be achieved and the distribution size needed
to realize this throughput. They also show the number of Pareto points and the
number of minimal storage distributions that were found during the design-space
exploration. The results show that one Pareto point of the example graph contains
two different minimal storage distributions. In all other situations, each Pareto
point contains a single storage distribution.

An upper bound on the storage space required for each dependency edge to
achieve maximal throughput with finite edge capacities can be found [86]. This
upper bound and the lower bound found with the technique from [4], can be
used to compute the number of different storage distributions in the design-space
(see row ‘#Distr. in space’ of Table 7.1). The next row shows the number of
storage distributions explored by the algorithm (excluding the zero-size minimal
distribution, which is not actively explored, as explained in the previous section).
The results show that the algorithm explores only very few distributions from the
space. This shows that the algorithm successfully prunes the design-space.

The algorithm computes the throughput for each storage distribution it tries.
This is done via a self-timed execution of the graph. The row ‘Max. #states
visited’ shows the maximal number of different states that is visited during a
throughput computation. Only a selected number of states must be stored (see
Section 4.4) to compute the throughput of the graph. The number of states that
is stored is shown in the row ‘Max. #states stored’.

The experiments show that it is feasible to perform a design-space exploration
for reasonable application kernels. As all SDFGs, except the H.263 decoder, show
a run time in the order of seconds or even milliseconds to explore the complete
design space when the exploration is performed on a P4 at 3.4GHz. The run time
for the H.263 decoder is large due to the large number of Pareto points contained
in the space.

It is interesting to consider the MP3 playback model of [151] in a bit more
detail. In [151], a heuristic is presented that computes a storage-space distribu-
tion under a throughput constraint. The objective is to minimize the size of the
storage distribution. The reported results state that the heuristic can compute
within the order of 10−2s a storage distribution which is 10% larger than the

104 7.6. EXPERIMENTAL EVALUATION

Table 7.1: Experimental results.
Example Bipartite Sample Modem Satellite

Rate

#actors / #sized edges 3/2 4/4 6/5 16/19 22/26

Min. pos. throughput (s−1) 1/7 4·104 15·104 3·104 18·104

Distr. size 6 28 32 38 1542

Max. throughput (s−1) 1/4 6·104 17·104 6·104 23·104

Distr. size 10 35 34 40 1544

#Pareto points 4 9 4 4 3
#Min. distr. 5 9 4 4 3

#Distr. in space 27 1·108 9·1012 1·1010 2·1065

#Distr. checked 7 51 3 4 4

Max. #states visited 21 652 6·106 134 10377
Max. #states stored 2 20 5328 2 241

Exec. time 1ms 1ms 1ms 2ms 7ms

MP3 MP3 H.263 H.263
decoder playback decoder encoder

#actors / #sized edges 13/12 4/2 4/3 6/6

Min. pos. throughput (s−1) 7·103 4.2 50 54
Distr. size 12 1977 4753 299

Max. throughput (s−1) 8·103 8.3 100 244
Distr. size 16 2898 8006 397

#Pareto points 4 620 3255 20
#Min. distr. 4 620 3255 20

#Distr. in space 4096 91·106 3·1010 9.7·105

#Distr. checked 7 2152 292·103 99

Max. #states visited 33579 19855 8·106 605
Max. #states stored 212 2 1124 2

Exec. time 2ms 21s 53min 9ms

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 105

smallest storage distribution allowing maximal throughput. Using the algorithm
presented in this chapter, the optimal solution can be found in 21s (see Table
7.1). Depending on the context in which buffer sizing is applied, this may or may
not be acceptable. In general, however, the exponential worst-case complexity
of Algorithm 1 could potentially lead to prohibitively large run-times. In those
cases, the algorithm can be combined with any heuristic for buffer sizing. For
example, the heuristic from [151] can be used to compute a storage distribution
close to the optimum. A fraction of the storage space computed for each edge
by the heuristic can then be used as a starting distribution in (line 3 of) the
algorithm. In this way, the algorithm explores the trade-off space just below the
storage distribution computed by the heuristic for a smaller distribution that still
satisfies the throughput constraint. To test this approach, Algorithm 1 has been
ran on the MP3 playback SDFG with the initial storage distribution equal to a
fraction of the storage distribution requirements computed by the heuristic from
[151] for this SDFG. When 90% of the storage distribution sizes computed by
the heruristic are used as a starting point, the algorithm terminates immediately
without increasing the size of one of the edges. This indicates that 90% of the
storage space computed by the heuristic is already sufficient to achieve maximal
throughput. Potentially, the storage space can even be reduced further. Setting
the initial storage distribution equal to 80% of the storage distribution require-
ments computed by the heuristic, Algorithm 1 was able to find the optimal storage
distribution within 3.4s. This illustrates how the algorithm can be combined with
a heuristic, which will in general improve the results of the heuristic with little
effort.

7.7 Approximation of Buffer Sizes

7.7.1 A Generic Approximation Technique

The experimental results of the previous section show that the search space of dis-
tributions is pruned efficiently by looking for storage dependencies. Nevertheless,
the number of distributions that need to be explored may still be large, poten-
tially leading to long run-times of the algorithm. An approximation of the exact
result can be obtained by reducing the number of distributions that need to be
explored, for instance by changing the step size for increasing the edge capacities.
In Section 7.3, it is shown that for an edge d considering as sizes all multiples of
step(d) guarantees that all minimal distributions are found. In this section, ex-
ploration of only a set Kd of capacities for edge d is considered. For any capacity
k, ⌈k⌉Kd is used to denote the smallest capacity in Kd which is at least k. It is
required that sets Kd be such that such the capacity always exists (i.e., that edge
capacities can always be increased). Concrete examples of such sets, that are used
for the experimental evaluation later in this section, are sets Kn

d , for any number
n ∈ N, defined as {k ∈ N | k = n · step(d)}, i.e., only multiples of the step(d) are

106 7.7. APPROXIMATION OF BUFFER SIZES

considered for the given multiplication factor n.
Algorithm 1 is adapted as follows. Line 15 becomes:

δn(d)← ⌈δ(d) + 1⌉Kd .

That is, the next smallest capacity in the given set Kd is chosen. It can be
proved that the adapted algorithm finds all minimal storage distributions δ among
all distributions with edge capacities δ(d) ∈ Kd for all d ∈ D. This property is
proved using Lemmas 1 and 2, while restricting attention to distributions within
the limited set.

From the fact that the adapted algorithm finds all storage distributions that
are minimal in the reduced set, the following bound on the discrepancy of the
result from the optimal result can be derived.

Theorem 6. (Overestimation bound) For every minimal storage distribution
δ with throughput Th, found in the full search, there is a storage distribution δ′

with throughput Th ′ that is minimal in the reduced search space such that Th ′ ≥
Th and |δ′| ≤

∑

d∈D⌈δ(d)⌉Kd.

Proof. An increase in edge capacity cannot decrease the throughput. If all edge
capacities in δ are rounded up to ⌈δ(d)⌉Kd , a distribution with throughput Th ′ is
obtained that has at least throughput Th . If this distribution is minimal in the
reduced search space, the theorem is proved. If it is not minimal, there exists a
minimal one with the same throughput and smaller distribution size, or with a
higher throughput and the same size. In both cases, this distribution satisfies the
theorem.

Note that the adapted algorithm still has an exponential worst-case complex-
ity. However, it allows a trade-off between run-time and quality of the end result,
by appropriately choosing the Kd. One can choose, for example, the sets Kn

d

already mentioned above, possibly with different multiplication factors per edge.
Theorem 6 then gives a bound on the worst-case loss in quality (buffer-size over-
estimation). Consider a single edge d. Theorem 6 and the definition of Kn

d imply
that

δ′(d) ≤ ⌈δ(d)⌉K
n
d ≤ δ(d) + (n− 1)step(d).

It follows that the relative overestimation for d is bounded as follows:

δ′(d)− δ(d)

δ(d)
≤

(n− 1)step(d)

δ(d)
, (7.1)

which is the expected result that the overestimation per edge can be at most n−1
times the step size.

Figure 7.8 shows the worst-case overestimation for a single edge, for various
edge capacities, step sizes, and multiplication factors. The edge capacities and
step sizes are in line with those observed in the models of the benchmark. The

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 107

300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Edge capacity

W
or

st
−

ca
se

 o
ve

rs
tim

at
io

n
(%

)

n=2,step=1

n=4,step=1

n=4,step=2

n=8,step=2

n=4,step=5

Figure 7.8: Worst-case overestimation for various edge capacities, step sizes, and
multiplication factors.

relative worst-case overestimation is small for increasing edge size, which is when
the approximation algorithm is most useful, because only for large distribution
spaces the run-time of the exact technique may become problematic. Note that
the relative worst-case overestimation does not change when considering multiple
edges (assuming the same capacities, step sizes, and multiplication factors). The
likelihood that the worst case will occur in fact decreases with increasing numbers
of edges in the SDFG. Another way to limit the over-estimation is to search the
trade-off space with several multiplication factors per edge, as illustrated below.

It is also possible to try to bound the relative overestimation via an appropriate
choice of Kd, by choosing for Kd the set {⌈(1 + q)n⌉step(d) | n ∈ N}, for some
appropriately small q. Except for rounding effects, this choice for the Kd limits
the overestimation to q%.

7.7.2 Experimental Evaluation

The experimental results presented in Section 7.6 show that design-space explo-
ration of the H.263 decoder and the MP3 playback application take the most
time from all the tested models. For both applications, this is due to the large
number of Pareto points in the trade-off space. However, the throughput of most
of the Pareto points is close to each other. In practice, it is not interesting to find
all these points. The approximation technique presented in the previous subsec-
tion can be used to reduce the number of different storage distributions that is
explored.

Experiments have been performed with this approximation algorithm on the
H.263 decoder and MP3 playback application. For both applications, a uniform
multiplication factor has been used for the different edges. The step size in the
H.263 decoder was multiplied with a factor of 3, 9, and 27. For the MP3 playback
application, a multiplication factor of 3, 5, and 15 has been used. The results

108 7.7. APPROXIMATION OF BUFFER SIZES

Table 7.2: Results for the approximation technique.
H.263 decoder

exact n = 3 n = 9 n = 27

Min. pos. throughput (s−1) 50 50 50 50
Distr. size 4753 4753 4753 4753

Max. throughput (s−1) 100 100 100 100
Distr. size 8006 8006 8012 8021

#Pareto points 3255 1087 365 124
#Min. distr. 3255 1087 365 124

#Distr. checked 292·103 28720 3613 558

Max. overest. - 0.07% 0.24% 0.69%
Avg. overest. - 0.03% 0.10% 0.33%
Min.buf. / max.thr. overest. - 0% 0.07% 0.19%

Exec. time 53min 5min 36s 7ms

MP3 playback
exact n = 3 n = 5 n = 15

Min. pos. throughput (s−1) 4.2 4.2 4.2 4.2
Distr. size 1977 1977 1977 1977

Max. throughput (s−1) 8.3 8.3 8.3 8.3
Distr. size 2898 2994 2902 3867

#Pareto points 620 203 121 43
#Min. distr. 620 203 121 43

#Distr. checked 2152 376 160 55

Max. overest. - 6.11% 11.66% 50.93%
Avg. overest. - 1.02% 1.77% 12.32%
Min.buf. / max.thr. overest. - 3.31% 0.14% 33%

Exec. time 21s 3.7s 1.6s 0.49s

Table 7.3: MP3 playback alternative approximations.
exact n = (5, 15) n = 3, 5 (combined)

Min. pos. throughput (s−1) 4.2 4.2 4.2
Distr. size 1977 1977 1977

Max. throughput (s−1) 8.3 8.3 8.3
Distr. size 2898 2907 2902

#Pareto points 620 42 255
#Min. distr. 620 42 255

#Distr. checked 2152 55 536

Max. overest. - 12.06% 5.47%
Avg. overest. - 2.00% 0.71%
Min.buf. / max.thr. overest. - 0.31% 0.14%

Exec. time 21s 0.61s 5.3s

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 109

for these experiments are shown in Table 7.2. The results show that the approxi-
mation technique drastically improves the run-time of the exploration at the cost
of a reduced number of Pareto points found (but as already said, it is hard to
imagine that hundreds or thousands of Pareto points are practically meaningful).

The approximation may lead to an overestimation of the required storage
space for a given throughput. The table shows for each experiment the maximum
overestimation observed for an arbitrary Pareto point in the complete trade-off
space, the average overestimation over the entire space, and the overestimation
of the minimal buffer requirements allowing maximal throughput. The results
show that the overestimation is very small in general, which shows that dropping
Pareto points for these models does not have much impact in terms of storage
requirements computed for a given throughput constraint. The only exception is
the overestimation for the MP3 playback application with multiplication factor
15, suggesting that this factor is too large. The peaks in maximum overestima-
tion in the MP3 experiment are to be expected, because large overestimation may
occur for large multiplication factors and/or large step sizes in combination with
small buffer sizes. However, small buffers are part of the trade-off space that
the algorithm explores first. In those cases, the exact technique, an approxima-
tion with a smaller multiplication factor, or an approximation aiming to bound
the relative overestimation (as explained at the end of the previous subsection)
can be used to determine the appropriate buffer sizes satisfying the throughput
constraint.

The experiments reported in Table 7.2 use only one multiplication factor,
which is the same for all the sized edges. There are several ways to improve the
obtained results. One way is to carefully select different multiplication factors
for the different edges. Based on the results for the MP3 playback application, it
seems that a relatively small multiplication factor (n = 5) should be used for the
first edge while the second edge should have a larger multiplication factor (n = 15).
The column labeled n = (5, 15) in Table 7.3 shows that, using these multiplication
factors, the trade-off space can be approximated with very limited overestimation.
Another way is to apply the exact technique (or another approximation) on a
designated part of the approximated space, in the same way as the combination of
the technique presented in this chapter with heuristics that was explained earlier.
Given a throughput constraint, one can first make a coarse approximation of
the trade-off space with a large multiplication factor. Then, one can choose a
distribution that comes close to satisfying the constraint as the starting point
for a finer grain approximation or an exact exploration of the trade-off space
up to the point that the throughput constraint is satisfied. This approach was
used to find the minimal storage distribution for maximal throughput of the
MP3 playback application. First the trade-off space was approximated in 3.7s
with multiplication factor n = 5 (see Table 7.2). The first storage distribution
below the largest one found by this approximation was used as starting point
for the exact algorithm. This algorithm found the minimal storage distribution
for maximal throughput within 27ms. A third way to improve approximation

110 7.8. BUFFER REQUIREMENTS FOR BINDING-AWARE SDFGS

results is to simply combine the results of two or more approximations of the
trade-off space. This may lead to a reduced overestimation, as illustrated by the
last column of Table 7.3. Combining the approximations of the trade-off space
obtained via multiplication factors 3 and 5 leads to an increased number of Pareto
points found, resulting in a reduced average overestimation when compared to the
two approximations in isolation. Table 7.3 shows the results when this approach is
applied to the MP3 playback model. To obtain this result, the two approximations
were computed explicitly and then combined. A more efficient implementation
would first compute the approximation with the largest multiplication factor, and
then use the information about distributions already explored while computing
the approximation with the smaller multiplication factor. This would lead to an
amount of checked distributions and a run-time which are less than the sums
of those values for the individual approximations. The experiment shows the
versatility of the approximation technique. Note that it does not make sense to
combine approximations when one multiplication factor is a divisor of (one of)
the other multiplication factor(s) (which is why Table 7.3 does not report any
other combinations).

7.8 Buffer Requirements for Binding-aware SDFGs

The technique presented in the previous sections computes the trade-off space
between the buffer requirements and throughput of an SDFG assuming unlimited
processing resources. In other words, it assumes that an actor can be executed
as soon as all its input tokens are available. Actor firings never have to be post-
poned till a processing resource becomes available. In practice, multiple actors
are often mapped to the same resource and actor firings are delayed till the firing
is scheduled on the resource. This section discusses how this resource sharing, as
captured by a binding-aware SDFG (see Chapter 6), can be taken into account in
the storage-space/throughput trade-off space exploration.

In Section 6.6, it is explained how the storage space constraints of edges are
modeled in a binding-aware SDFG. The storage space of an edge whose source
and destination actor are bound to the same tile is modeled with the SDF model
shown in Figure 6.4(b). The initial tokens αtile on the edge db model the amount
of storage space allocated to the edge d. The SDF model shown in Figure 6.4(c) is
used to model the situation in which the source and destination actor are bound
to different tiles. The storage space constraint on the source tile is modeled with
the initial tokens αsrc on the edge from actor ac to actor ai. The storage space
allocated on the destination tile is modeled with the initial tokens αdst on the
edge from aj to ac. Note that this puts a constraint on the combined storage
space used by the edge from ac to as and the edge from as to aj .

The edges in Figure 6.4 that contain the initial tokens αtile, αsrc and αdst

model storage space allocations of a binding-aware SDFG. Changing the number
of initial tokens αtile, αsrc and αdst may influence the throughput of the binding-

7. THROUGHPUT-BUFFERING TRADE-OFF EXPLORATION 111

aware SDFG in the same way as this happens when the storage-space allocations
of edges in an SDFG are changed. Similar to an SDFG, a binding-aware SDFG
has a storage-space/throughput trade-off space. This space makes a trade-off be-
tween the number of initial tokens αtile, αsrc and αdst on the various edges of a
binding-aware SDFG and the throughput of the graph. This section explains how
the notion of a causal dependency (see Definition 24) must be changed in order
to find all minimal storage distributions of a binding-aware SDFG.

A causal dependency indicates that an end of firing transition of an actor ai,
as defined by the operational semantics of an SDFG, enables a start of firing
transition of an actor aj . When ignoring resource sharing, the production of a
token is the only reason for the existence of this relation. This follows immediately
from the operational semantics of an SDFG as given by Definition 7. When
resource sharing is considered, the start of an actor firing depends not only on the
availability of tokens, but also on the schedule that is used on the shared resource.
An actor is only fired when it has sufficient tokens and when the actor firing is
scheduled on a shared resource (see Definition 19). This property is taken into
account in the definition of a binding-aware causal dependency.

Definition 32. (Binding-Aware Causal Dependency) An actor ai has a
binding-aware causal dependency on an actor aj via an edge d when there is a
causal dependency from ai to aj via d, or when ai and aj are bound to the same
resource and a firing of ai is scheduled in the static-order schedule directly after
a firing of aj.

According to Definition 32, any causal dependency in the execution of a
binding-aware SDFG is also a binding-aware causal dependency. The start of
an actor firing also has a binding-aware causal dependency with the end of an ac-
tor firing when these actor firings occur on the same resource and one actor firing
starts immediately after the end of the other actor firing. Using the definition
of a binding-aware causal dependency, the abstract dependency graph is defined
similar to Definition 28 (deadlock-free case) and Definition 29 (deadlocked case).

Algorithm 1 can be used to explore the storage-space/throughput trade-off
space of a binding-aware SDFG when the notion of a binding-aware causal de-
pendency is used. The static-order schedules and the time-slice constraints might
hide causal dependencies between actor firings. By including successive firings as
specified by the static-order schedules as dependencies in the dependency graph,
as is done in the definition of a binding-aware causal dependency, it is guaran-
teed that no storage dependencies are missed. The optimality of the result of
Algorithm 1 can now be proven in the same way as Theorem 4. Remember that
Algorithm 1 will only change the number of initial tokens αtile, αsrc and αdst in
the binding-aware SDFG which is inputted to the algorithm as these initial tokens
model the storage space allocated to the edges of the graph.

Algorithm 1 requires a (binding-aware) SDFG G with maximal throughput
Thmax. This maximal throughput is needed to guarantee termination of Al-

112 7.9. SUMMARY

gorithm 1 when all minimal storage distributions are found. It is possible to
compute the maximal throughput of a binding-aware SDFG. A platform instance
constrains the maximum amount of memory available for the storage space of the
dependency edges. Every edge that models storage space in the binding-aware
SDFG could be assigned a storage space equal to the total amount of memory
available in the platform. After modeling this storage space allocation in the
graph, the throughput Thmax can be computed through a constrained self-timed
execution of the binding-aware SDFG (see Section 6.6.1).

7.9 Summary

This chapter presents a method to explore the trade-offs between the throughput
and memory usage for SDFGs. It differs from existing buffer sizing methods as it
can determine exact minimum memory bounds for any achievable throughput of
the graph. Other methods can only determine an upper bound on the minimal
memory requirement for the lowest non-zero or highest throughput of the graph.

In addition to the exact exploration algorithm, a generic and very versatile
approximation technique is presented that is based on the exact algorithm. The
approximation provides throughput guarantees, and it has a proven analytical up-
per bound on the overestimation in buffer sizes. Approximation of the trade-off
space can be used when the run-times of the exact technique would become prob-
lematic. The results for the approximation technique show that it can drastically
improve the run-time needed for the exploration of the trade-off space with only
very limited overestimation of the storage space.

This chapter also shows how resource constraints due to binding and schedul-
ing that are not modeled in the SDFG can still be taken into account in the
exploration. This enables a design-flow step in which the memory requirements
of an SDFG can be minimized under a throughput constraint once the SDFG is
bound and scheduled onto a multi-processor system-on-chip.

Chapter 8

Network-on-Chip Routing and

Scheduling

8.1 Overview

Current NoCs like Æthereal [123] and Nostrum [93] use circuit-switching to create
connections through the NoC which offer timing guarantees. Today’s routing and
scheduling solutions however (a) often do not use all routing flexibility of NoCs
and (b) make bandwidth reservations for connections with throughput/latency
guarantees that are unnecessarily conservative. To illustrate the first point, for
example, the scheduling strategies presented in [53, 64] restrict themselves to
minimal length routes. Modern NoCs allow the use of other, more flexible, routing
schemes. As an illustration of the second point, consider a simple NoC with
three links l1, l2 and l3. The data streams sent over l1 and l2, shown in Figure
8.1, are both sent over l3. Traditional NoC scheduling strategies [53, 59] reserve
two guaranteed throughput connections on the link (l3,trad). However, given the
timing of the data streams on l1 and l2, it is possible to combine both streams and
preserve bandwidth (l3,new). The essential idea is not to reserve bandwidth for
guaranteed throughput connections permanently during the entire life time of an
active data stream but only during certain intervals, typically per communicated
message (a token in an SDFG). The use of non-minimal routes and the intelligent
reservation of NoC bandwidth leads to a better resource utilization in the NoC.

Modern multimedia applications more and more exhibit dynamism that causes
the application to have a number of different communication patterns, called com-
munication scenarios. An extension to the techniques of [53, 59] to handle this
type of dynamism is presented in [99], which introduces a technique to allocate re-
sources for each scenario while guaranteeing that sufficient resources are available
when switching between scenarios. It ignores that often information is available
on the time needed to switch between the scenarios. As a result, it suffers from

113

114 8.2. RELATED WORK

bw

t

bw

t

bw

t t

bw

l1 l2 l3,trad l3,new

Figure 8.1: Motivating example.

the resource over-allocation problem as illustrated in Figure 8.1. Using this in-
formation, it is possible to minimize the resource usage when switching between
scenarios.

This chapter explores and compares several new routing and scheduling strate-
gies for data streams that exploit all scheduling freedom offered by modern NoCs
and minimize resource usage. It is furthermore shown how communication sce-
nario transitions can be taken into account. Scheduling strategies which minimize
resource usage will be able to schedule problems with tighter latency constraints
and/or larger bandwidth requirements. The proposed scheduling techniques can
serve as the basis for step 12 of the design flow introduced in Section 1.4.

The remainder of this chapter is organized as follows. The next section dis-
cusses related work. Section 8.3 presents the communication task graph model.
This model captures all timing constraints from an application that have to be sat-
isfied by the NoC routing and scheduling strategies. The architecture of the NoC
is discussed in Section 8.4. The time-constrained scheduling problem is formalized
in Section 8.5. Several different scheduling strategies are presented in Section 8.6.
The benchmark used to evaluate these strategies is presented in Section 8.7. The
experimental evaluation of the proposed scheduling strategies on this benchmark
is discussed in Section 8.8. A technique to extract a communication task graph
model from an SDFG that is bound and scheduled on an MP-SoC is presented in
Section 8.9. Section 8.10 concludes this chapter.

8.2 Related Work

This chapter considers scheduling streaming communication on a NoC within
given timing constraints while minimizing resource usage. Only communication
with timing constraints is considered in this chapter. In practice, some commu-
nication streams in an application may have no timing requirements. Scheduling
techniques for these streams are studied in e.g. [120]. Those techniques can be
used together with the approach presented in this chapter to schedule both the
communication without and with timing constraints.

In [64], a state-of-the-art technique is presented to schedule time-constrained
communications on a NoC when assuming acyclic, non-streaming communication.
That is, tasks communicate at most once with each other (i.e., there is no notion
of a pipelined execution of different iterations of the task graph). The communi-
cation model, presented in Section 8.3, allows modeling of communication streams

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 115

in which tasks periodically, i.e., repeatedly, communicate with each other. Acyclic
communication can be dealt with by assuming a period with infinite length.

Scheduling streaming communication with timing guarantees is also studied
in [53, 59, 123]. They apply a greedy heuristic and reserve bandwidth for streams,
whereas this thesis proposes to reserve bandwidth per message and present several
different heuristics. The results presented in this chapter show a clear improve-
ment in resource usage. In [99], an extension to [53, 59] is presented to schedule
multiple communication patterns onto a single NoC. It assumes that the streams
of different communication patterns are independent of each other and no timing
relation between them is known. As a result, streams from different patterns
cannot share bandwidth. In this chapter, a technique is presented to share band-
width between multiple communication scenarios when a timing relation between
the scenarios is known. The scenario technique is inspired by scenario-based de-
sign approaches as proposed in [48, 50, 89].

Many NoCs like Nostrum [93], SPIN [56], and the NoC proposed by Dally
and Towles [32] use regular NoC architectures like a mesh, torus or fat-tree. The
regular structure of these NoCs fits well with simple routing schemes like XY-
routing. These architectures assume that the computational elements connected
to the NoC are all of similar size. In practice, existing IP-blocks do not always
meet this requirement. Furthermore, applications with irregular communication
requirements do not fit well with the regular NoCs. For these reasons, irregular
NoC topologies and their accompanying routing and scheduling techniques are
studied [62, 103, 106]. In [62], a NoC architecture is studied in which some links
from a mesh are removed. A technique to design application-specific NoCs is
studied in [103]. [106] studies a mesh-topology with added links that reduce the
long latencies between vertexes in the mesh. The routing and scheduling technique
presented in this chapter can be used in combination with any arbitrary (regular
or irregular) NoC topology.

8.3 Communication Modeling

Multimedia applications, for instance an MP3 decoder, operate on streams of
data. Many NoC scheduling and routing strategies use a communication centric
model to describe these applications. They assume that an application consists
of a set of periodically executed tasks that exchange messages with each other
via (data) streams. These tasks are bound to the various processors in the sys-
tem. Whenever multiple tasks are bound to one processor, the execution order of
these tasks is fixed through a schedule. Dynamism in the application can cause
differences in the time at which tasks consume and produce messages. When the
timing difference is small or occurs infrequently, it can be considered as jitter on
the communication pattern. To provide timing guarantees, the worst-case com-
munication pattern which includes this jitter must be considered when allocating
resources. It is also possible that the dynamism in the application causes changes

116 8.3. COMMUNICATION MODELING

t2t1

messages

t

messages

t

d scenario 1

scenario 2

application

task graph

m1

P1

P2

s2

s1

s2

s1

t

m1

m2 m2

m1 m3 m1 m3 m1

m2 m2

s1

s1

Figure 8.2: Example communication task graph.

in the communication pattern which are effective over a longer period of time. An
MP3 decoder for example could switch from decoding a stereo stream to a mono
stream. This situation could be taken into account by allocating resources for the
worst-case communication pattern that can occur. However, this will result in
a resource allocation which is too conservative for most situations [48, 99]. The
solution to prevent over-allocation of the resources is to consider communication
patterns which differ considerably from each other as separate scenarios. In an
MP3 decoder, for example, the decoding of a stereo and mono stream could be
seen as two distinct scenarios. It is possible that a switch from one scenario to
another is time-constrained and that the two scenarios overlap for some time.
These aspects should be taken into account when allocating resources.

Figure 8.2 shows an example of a simple communication task graph consisting
of two tasks t1 and t2. The communication between the two tasks can follow two
scenarios. In the first scenario, task t1 sends a message m1 through stream s1

to task t2 and t2 sends a message m2 through s2 to t1. This pattern is repeated
with a period P1. The second scenario has a different communication pattern and
period. In the second scenario, task t1 sends every period P2 two messages m1 and
m3 to task t2 and t2 sends a message m2 to t1. Note that also the time at which
messages are sent and the size of them is different in the two scenarios. When
running, switches from one scenario to another may occur. During this switching
period, due to the streaming nature of applications, multiple scenarios may be
active simultaneously. Table 8.1 gives the overlap when switching between the
two scenarios of the example communication task graph. It shows, for example,
that when switching from scenario 1 to scenario 2, both communication patterns
overlap for 5 time-units. It is also possible that a switch from one scenario to
another scenario cannot occur or happens without overlap.

The communication task graph model focuses on modeling the communica-
tion within an application that is already bound and scheduled on an MP-SoC.
The schedule and timing constraints imposed on the application determine time

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 117

Table 8.1: Scenario overlap during switching
scenario 1 scenario 2

scenario 1 - 5
scenario 2 3 -

bounds within which each task must be executed. Similarly, they determine time
bounds within which messages must be communicated between the tasks. This
chapter presents techniques to schedule messages from multiple scenarios, which
are specified with time bounds, on the NoC. Furthermore, Section 8.9 shows how
the execution of an SDFG that is bound and scheduled on a MP-SoC can be
captured in a set of communication scenarios. It also shows how time bounds for
the messages communicated within each scenario are derived.

8.4 Interconnect Graph

The multi-processor platform template introduced in Chapter 3 uses a NoC to
connect the different tiles in the platform to each other. Each tile contains a
network interface (NI) through which it is connected with a single router in
the NoC. The routers can be connected to each other in an arbitrary topology.
The connections between routers and between routers and NIs are called links. In
this chapter, the connections between the processing elements and the NI inside
a tile are ignored. It is assumed that these connections introduce no delay, or
that the delay is already taken into account in the timing constraints imposed on
communications, and that there is sufficient bandwidth available. Hence, the NI
can be abstracted away into the tile. Given this abstraction, the interconnect can
be described with the following graph structure.

Definition 33. (Interconnect graph) An interconnect graph (V, L) is a di-
rected graph where each vertex u, v ∈ V represents either a tile or a router, and
each edge l = (u, v) ∈ L represents a link from vertex u to vertex v.

Communication between tiles involves sending data over a sequence of links
from the source to the destination tile. Such a sequence of links through the
interconnect graph is called a route and is defined as follows.

Definition 34. (Route) A route r between vertex u and vertex v with u 6= v is
a path in the interconnect graph of consecutive links from u to v without cycles.
The operators src and dst give respectively the source and destination vertex of a
route or a link. The length of a route r is equal to the number of links in the path,
and denoted |r|. l ∈ r is used to denote that the link l appears in the route r.

Links can be shared between different communications by using a TDMA-
based scheduler in the routers and NIs. All links have the same number of TDMA

118 8.4. INTERCONNECT GRAPH

slots, N , and each slot has the same bandwidth. At any moment in time, at most
one communication can use a slot in a link. This guarantees that the NoC sched-
ule is contention-free. Hence, no deadlock will occur. The data transfered over
a link in a single slot is called a flit and it has size szflit (in bits). To minimize
buffering in routers, a flit entering a router at time-slot t must leave the router at
slot t + 1. Not all slots in a link may be available for use by a single application.
Part of the slots may already be used by other applications mapped to the system.

Wormhole routing [31] is used to send the flits through the network. This tech-
nique requires limited buffering resources and offers strict latency bounds. A
message is divided by the sending NI into flits. The flits are then routed through
the network in a pipelined fashion. This reduces the communication latency con-
siderably. All flits which belong to the same message and are sent in consecutive
slots form a packet. The first flit in a packet (header flit) contains all routing
information and leads the packet through the network. The header has a fixed
size of szph bits (szph ≤ szflit). The remaining szflit − szph bits in the header
flit can be used to send (a part of) the actual message. The size of the header
must be taken into account when allocating resources in the NoC. Two messages,
possibly sent between different source and destination tiles but over one link at
non-overlapping moments in time can use the same slot. For messages that use
the same slot in the link between the source tile and the first router but a different
route, the routing information stored in the NI for this slot must be changed. This
reconfiguration of the NI can be implemented efficiently by sending a message
from a processor or communication assist [30] inside a tile to its NI to change the
routing information. Alternatively, the approach outlined in [58] can be used to
implement the reconfiguration. In [58], the routing information of multiple differ-
ent streams is associated with a TDMA slot. When a message is send within this
TDMA slot, the NI uses the routing information associated with the stream that
this message belongs to. The time-constrained scheduling problem, presented in
Section 8.5, assumes that time required to reconfigure the NI is Treconf . During
this reconfiguration time, the slot may not be used to send messages.

Tasks in an application communicate with each other through streams of mes-
sages. The ordering of the messages in a stream must be preserved. To realize
this, the NIs send messages onto the network in the same order as they receive
them from the processors. The scheduling of communications on the NoC must
also guarantee that the messages are received in the same order. No reorder-
ing buffers are thus needed in the NIs, which simplifies their hardware design.
The NoC further requires that when the communication of a message is started,
slots are claimed in the links it is using. These slots are only freed after the
communication has ended. Preemption of a communication is not supported.

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 119

8.5 Time-Constrained Scheduling Problem

8.5.1 Overview

Informally, the time-constrained scheduling problem consists of finding a schedule
for a set of scenarios CS , such that the schedule of each scenario has no conflicting
resource requirements with the other (overlapping) scenarios and applications, and
that the set of messages which make up a scenario are sent between different tiles
in a system within given timing constraints. First, the problem of scheduling a
single scenario s ∈ CS is formalized in Section 8.5.2. The formalization is such
that only a single period of the scenario needs to be scheduled. This schedule
can then be repeatedly executed as often as necessary. It uses a function U :
L× N→ {used, not-used} which indicates for every link at every moment in the
time-span of one scenario period of the schedule whether a slot is occupied. The
function U captures the resource constraints due to other applications using the
same platform and from the schedules of other scenarios on the messages being
scheduled from scenario s. Section 8.5.3 explains how the function U is constructed
and used when scheduling multiple scenarios on the NoC. The complexity of the
single-scenario scheduling problem is studied in Section 8.5.4.

8.5.2 Scheduling a Single Scenario

A communication scenario consists of a set of messages which must be scheduled
on the NoC within their timing constraints. A message is formally defined as
follows.

Definition 35. (Message) Given an interconnect graph (V, L), a set of streams
S and a period P . A message m is a 7-tuple (u, v, s, n, τ, δ, sz), where u, v ∈ V are
respectively the source and the destination tile of the n-th message sent through the
stream s ∈ S during the period P . The earliest time at which the communication
can start, relative to the start of the period, is given by τ ∈ N0 (0 ≤ τ < P). The
maximum duration of the communication after the earliest start time is δ ∈ N

(δ ≤ P). The size (in bits) of the message that must be communicated is sz ∈ N.

The communication task graph, shown in Figure 8.2, sends each period P1

a message m1 = (u, v, s1, n, τ, δ, sz) through the stream s1 of scenario 1. This
communication can start at time τ and must finish before τ + δ. Note that a
communication may start in some period and finish in the next period. This
occurs when τ + δ > P1.

In practice, messages may not always have a fixed earliest start time, duration,
or size. Conservative estimates on these figures should be used to construct the set
of messages in order to guarantee that all communications fall within the timing
and size constraints. Resources that are claimed but not used, due to for example
a smaller message size, can be used to send data without timing requirements
between tiles without providing guarantees, i.e. best-effort traffic.

120 8.5. TIME-CONSTRAINED SCHEDULING PROBLEM

20 3120 31 64 75 64 75

d

t

slots

Figure 8.3: Scheduling entity on a link.

A message specifies timing constraints on the communication of data between
a given source and destination tile. It does not specify the actual start time,
duration, route and slot allocation. This information is provided by the scheduling
entity.

Definition 36. (Scheduling entity) A scheduling entity is a 4-tuple (t, d, r, st),
where t ∈ N0 is the start time of the scheduled message relative to the start of
the period and d ∈ N is the duration of the communication on a single link. The
scheduled message uses the route r in the network and the slots it uses from the
slot table of the first link l ∈ r are given by the set st ⊆ {0, . . . , N − 1} with N
the slot-table size.

The slots given in st are claimed on the first link of the route r at time t for
the duration d. On the next link, the slot reservations are cyclically shifted over
one position. So, these slots are claimed one time-unit later, i.e., at t + 1, but
for the same duration d. The complete message is received by the destination at
time t + d + |r| − 1. Figure 8.3 shows a scheduling entity which sends a message
over a link with a slot-table of 8 slots. Starting at time t = 2, the slots 2, 3, and 4
are used to send the message. The communication ends after d = 11 time units.
In total, two packets consisting both of three flits are used to send the message.

The relation between a message and a scheduling entity is given by the sched-
ule function, formally defined below in Definition 37. Among all schedule func-
tions, those respecting the constraints in Definition 37 are called feasible. One
of the conditions that a feasible schedule needs to satisfy is that it is contention
free, i.e., slot-tables should not be simultaneously reserved by different messages,
different scenarios or different applications. An important aspect in this context is
the relation between the slot-table size N and the period of the scenario P . Figure
8.4 shows an example of a link l with slot table size N = 8. The second slot from
the slot table is occupied by another application. The message(s) from a scenario
with period P = 7 are also scheduled on the link l. In the first period, the scenario
uses the third slot from the slot table. In the next period, the scenario uses the
second slot from the slot table. However, this slot is already occupied by another
application. Hence, there is contention on the link at this moment in time as both
schedules want to use the same slot at the same moment in time. This example
shows that it is in general not sufficient to guarantee that the first period of some
scenario is contention-free; also following periods must be free of contention. In
fact, the number of periods of a schedule with period P which must be checked for
contention is equal to the least common multiple of P and N , lcm(P, N), divided

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 121

0

0

2PP

2NN

scenario

other application

Figure 8.4: Contention in second period.

by P . After this number of periods, the first time-unit of the scenario coincides
again with the first slot of the slot table. For simplicity, it is assumed that the
period of a scenario is a multiple of the size of the slot table. It is then sufficient
to check only a single period for contention, which simplifies the formulas in the
remainder. This is not a restriction as any scenario whose period P which does
not adhere to this requirement can be concatenated for lcm(P, N)/P times before
scheduling it. The period of the concatenated scenario is then a multiple of the
slot table with size N .

Consider now Definition 37. The first two constraints make sure that the
communication takes place between the correct source and destination tile. The
third and fourth constraint guarantee that the communication falls within the
timing constraints given by the message. The fifth constraint ensures that enough
slots are reserved to send the message and packet headers over the network. It
uses a function π(e) which gives for a scheduling entity e = (t, d, r, st) the number
of packets which are sent between t and t + d on the first link of the route r
considering the slot reservations st and assuming that at time 0 the first slot of
the slot table is active. The function ϕ(e) gives the number of slots reserved
by e between t and t + d. The sixth constraint makes sure that a scheduling
entity does not use slots in links which are at the same moment in time used
by other applications or scenarios. It uses a function σ(e, lk, x) which indicates
for a scheduling entity e and the k-th link lk on the route r of e whether it uses
a slot from the slot-table with size N of lk at time x; σ(e, lk, x) = used when
(x + k) mod N ∈ {(s + k) mod N |s ∈ st} and σ(e, lk, x) = not-used otherwise.
The seventh constraint requires that the schedule is contention-free. The next
constraint makes sure that there is enough time to reconfigure the NI between
two messages which originate at the same NI and use the same slot but different
routes. The last constraint enforces that the ordering of messages in a stream is
preserved.

Definition 37. (Schedule function) A schedule function is a function S :
M → E where M and E are respectively the set of messages and scheduling
entities. The function S is called feasible if and only if, for all messages m =
(u, v, s, n, τ, δ, sz) ∈M associated to scheduling entity S(m) = e = (t, d, r, st),

1. the route starts from the source tile: u = src(r),

2. the route ends at the destination tile: v = dst(r),

122 8.5. TIME-CONSTRAINED SCHEDULING PROBLEM

3. the communication does not start before the earliest moment in time at which
the data is available: t ≥ τ ,

4. the communication finishes not later than the deadline: t+d+|r|−1 ≤ τ +δ,

5. the number of allocated slots is sufficient to send the data: sz +szph ·π(e) ≤
szflit · ϕ(e),

6. the communication uses no slots occupied by other applications or scenarios:
for all links l ∈ r and time instances x with 0 ≤ x < P , σ(e, l, x) = not-used
when U(l, x) = used,

and for each pair of messages m1, m2 ∈M with m1 6= m2, m1 = (u1, v1, s1, n1, τ1,
δ1, sz1), S(m1) = e1 = (t1, d1, r1, st1), m2 = (u2, v2, s2, n2, τ2, δ2, sz2), and
S(m2) = e2 = (t2, d2, r2, st2),

7. for all l ∈ r1 ∩ r2 and for all x with 0 ≤ x < P , σ(e1, l, x) = not-used or
σ(e2, l, x) = not-used,

8. if u1 = u2, r1 6= r2, and st1∩st2 6= ∅, then there is enough time to reconfigure
the NIs: (t2 − t1 − d1) mod P ≥ Treconf ,

9. if s1 = s2 and n1 < n2, then the ordering of these messages is preserved:
t1 + d1 < t2 ∧ t1 + d1 + |r1| − 1 < t2 + |r2|.

If a schedule function is not feasible, it means that one or more of the above
rules are violated in at least one associated scheduling entity. Such a schedule is
called infeasible. By construction, any feasible schedule is contention-free and
hence free of deadlock and livelock [52].

8.5.3 Scheduling Multiple Scenarios

The problem of scheduling a set of scenarios CS consists of finding a feasible
scheduling function S for the streams in all scenarios s ∈ CS . Feasibility requires
that resource constraints from a scenario si ∈ S are considered when scheduling
another scenario sj ∈ S which overlaps with si. Of course, slots occupied by
other applications must also be taken into account. When scheduling a single
scenario, all these constraints are taken into account through the function U . This
subsection explains with an example, illustrated in Figure 8.5, how the function
U is constructed.

Consider the situation in which messages of four scenarios must be scheduled
on a link l. Assume that the link has a slot table of size 8 of which the second slot in
the slot table is already occupied by another application. This slot cannot be used
for any scenario. Assume now that the first three scenarios are already scheduled
on l. To schedule the messages of the fourth scenario, a function U must be
constructed which takes into account the slots used by the three already scheduled
scenarios and the slots occupied by other applications. Let the scenarios 1, 2 and

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 123

scenario1

scenario2

scenario3

other application

0

0

0

0

P1

2P

P3

not − usedused

N − 1

(a) Schedule of scenarios 1,2 and 3 and some other application.

16

40

32

0

0

0

P4

P3

P1

22P2P

not − usedused

scenario1

scenario2

scenario3

scenario4

other application

(b) Constraints on scenario 4.

Figure 8.5: Constraints for link l on scenario 4.

124 8.5. TIME-CONSTRAINED SCHEDULING PROBLEM

3 have respectively a period of 32, 24 and 40 time-units. The slots occupied by
the scheduled scenarios 1, 2 and 3 are shown in Figure 8.5(a). The fourth scenario
has a period of 32 time-units and it has an overlap with the scenarios 1, 2 and 3
of respectively 16, 32 and 40 time-units. The latter implies that when switching,
for example, from scenario 1 to scenario 4, the last 16 time-units of scenario 1
overlap with the first 16 time-units of scenario 4. Note that a consequence of the
earlier assumptions that the start of a scenario aligns with a slot-table rotation
and that the period of a scenario is a multiple of the slot-table size is that the
overlap between two scenarios is a multiple of the slot-table size. This means that
a new scenario can only be started at the beginning of a slot-table rotation. If
desirable, this restriction can be relaxed to allow arbitrary overlap, but this makes
the construction of U more tedious and it seems of little practical value.

The overlap of 16 time-units between scenarios 1 and 4 implies that the last
16 time-units of the last period of scenario 1 overlap with the first 16 time-units
of the first period of scenario 4. After these 16 time-units, scenario 1 is no longer
repeated. So, the slots occupied in the last 16 time-units of scenario 1 cannot be
used for scenario 4. Due to the overlap between scenarios 2 and 4, more than one
period of scenario 2 overlaps with scenario 4. The slots occupied by scenario 2
cannot be used for scenario 4. The overlap of scenario 3 on scenario 4 is even larger
than a complete period of scenario 4. Slots occupied after a complete period of
scenario 4 do constrain the next period of the scenario and should therefore also
be considered as a constraint on the available slots. The dotted arrow between
scenario 3 and 4 gives an example of such a constraint. Only slots which are not
occupied by other applications or any of the overlapping scenarios can be used to
schedule the messages of scenario 4. These slots are colored white in Figure 8.5(b).
Note that scenario 4 does not necessarily overlap with the other three scenarios
simultaneously. In fact, that would be impossible with the given schedules for
scenario 1 and 2, because those would then cause contention, as can be seen from
Figure 8.5(b).

8.5.4 Complexity

In this section, it is proved that the single-scenario scheduling problem is NP-
complete.

Theorem 7. (Scheduling complexity) Given an interconnect graph G =
(V, L) and a scheduling problem consisting of a set of messages M with a period
P . The problem of finding a feasible schedule function is NP-complete.

Proof. First, it is shown that the problem belongs to NP. The verification algo-
rithm must check whether the scheduling entities satisfy the constraints of Def-
inition 37. The first five constraints and the last two can be checked in O(|M |)
time. The other constraints can be easily checked in polynomial time for a single
link l ∈ L, but need to be repeated for all l ∈ L. However, this is still polynomial
in the problem size.

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 125

To prove that the problem is NP-complete, it is shown that the disjoint-path
problem [42] can be reduced in polynomial time to the scheduling problem dis-
cussed in this section. The disjoint-path problem was proved to be NP-complete
(even for planar graphs) [42]. In the disjoint-path problem, a set of edge-disjoint
paths in a given graph must be found between a set of pairs of vertexes. The
reduction of the disjoint-path problem to the time-constrained scheduling prob-
lem works as follows. Let G be the graph and the set {(u1, v1) . . . (uk, vk)} the
pairs of vertexes that form an instance of the disjoint-path problem. An in-
stance of the scheduling problem is constructed with interconnect graph G and
the number of slots in each link equal to 1. The ordering of the messages in
the streams is ignored, i.e. it is assumed that each message belongs to a dif-
ferent stream. The length of the period is equal to 1. The set of messages
M = {(u′

1, v
′
1, s1, 1, 0, 1, 1), . . . , (u′

k, v′k, sk, 1, 0, 1, 1)}, i.e., all messages have se-
quence number 1, starting time 0, deadline 1, and size 1. This construction can
be done in polynomial time. Suppose that there are edge-disjoint paths p1, · · · , pk

between (u1, v1) . . . (uk, vk). For each i, the path pi, which is in fact a route from
vertex u′

i to v′i in the scheduling problem, is exclusively dedicated to the mes-
sage (u′

i, v
′
i, si, 1, 0, 1, 1). The message is scheduled to be sent at time 0 using all

bandwidth in the links on its route. It is easy to see that this schedule function
is feasible. Conversely, suppose that there is a feasible schedule function for the
set M ; then, the set of scheduling entities cannot share bandwidth, as sharing
bandwidth leads to missing deadlines. Since bandwidths are all set to be 1, it
trivially follows that the routes are all disjoint. Hence, any feasible schedule is a
solution to the disjoint-path problem.

8.6 Scheduling Strategies

8.6.1 Overview

Given a set M of messages, a scheduling strategy for a single scenario must find
a schedule entity e for each message m ∈ M and the set E of scheduling entities
must form a feasible schedule function (i.e., all constraints from Definition 37
must be met). Given that an exhaustive approach is not tractable, several heuris-
tic approaches are presented. The heuristics allow the user to trade off quality
of solutions and effort spent on solving problems. First, a greedy strategy is pre-
sented in Section 8.6.2. Typically, the greedy approach gives a solution quickly.
However, it also excludes a large part of the solution-space. The second strat-
egy, ripup, adds backtracking to the greedy approach. This improves the quality
(number of feasible solutions found for a set of problems), but it also increases the
run-time. The backtracking tries to resolve scheduling conflicts when they occur.
The third strategy, presented in Section 8.6.4, tries to avoid conflicts by estimat-
ing a priori the occupation of all links. This should steer the routing process

126 8.6. SCHEDULING STRATEGIES

to avoid scheduling conflicts and as such minimizes the use of the backtracking
mechanism. A feasible schedule for the messages of a single scenario takes into ac-
count the constraints that originate from other applications and scenarios. These
constraints are captured in the function U . A scheduling strategy for multiple
scenario based on the scheduling strategies for a single scenario is presented in
Section 8.6.5.

8.6.2 Greedy

The greedy strategy explores a small part of the solution-space. As a result, it has
a small run-time. However, it may miss solutions or find non-optimal ones in terms
of resource usage. The greedy strategy essentially tries to schedule the largest,
most time-constrained messages first, via the shortest, least congested route that
is available. It works as follows. First, all messages m = (u, v, s, n, τ, δ, sz) ∈ M
are assigned a cost using Equation 8.1 and sorted from high to low based on
their cost. The cost function guarantees that messages are ordered according to
their (integer) size (larger size first) and that two messages with the same size are
ordered with respect to their duration (tighter constraint first).

costM (m) = sz(m) +
1

δ(m)
(8.1)

Next, a schedule entity e = (t, d, r, st) must be constructed for the first message
m = (u, v, s, n, τ, δ, sz) ∈ M . To minimize the resource usage, the scheduling
strategy must try to minimize the length of the routes. For this reason, the
greedy strategy determines a list R of all routes from u to v with the shortest
length and assigns a cost to each route r using the following cost function that
determines the minimum number of available slots in any link in a route during
the time-span that the link might potentially be used by the message.

costR(r, m) = min
lk∈r

∑

τ(m)+k≤x≤τ(m)+δ(m)+k−|r|

F(lk, x) (8.2)

with F(lk, x) = 1 when U(lk, x) = not-used and F(lk, x) = 0 otherwise. The
routes are sorted from low to high cost giving preference to the least congested
routes. Next, a schedule entity e is constructed using the first route r in R.
The scheduling strategy should avoid sending data in bursts as this increases the
chance of congestion. Therefore, the start time, t, of e is set equal to the earliest
possible time respecting the third and last constraint from Definition 37. Given
t and the fourth and last constraint from Definition 37, the maximal duration d
of e can be computed. All slots available between t and the maximal duration on
the first link of the route, respecting the sixth, seventh and eighth constraint from
Definition 37, are located. From these slots, a set of slots, st, is selected which
offer sufficient room to send the message and the packet headers. The scheduler
tries to minimize the number of packets that are used by allocating consecutive

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 127

slots in the slot table. This minimizes the overhead of the packet headers, which
in turn minimizes the number of slots needed to send the message and its headers.
This leaves as many slots as possible free for other messages. It is possible that
no set of slots can be found which offer enough room to send the message within
the timing constraints. If this is the case, the next route in R must be tried. In
the situation that all routes are unsuccessfully tried, a new set of routes with a
length equal to the minimum length plus one is created and tried. This avoids
using routes longer than needed and it never considers a route twice. A route
which uses more links than the minimum required is said to make a detour. The
length of the detour is equal to the length of the route minus the minimum length.
If no set of slots is found when a user-specified maximum detour of X is reached,
then the problem is considered infeasible. If a set st of slots is found, the minimal
duration d needed to send the message via the route r, starting at time t using the
slots st is computed using the fifth constraint from Definition 37. The scheduling
entity e = (t, d, r, st) is added to the set of schedule entities E. The new set of
schedule entities E ∪ {e} is guaranteed to respect all constraints from Definition
37. The next message can then be handled. The process is repeated till a schedule
entity is found for all messages in M , or until the problem is considered infeasible
(i.e. a message cannot be scheduled).

8.6.3 Ripup

The ripup strategy uses the greedy strategy described in the previous section to
schedule all messages. This guarantees that all problems that are feasible for
the greedy strategy are also solved in this strategy. Moreover, the same schedule
function is found. As soon as a conflict occurs (i.e. no schedule entity ei can be
found for a message mi which meets the constraints given in Definition 37), an
existing schedule entity ej is removed from the set of schedule entities E. To
choose a suitable ej , the heuristic calculates for each schedule entity ej ∈ E the
number of slots it uses in the links that can also be used by ei. The higher this
number, the larger the chance that ej forms a hard conflict with ei. A schedule
entity ej with the largest conflict is therefore removed from E. This process
is continued until a schedule entity ei for the message mi can be created that
respects the constraints given in Definition 37. After that, the messages of which
the corresponding schedule entities were removed are re-scheduled in last-out first-
in order. On a new conflict, the ripup mechanism is activated again. The user
specifies the maximum number of times a ripup may be performed. This allows
a trade-off between quality and run-time of the strategy.

8.6.4 Global knowledge

The ripup scheduler does not know a priori which unscheduled messages need
to use links in the route it assigns to the message it is scheduling. It can only
use local information to avoid congestion. The global knowledge strategy tries

128 8.6. SCHEDULING STRATEGIES

to estimate, before scheduling messages, the number of slots that are needed in
each of the links. This gives the scheduling strategy global knowledge on the
congestion of links. This knowledge is used to guide the route selection process
when scheduling the messages.

Communication of a message m can take place at any moment in time within
the time interval specified by m. Within this interval, the scheduling entity re-

quires at least
⌈

⌈sz(m)/szflit⌉
max(⌊δ(m)/N⌋,1)

⌉

slots in each link of the route it uses. In the

optimal situation, all scheduled messages use a route with the shortest length.
To estimate the congestion on all links in the NoC, the strategy assumes that
only shortest length routes are used. For each link l ∈ L, the strategy computes
the minimal number of slots required at each moment in time when all messages
which can use l, as it is part of at least one of their shortest routes, would use the
link l. The function C : L×N0 → N0 gives the estimated number of slots used in
a link l ∈ L at a given time x.

The global knowledge strategy uses the same algorithm as the ripup strategy.
However, a different cost function is used to sort the routes it is considering when
scheduling a message. The cost function used by the greedy and ripup strategy
(Equation 8.2) is replaced by the following cost function.

costR(r, m) =
∑

lk∈r

max
τ(m)+k≤x≤τ(m)+δ(m)+k−|r|

C(l, x) (8.3)

This cost function ensures that the routes are sorted based on the estimated
congestion of the links contained in the routes. Routes containing only links with
a low estimated congestion are preferred over routes with links that have a high
estimated congestion. This minimizes the number of congestion problems which
occur during scheduling. As such, it makes more effective use of the allowed
ripups.

8.6.5 Multiple Scenarios

Given a set CS of scenarios, a scheduling strategy for multiple scenarios must
find a feasible scheduling function for each scenario while taking into account the
resource constraints of the scenarios on each other. These constraints are captured
in the function U (See Section 8.5.3).

The multi-scenario scheduling strategy must first decide on the order in which
it schedules the scenarios. A scenario which overlaps with many other scenarios
has potentially tight resource constraints as many other scenarios share resources
with it. When this scenario is scheduled first, the scheduling functions can mini-
mize the number of packets which it needs to send its messages. This minimizes
the resource usage of the scenario. The overlap in time-units between two scenar-
ios is given by the function O : CS × CS → N0. Note that this function is not
commutative as the overlap of a switch from a scenario si to a scenario sj may

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 129

differ from the overlap when switching from sj to si. To sort the scenarios accord-
ing to the overlap which they have with each other, the multi-scenario scheduling
strategy assigns a cost to each scenario using Equation 8.4 and sorts them from
high to low based on their cost.

costCS (si) =
∑

sj∈CS

O(si, sj) +O(sj , si) (8.4)

Next, a set of scheduling entities Ei must be constructed for the set of messages
Mi which make up the first scenario si in the ordered set of scenarios. This is
done using a single-scenario scheduling function. The greedy, ripup or knowl-
edge strategy can all be used for this purpose. The function U contains at that
moment only the constraints which originate from other applications. When the
used single-scenario scheduling strategy finds a feasible scheduling function S, the
multi-scenario strategy updates the function U to include the constraints which
originate from S(Mi). This is done using the procedure described in Section 8.5.3.
The multi-scenario strategy continues by scheduling the next scenario in the or-
dered list of scenarios. This process of scheduling a scenario and updating the
constraint function U continues till either no feasible scheduling function is found
for a scenario or all scenarios are scheduled. In the latter case, the problem is
called feasible; otherwise, it is called infeasible.

8.7 Benchmark

A benchmark is needed to test the quality of the scheduling strategies. It must
contain a set of problems that covers a large part of the problem space typical
of realistic applications. It should also be large enough to avoid optimization
towards a small set of problems. It is not possible to construct a benchmark
containing only real existing applications. Profiling these is too time-consuming
and they are not representative for more demanding future applications at which
NoCs are targeted. Therefore, a benchmark which consists of a set of randomly
generated problems is used. A method to generate synthetic workloads for NoC
performance evaluation is introduced in [141]. It assumes a communication model
in which tasks exchange data-elements with each other through streams. The
communication of data-elements has a periodic time behavior with some jitter on
it. A benchmark generator is used to evaluate the scheduling strategies which is
based on a similar idea. It is used to construct the benchmark that is used in the
experimental evaluation of the scheduling strategies (Section 8.8). Experimental
results on a set of realistic applications are reported in Chapter 10.

Many NoCs use a regular topology like a mesh [53, 59, 64, 93] or torus [32].
Tiles located at the edge of a mesh are restricted in the links that can be used
as at least one direction is not available because of the topology. In a 3x3 mesh,
this holds for all tiles except for one. In a 5x5 mesh, there are 16 edge tiles and 9
non-edge tiles and a 7x7 mesh has 24 edge tiles and 25 non-edge tiles. The ratio of

130 8.7. BENCHMARK

edge to non-edge tiles can possibly influence the scheduling strategies. To study
this effect, problem sets are generated for a 3x3, 5x5 and a 7x7 mesh. All tiles
in a bidirectional torus have the same number of links. So, a torus has compared
to a mesh more scheduling freedom as it has more links. To study, the effect
of the additional scheduling freedom on the scheduling strategy, torus topologies
with the same dimensions as the mesh topology are included in the benchmark.
The NoC topology can be optimized when the applications running on it are
known at design-time. This may result in the use of irregular NoC topologies
[62, 103, 106]. To study how the NoC routing and scheduling strategies behave
on irregular topologies, two topologies with respectively 9 and 25 tiles are added
to the benchmark. Following [62], these topologies are based on a regular mesh
topology in which 10% of the links are removed. These irregular topologies are
constructed such that communication between any pair of tiles remains possible.

A traffic generator is developed which creates a user-specified number of
streams of messages between randomly selected source and destination tiles. The
streams can model uniform and hotspot traffic. All messages in a stream are as-
signed a start time, size, and duration which consists of a randomly selected base
value which is equal for all messages in the stream plus a random value selected
for each individual message in the stream. The first part can be used to steer the
variation in message properties between streams. The second part can be used to
create variation between messages in a single stream (i.e. jitter).

The problem space can be characterized in a 2-dimensional space. The first
dimension is determined by the number of messages which must be communicated
within a period. The second dimension is determined by the ratio of the size of
the messages communicated and the available bandwidth. When constructing
the problem sets, it turned out that there is an area in the problem-space where
problems change from being easy to solve to unsolvable. A selection of 78 equally
distributed points around this area in the problem-space was made. For each point
100 problems were generated. This gives a benchmark with a set of 7800 different
problems per topology-size and traffic model (uniform or hotspot). The mesh,
torus and irregular topologies have similar topology sizes and can thus share the
problem sets. Figure 8.6 shows for each point in the problem-space of the 5x5 mesh
with uniform traffic how many problems are solved with the greedy and global
knowledge strategies. The results for the greedy strategy show that most problems
do not have a trivial solution. A solution is found for only 30% of the problems.
The results of the global knowledge strategy show that 57% of the problems
can be solved (and already suggest that global knowledge performs better than
greedy). So, the benchmark contains problems which are not trivial to solve (i.e.
greedy does not find a solution), but a solution does exist (i.e. global knowledge
finds a solution). Note that when the demands on the resources are increased,
the problems get harder to solve. More latency sensitive messages and/or larger
messages (more bandwidth) need to be scheduled. Scheduling strategies which
are more resource efficient will be able to solve more problems.

The benchmark must also contain multi-scenario scheduling problems in or-

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 131

0

50

100

size / bandwidthperiod / #messages

#p
ro

bl
em

s
so

lv
ed

low low

high
high

(a) 5x5 mesh with greedy.

0

50

100

size / bandwidthperiod / #messages

#p
ro

bl
em

s
so

lv
ed

low low

high
high

(b) 5x5 mesh with global knowledge.

Figure 8.6: Feasible problems in the problem-space.

der to benchmark the multi-scenario scheduling strategy. These problems can be
constructed by combining multiple single-scenario scheduling problems into one
multi-scenario scheduling problem and selecting a random overlap between them.
Scheduling problems from the 5x5 topologies are used for this purpose. Only
scheduling problems are used for which all scheduling strategies, including the
reference strategy [59] introduced in Section 8.8.1, find a feasible scheduling func-
tion. This guarantees that when the multi-scenario scheduling strategy cannot
find a feasible scheduling function, this must be due to the resource constraints
which result from scenario overlaps. In total, 500 random combinations of two
problems are selected with a random overlap value between 5% and 50% of the
period of the problems.

8.8 Experimental Evaluation

8.8.1 Single-Scenario Reference Strategies

A state-of-the-art scheduling strategy is presented in [59]. The strategy allows
the use of non-shortest routes but it assumes that slots cannot be shared between
different streams. Reconfiguration of the NIs is not possible. As in the greedy
strategy, this strategy does not reconsider scheduling decisions when a conflict
occurs. This strategy is used in the experiments as the reference strategy. It
is implemented using the greedy strategy with an adapted cost function to sort
the routes. In addition, three restrictions are imposed on it. One, messages in
one stream must use the same route. Two, streams are not allowed to share slots.
Three, the reconfiguration time is equal to a period. This makes it impossible to
reconfigure the NIs, i.e. slots cannot be shared between different streams. The cost
function that is used to sort the routes computes the ratio between the number
of slots that are currently not-used in the links of a route and the total number of
slots in the links of the same route. The experimental results suggest that using a

132 8.8. EXPERIMENTAL EVALUATION

backtracking mechanism is very effective. For this reason, the reference strategy
is extended with the ripup mechanism. This strategy is used in the experiments
as the improved reference strategy.

8.8.2 Single-Scenario Scheduling

All single-scenario scheduling strategies have been tested on the benchmark prob-
lems. The ripup, global knowledge and improved reference strategies have been
tested with a number of different values for the maximum number of ripups (1,
10, 50, 100, 150, 200, 400, 800) to study the trade-off between the number of
problems for which a solution is found and the run-time. A slot-table size of 8
slots is used in all experiments and the maximum detour (X) is initially set to
0. Note that X = 0 guarantees that any solution uses only shortest routes. This
makes it possible to study for how many problems each strategy is able to find
a solution with minimal resource requirements. The reconfiguration time of the
NI, Treconf , is set to 32 time units. This gives tiles 4 complete rotations of the
slot table to reconfigure the NI. A processor or communication assist must send
a message to update the routing information in the NI. The size of this message
is less than the size of a single flit (i.e. it needs one time unit to be sent), so the
value for Treconf is conservative.

The trade-off between the run-time and the number of problems that is solved
with the various strategies on the mesh topologies is shown in Figure 8.7. The
trade-off curves for the other topologies are similar and therefore omitted. Table
8.2 summarizes the results for all strategies and all topologies assuming that 800
ripups are allowed. The column ‘Improvement’ shows the percentage of additional
problems that is solved by all strategies compared to the reference strategy. The
column ‘Avg time’ gives for each strategy the average run-time on a problem.

Looking at the number of problems solved, the results show that the reference
strategy is outperformed by the improved reference strategy. This shows that
adding backtracking to the state-of-the-art scheduling algorithm presented in [59]
improves the results considerably. The results show further that the reference
strategy solves less problems than greedy and the improved reference strategy
solves less problems than the other two strategies using ripups. This result leads
to the conclusion that not using the ability of NoCs to reconfigure their connec-
tions is a limiting factor. As modern NoCs do not have this limitation, problems
scheduled using the reference strategies may unnecessarily be considered infeasi-
ble or use unnecessarily many resources. Slot sharing is especially advantageous
for hotspot traffic (see Table 8.2). For this type of traffic, the strategies presented
in Section 8.6 are able to solve up-to 81% more problems than the improved ref-
erence strategy. This shows that slot sharing reduces the problem of contention
on links connected to a hotspot.

The results in Table 8.2 show that the global knowledge strategy always out-
performs the other strategies. However, the average run-time on a problem is
larger for this strategy than for the other strategies. This is caused by the con-

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 133

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy

ripup

knowledge

reference

improved ref

(a) 3x3 mesh with uniform traffic.

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy
ripup
knowledge
reference
improved ref

(b) 3x3 mesh with hotspot traffic.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy

ripup

knowledge

reference

improved ref

(c) 5x5 mesh with uniform traffic.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy

ripup

knowledge

reference

improved ref

(d) 5x5 mesh with hotspot traffic.

0 100 200 300 400
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy

ripup

knowledge

reference

improved ref

(e) 7x7 mesh with uniform traffic.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

time [min]

#f
ea

si
bl

e
pr

ob
le

m
s

greedy

ripup

knowledge

reference

improved ref

(f) 7x7 mesh with hotspot traffic.

Figure 8.7: Trade-off between feasible problems and run-time.

134 8.8. EXPERIMENTAL EVALUATION

Table 8.2: Results single-scenario problem.
Mesh-topology

Improvement Avg time [ms] Detour (X = 2)
Greedy 118% 178 304%
Ripup 277% 615 365%
Knowledge 371% 1201 420%
Reference 0% 9 5%
Improved ref. 213% 80 263%

Torus-topology

Improvement Avg time [ms] Detour (X = 2)
Greedy 284% 54 434%
Ripup 417% 111 473%
Knowledge 458% 196 487%
Reference 0% 5 1%
Improved ref. 242% 14 255%

Arbitrary topology

Improvement Avg time [ms] Detour (X = 2)
Greedy 58% 66 295%
Ripup 260% 602 454%
Knowledge 449% 905 595%
Reference 0% 6 68%
Improved ref. 148% 167 339%

gestion estimation made at the start of the strategy. Simpler estimates might be
used to reduce its run-time. The reference and improved reference strategy have
always the lowest run-time. This is logical as route selection is done only once
for all messages in a stream and the slot allocation does not have to consider
reconfiguration of slots.

Modern NoCs allow the use of flexible routing schemes (i.e. routes may use a
detour). More problems may be solved when this flexibility is used. To quantify
this gain, all strategies were tested with a maximum detour of 2 on all problems
in the benchmark. The results of this experiment are shown in column ‘Detour’
of Table 8.2, which shows the improvement in the number of problems solved
when compared to the reference strategy with detour zero. It shows that using
non-shortest routes helps in solving additional problems.

8.8.3 Multi-Scenario Scheduling

The multi-scenario strategy can use all available single-scenario scheduling strate-
gies. For the experiments, the knowledge strategy with 800 ripups is used as this
strategy solves the largest number of single-scenario scheduling problems. This
indicates that this strategy is the most resource efficient strategy. The state-of-
the-art strategy presented in [99] is used as a comparison for the multi-scenario
scheduling strategy. This strategy assumes that two scheduling problems cannot
share slots when the scheduling problems overlap. In [99], the strategy is used in
combination with the reference strategy. The experiments on the single-scenario

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 135

scheduling strategies showed that all the strategies presented in Section 8.6 are
more resource efficient than this strategy. To exclude the influence of the reference
strategy on the results obtained with the strategy from [99], the strategy from
[99] is used in combination with the best strategy from Section 8.6. This is the
knowledge strategy with 800 ripups.

All multi-scenario problems from the benchmark are scheduled on a 5x5 mesh
topology. The multi-scenario scheduling strategy presented in this chapter is able
to find a feasible scheduling function for 74% of the problems. The strategy from
[99] fails to find a feasible scheduling function for any of the 500 problems. This
is due to the fact that the number of slots occupied by each individual scenario
is too large to allow a combination of both scenarios in each of the problems on
the NoC. To schedule the multi-scenario scheduling problems using the strategy
from [99] a NoC with more resources (e.g. larger bandwidth, larger slot tables) are
needed. Using the multi-scenario strategy from this chapter, many problems can
be scheduled within the available resources. This shows that slot sharing between
scenarios can have a large impact on the required resources.

8.8.4 Cost functions

Cost functions are used in the scheduling strategies to sort the messages M and
routes R. The cost functions should minimize the chance of having a conflict when
scheduling messages. They are constructed in such a way that the most resource
constrained messages are handled first and that the resource usage is balanced
over all links in the NoC. However, by doing so, they up-front exclude points from
the solution-space. To circumvent this problem, randomly ordered sets M and R
can be used as an alternative for the cost functions.

To test the impact of the cost functions on the quality of the strategies, the
cost functions in the ripup strategy are replaced with a mechanism which assigns
random costs to messages and routes. Experiments showed that the number of
times this randomized strategy is executed with a fixed number of ripups on a
given problem set did not have an influence on the number of problems for which
a feasible schedule function is found. However, the number of problems solved
within a limited run-time and randomly ordered messages and routes is far lower
than the number of problems solved by any of the heuristics in the same time.
This shows that the cost functions in the heuristics are effective in ordering the
messages and routes.

8.8.5 Scalability

The experiments showed that the run-time of the various strategies increases
when the size of the topology increases (see Figure 8.7). This is caused by the
fact that the number of links in a route increases and that the number of routes
which is considered when a scheduling strategy tries to find a schedule entity for
a message increases. Therefore also some experiments are done for a 9x9 mesh.

136 8.9. EXTRACTING COMMUNICATION SCENARIOS FROM SDFGS

0 20 40 60 80 100 120
0

2

4

6

8

10
x 10

4

average #routes/message

tim
e

[m
s]

greedy

ripup

knowledge

reference

improved ref

Figure 8.8: Relation between run-time and mesh-size.

When going from a 5x5 mesh to a 9x9 mesh and assuming that each tile has an
equal chance of being the source/destination of a stream, the average number
of links in a route goes from 3.33 links to 6.00 links and the average number of
routes which is considered for a single scheduling entity increases from 5.41 routes
to 113.73 routes. So, with increasing mesh-size, a scheduling strategy has to
consider potentially more links and more routes when it tries to find a scheduling
entity for a message. Figure 8.8 shows the relation between the run-time of
the scheduling strategies and the average number of routes which is considered
when scheduling a message on a mesh-topology. It shows that the run-time of
the strategies increases more than linearly with increasing mesh-size. This could
potentially lead to large run-times for the scheduling strategies when the size
of the NoC increases. However, in many practical situations, an algorithm that
maps tasks to tiles will try to keep the source and destination of a stream close
to each other. In other words, the algorithm will try to map an application to a
region of the platform and not utilizing resources all across the platform. As a
result, the average length of a route and the number of routes which is considered
when scheduling a message is in many practical cases not proportional with the
topology-size. It grows (much) less rapidly. Furthermore, the experimental results
presented in Table 8.2 show that the run-time of all strategies is still within seconds
when an application is mapped to a region of 7x7 tiles. So, all scheduling strategies
can definitely be used when an application is mapped to a region of this size.

8.9 Extracting Communication Scenarios from SDFGs

The communication task graph model that is used in the NoC routing and schedul-
ing problem (see Section 8.3) has a communication centric view on an application.
It assumes that an application can be described by a set of communication sce-
narios in which every scenario contains a set of messages that is communicated
within time bounds between the tasks of the application. The predictable design-

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 137

a1
2 3d1

a2

(a) SDFG.

a1
2 3

a2

1
ac

3

1
1 1

1

1

1

2
94

d1

as
1 1

2 3

1

1
1 1

1

1

aρ

2 3

1 1

(b) Binding-aware SDFG.

Figure 8.9: Example of an SDFG and its binding-aware SDFG.

flow, presented in Section 1.4 and in more detail in Chapter 9, is based on the
synchronous dataflow (SDF) model. This section explains the relation between
this SDF model and the communication task graph model.

The execution of a (binding-aware) SDFG can be captured in a state-space
traversal (see Section 4.3 and Section 6.6). For example, Figure 8.10 shows the
state-space of the self-timed execution of the binding-aware SDFG shown in Figure
8.9(b) (of which the details are explained below). An important observation is
that the constrained execution consists of a transient phase that is executed once
followed by a periodic phase that is executed infinitely often. The main idea is to
construct a communication scenario for each of the two phases in the execution of
the SDFG. The first scenario captures the communication of all token produced
in the transient phase. The second scenario captures the communication of all
tokens produced in one period of the periodic phase.

The procedure for extracting the two communication scenarios that describe
all token communications taking place during the execution of an SDFG when
bound and scheduled to a multi-processor system is illustrated with the example
SDFG shown in Figure 8.9(a). As discussed in Chapter 6, the binding and schedul-
ing of an SDFG to a multi-processor system can be described with a binding-aware
SDFG. Assume now that the actors a1 and a2 of the example SDFG are bound to
different tiles in the system. Figure 8.9(b) shows the binding-aware SDFG for the
example. The actors a1 and a2 in the binding-aware SDFG have respectively an
execution time of 4 and 2 time-units. Assume that the latency of the connection
from the tile onto which a1 is bound to the tile onto which a2 is bound is 1 time
unit and that the dependency edge d1 also has a minimal latency of 1 time unit.
The actors ac and aρ, which model respectively the interconnect latency and the
dependency edge latency, have therefore both an execution time of 1 time-unit.
Assume now that the processors in both tiles have a timewheel with a size of 2
time-units. The complete timewheel has been reserved for the example SDFG on
the processor to which a1 is bound. On the processor in the other tile, only 50%
of the timewheel (1 time-unit) has been reserved for the SDFG. Therefore, the
execution time of the actor as that models the synchronization of the timewheels

138 8.9. EXTRACTING COMMUNICATION SCENARIOS FROM SDFGS

a1, 4 a1, ac, aρ, aρ, 2 ac, as, aρ, aρ, 2 a1, ac, as, 2 ac, as, aρ, aρ, 1

a1, ac, as, 2

ac, as, aρ, aρ, 2

a2, aρ, aρ, 1 a1, ac, as, 1

ac, as, 2

a1, ac, as, 2

a2, 1

Figure 8.10: Execution of the binding-aware SDFG.

on the two tiles is equal to 1 time-unit. (See Section 6.6.1 for a detailed discussion
on the actors aρ, ac and as.) Static-order schedules are trivial as both a1 and a2

are bound to different tiles.
The actor bindings imply also that the dependency edge d1 is bound to the

interconnect between the tiles. The communication of tokens sent via this edge
from a1 to a2 must be scheduled on the interconnect. Each token corresponds to
a message. In general, a sequence of gcd(Rate(SrcP (d1), DstP (d1))) tokens can
be combined into a message without introducing additional timing constraints.
This minimizes the packetization overhead without constraining the scheduling
problem. For the scheduling problem, time-bounds need to be derived on when
the communications can be started and how long these communications may take.
These timing constraints can be deduced from the state-space of the constrained
self-timed execution of the binding-aware SDFG. The states visited during the
constrained self-timed execution of the example binding-aware SDFG are shown
in Figure 8.10. As before, states are represented by black dots and state transitions
are indicated by edges. The label with a transition indicates which actors start
their firing in this transition and the elapsed time till the next state is reached.
The execution enters the periodic phase after 10 time-units. Hence, token com-
munications that are started during the first 9 time-units of the SDFG execution
belong to the scenario of the transient phase. All other token communications be-
long to the scenario of the periodic phase. The state-space shows that the periodic
phase has a length of 12 time-units. This implies that all token communications
that belong to the periodic phase are repeated every 12 time-units.

The state-space also captures the relation between the times at which tokens
are produced onto d1 by actor a1 and the times at which these tokens are consumed
from d1 by a2. This relation is shown in Figure 8.11. At time-unit 4, the first firing
of a1 ends with the production of 2 tokens on d1. These tokens are consumed by
the first firing of a2, which starts at time-unit 11. This firing of a2 consumes also
one token that is produced by the second firing of a1. The other token produced
by the second firing of a1 is consumed by the next firing of a2 which starts at time-
unit 17. The third firing of a1 ends at time-unit 12 with the production of two
tokens on d1. The end of this firing occurs after the start of the periodic phase. So,
the token communication related to the tokens produced in the first two firings
of a1 belong to the transient scenario. The subsequent firings produce tokens

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 139

a1 a2

4

8

12

16

20

11

17

23

29

24

28

32

scenario 2 (1 period)

scenario 1 (1 period)

36 35

scenario 2 (1 period)

10

22
scenario 2

34

Figure 8.11: Communication on dependency edge d1.

that result in token communications that take place in the periodic scenario. The
tokens produced by the second firing of a1 are consumed by the second firing of
a2 that starts at time-unit 17. At that moment, all tokens produced by firings of
a1 that belong to the transient scenario are related to firings of a2. This marks
the end of the transient scenario. In the example, it has therefore a length of 17
time-units.

Figure 8.11 shows the time at which tokens are produced on and consumed
from d1. The time of production is the latest possible time in which the firing
of actor a1 will finish on the processor. It can therefore be used as the earliest
time at which the communication of the token on the interconnect can start as
before this moment in time it cannot be guaranteed that the token is available.
The consumption time of a token is the latest possible time at which the involved
firing of actor a2 starts. In an implementation, the firing of a2 may start earlier
due to the relative position of timewheels or the position of the allocated time
slices on a timewheel. The worst-case situation, as illustrated in Figure 8.12(a),
is that the token which enables the firing of a2 arrives exactly after the reserved
time-slice (ω) has passed. In this situation, the start of the firing is postponed
for w−ω time-units. On the other hand, the token which enables the firing of a2

can also arrive while the timewheel is within the reserved time-slice. The actor
firing can then be started immediately. Recall that in order to guarantee that the
throughput analysis is conservative, the self-timed constrained execution exhibits
the worst-case allocation of the TDMA time wheel allocations from the perspective
of the processors. A token should therefore be available in the receiving tile at least
w−ω time-units before the start of the firing of a2 as observed in the constrained
self-timed execution to guarantee that the firing of a2 is not delayed when the
position of the timewheel is different in an implementation as compared to the

140 8.9. EXTRACTING COMMUNICATION SCENARIOS FROM SDFGS

ω

w

current slot

(a) Worst-case.

ω

w

current slot

(b) Best-case.

Figure 8.12: TDMA timewheel position.

constrained self-timed execution. Note that the time between the production and
consumption of a token sent over the edge d1 as seen in the constrained self-timed
execution is always at least equal to the sum of the execution times of the actors
ac and as. The execution time of ac is larger than zero and the execution time
of as is equal to w − ω. So, the duration in which a token must be sent over the
interconnect is guaranteed to be at least equal to the execution time of ac.

It is now straightforward to construct the sets of messages that capture the
communication behavior of the example SDFG in both the transient and periodic
scenario. Every token sent over the edge d1 forms a message m = (u, v, s, n, τ, δ, sz)
in the communication task graph. The start-time τ of m is equal to the time at
which the corresponding token is produced on the edge. The maximal duration δ
of the message is equal to the consumption time of the corresponding token minus
τ and minus w − ω. The source vertex u and destination vertex v, stream s and
token size sz follow directly from the binding-aware SDFG. The sequence num-
ber n of the message follows directly from the state-space. The sets of messages
found for the example SDFG are shown in Figure 8.13. The overlap between the
two scenarios also follows from the state-space. The state-space shows that the
periodic phase is entered at time-unit 10. This marks the start of the periodic
scenario. As mentioned before, the transient scenario ends at time-unit 17. So,
the two scenarios have an overlap of 8 time-units.

The method described above can be used to extract the communication sce-
narios and their overlap from the execution of an SDFG. It cannot be guaranteed
that the length of the periods and their overlap is a multiple of the slot table size.
However, as explained in Section 8.5, the scheduling problem assumes that both
the period and overlap are a multiple of the slot table size. In the example that
is discussed in this section, a slot-table size of 8 slots is assumed. To guarantee
that the overlap between the scenarios and the period of scenarios are a multiple
of the slot table size, the length of the transient scenario must be extended such
that this requirement is met. First, the end of the transient scenario is simply
extended to guarantee that the overlap becomes a multiple of the slot table size.
This is not needed for the example as the overlap between the two scenarios is
already a multiple of the slot table size. Next, the start of transient scenario is

8. NETWORK-ON-CHIP ROUTING AND SCHEDULING 141

4 108

Pt = 17

d1

messages

transient

scenario

messages

periodic

scenario

d1

2 10

Pp = 12

6 18

Figure 8.13: Scenarios in the SDFG execution.

11 1715

Pt = 24

d1

messages

transient

scenario

messages

periodic

scenario

d1

2 10

Pp = 24

6 1814 22 30

Figure 8.14: Scenarios with extended periods.

shifted such that the total period becomes a multiple of the slot table size. For
the example SDFG, this means a shift over 7 time-units. To solve the potential
mismatch between the period of the periodic scenario (Pp) and the slot table size
(N), the scenario should be concatenated a number of times (lcm(Pp, N)/Pp) till
the period of the resulting scenario is equal to lcm(Pp, N). The resulting scenarios
with their periods for the example are shown in Figure 8.14. The overlap between
the two scenarios is 8 time-units.

8.10 Summary

This chapter studies the problem of scheduling time-constrained communication
of streaming applications on a NoC. Several new strategies are presented to route
and schedule streaming communication. The scheduling strategies use all routing
and scheduling flexibility offered by modern NoCs while limiting resource usage.
Short routes and the reservation of consecutive slots in slot tables minimize re-
source usage and packetization overhead. However, they also create potential
bottlenecks in the NoC, which may render some resources unusable for scheduling
other streams. The use of non-minimal routes and non-consecutive slot reser-
vations might increase scheduling freedom for remaining streams. The strategies

142 8.10. SUMMARY

presented in this chapter try to find a good compromise in the allocation of routes
and slot-table slots. The experiments show that these strategies perform better
than the state-of-the-art strategy of [59]. The reason is that the strategies exploit
freedom offered by modern NoCs not used in the existing strategy. Additionally,
it is shown that adding backtracking to this state-of-the-art strategy improves its
results considerably with only a small overhead on its run-time.

This chapter also shows that the dynamism in communication patterns of
an application can be captured in a set of time-constrained scheduling problems.
Sharing slots from a slot-table between these problems is possible when the timing
relations between the problems are taken into account. The experimental results
show that this reduces the amount of resources needed to schedule an application
onto a NoC outperforming the technique of [99].

Furthermore, a technique is presented to extract a time-constrained scheduling
problem for a NoC from an SDFG that is bound and scheduled onto a multi-
processor system. This technique can be used in combination with the scheduling
strategies presented in this chapter to schedule the communication between actors
of an SDFG on a NoC while providing timing guarantees.

Chapter 9

Design Flow

9.1 Overview

The number of applications integrated into new consumer electronics devices is
increasing rapidly. At the same time, user expectations on the quality of these
devices is ever increasing. To manage the design complexity, a predictable system
and design flow are needed that guarantee that an application can perform its own
tasks within strict timing deadlines independent of other applications running on
the system. This requires that the timing behavior of the hardware, the software,
as well as their interaction can be predicted.

This chapter combines the modeling, resource allocation, analysis and schedul-
ing techniques presented in this thesis into a coherent design flow that maps a
streaming application onto a NoC-based MP-SoC architecture while offering a
predictable timing behavior. The objective is to minimize the resource usage
while offering guarantees on the throughput of an application when mapped to
the system. The design flow is shown in Figure 9.1 (which is a replication of Fig-
ure 1.6, for easy of readability). It takes as an input a throughput-constrained,
streaming application that is modeled as an SDFG. This streaming application
SDFG is mapped in 4 phases onto a NoC-based MP-SoC architecture. This archi-
tecture is a predictable platform as described in Chapter 3. The first phase of the
design flow, called memory dimensioning, deals with the storage-space that is
needed for the tokens communicated over the edges of the SDFG. When a token
does not fit into the local memory of a processing tile, it transforms the streaming
application SDFG to model accesses to this token when it is stored in a memory
tile. The memory dimensioning phase computes also the trade-off space between
the storage-space allocated to the edges of the graph and the maximal through-
put that can be realized under those allocations. It uses this trade-off space to
constrain the storage space of the edges in the application SDFG. The next phase,

143

144 9.1. OVERVIEW

Streaming application SDFG

(3) Select storage distribution

(4) Estimate storage distribution per connection

(5) Estimate latency constraints

(6) Compute bandwidth constraints

(7) Bind SDFG to tiles

(8) Construct static-order schedules per tile

(9) Allocate TDMA time-slices

(10) Optimize storage space allocations

(11) Communication constraint extraction

(12) Communication scheduling

(13) Update bandwidth allocations

MP-SoC configuration

Platform graph

(1) Model non-local memory accesses

M
e
m

o
r
y

D
im

e
n
s
io

n
in

g

T
il
e

b
in

d
in

g
a
n
d

s
c
h
e
d
u
li
n
g

C
o
n
s
tr

a
in

t
r
e
fi
n
e
m

e
n
t

N
o
C

r
o
u
ti

n
g

a
n
d

s
c
h
e
d
u
li
n
g

Interconnect graph

(2) Compute storage-space / throughput trade-offs

Throughput constraint

Memory-aware SDFG Throughput constraint

Resource-aware SDFG Throughput constraint

Binding-aware SDFG Throughput constraint / scheduling constraints

iterate

update

Figure 9.1: SDFG-based MP-SoC design flow.

9. DESIGN FLOW 145

called constraint refinement, uses these storage constraints to compute latency
and bandwidth constraints on the edges of the graph. All these constraints are
used to steer the binding of actors to the tiles of the MP-SoC architecture. This
binding process is performed in the third phase of the design flow. This phase,
called tile binding and scheduling, constructs also a static-order schedule for
the actors of an application that are bound to the same tile. Furthermore, it
allocates TDMA time slices on all tiles and it tries to minimize the storage-space
allocations. The final phase of the design flow, the NoC routing and schedul-
ing phase, deals with the allocation of TDMA slots on the links of the NoC. This
starts with the extraction of the NoC scheduling problem from the binding and
scheduling decisions made in the previous phase of the flow, after which a solution
is searched for the NoC scheduling problem. Finally, the actual bandwidth usage
of the NoC schedule is computed. This information is used to update the amount
of resources that is available for the next application that should be mapped to
the same NoC-based MP-SoC architecture. At various steps of the design flow,
the used algorithms may not be able to find a solution which satisfies the resource
and/or timing constraints. In those situations, an iteration over (part of) the
design flow must be made. The possible iterations are shown with dashed lines
in Figure 9.1. Iterations occur due to the lack of resources (step 7) or infeasible
timing constraints (step 9 and 12). In those situations, the design flow iterates
back to the first or third step of the flow and design decisions made in those steps
are revised. When going back to step 1, more or different tokens should be placed
in a memory that is accessed over the NoC. Reverting back to step 3 implies
that the storage space allocated to the edges is too constrained for meeting the
throughput constraint. So, a different storage distribution should be chosen.

The remainder of this chapter is organized as follows. The next section dis-
cusses related design flows. The input of the design flow is discussed in Section
9.3. The end result of the flow, a configured MP-SoC, is presented in Section 9.4.
The four phases of the flow are discussed in detail in Section 9.5 till Section 9.8.
The implementation of the design flow is presented in Section 9.9. The experi-
mental evaluation of the design flow via a non-trivial case study is presented in
the next chapter.

9.2 Related Work

Martin [91] and Jerraya [72] have recently signaled the need for the development
of an appropriate programming model for MP-SoCs. This programming model
must satisfy a number of requirements. First, it must make the concurrency in an
application explicit. Second, the model should be easy to implement on an MP-
SoC. Third, the model should allow simulation and analysis of its performance
during the design process. The flow presented in this chapter satisfies all these
requirements.

146 9.2. RELATED WORK

Benini and De Micheli introduce a system-level design methodology in [20].
They state that a programming model based on message passing is most suitable
for programming a NoC-based MP-SoC architecture. This programming model
is scalable, simple to implement on an MP-SoC and it fits well with the dataflow
languages that are used by application designers. The SDFG model that is used
in the design flow presented in this chapter can be implemented with message
passing. The methodology presented in [20] focuses on implementation aspects
and is as such not a design flow that constructs a mapping and it does not provide
performance guarantees.

Besides a programming model, Jerraya signals in [72] also the need for a
methodology that explores the design space in a structured way and that maps an
application onto an MP-SoC architecture. An overview of existing design space
exploration techniques can be found in [55]. Most of the exploration techniques
discussed in this paper focus on one (or a few) aspects of the design trajectory
(e.g., task binding or memory optimization). These techniques do not offer a
complete design flow. The flow presented in this chapter covers a much larger
part of the design trajectory as it provides a complete MP-SoC configuration.

Two different types of design flows can be distinguished based on the potential
for customization of the MP-SoC architecture. The first type is a synthesis
flow in which the architecture is constructed during the flow using a library of
architecture components. The second type, called compilation flow, uses a fixed
MP-SoC architecture. The design flow presented in this chapter is an example
of a compilation flow. It does not change or optimize the MP-SoC architecture.
Instead, it compiles a given application onto a given architecture.

The most important problems in the design of NoC-based systems are sum-
marized in [105]. The paper focuses on the synthesis of a NoC-based MP-SoC.
Therefore, not all problems discussed in the paper are related to the compilation
flow that is presented in this chapter. Furthermore, the application model used in
[105], acyclic task graphs, is more limited than the SDFG model used in the flow
presented in this chapter. Nevertheless, in the context of a compilation flow for
SDFGs, the flow in this chapter and the techniques presented in this thesis address
and solve some of the problems mentioned in [105]. It addresses the problem of
determining buffer sizes for NoC communication buffers (Chapter 7), a solution
to the NoC communication scheduling problem is proposed (Chapter 8), and the
problem of scheduling tasks on a processor is addressed (Chapter 6).

In [98], a flow is presented to synthesize a crossbar interconnect that meets
the performance constraints of a set of applications while minimizing the resource
usage. This flow does not consider the allocation of resources (e.g., storage space,
processors) to tasks nor the scheduling of these tasks on the resources. The flow
presented in this chapter does addresses these issues.

An approach to synthesize a NoC-based MP-SoC is presented in [59]. It as-
sumes that a single task is running on a processor and edges between tasks have
a latency and bandwidth constraint. The result of the synthesis flow is a system
in which the latency and bandwidth constraints for all edges going through the

9. DESIGN FLOW 147

NoC are satisfied. The flow does not consider resource sharing between multiple
applications as opposed to the flow presented in this chapter.

A compilation flow that maps an abstract model of an application onto an
abstract model of the MP-SoC architecture is outlined in [90]. The methodology
follows the Y-chart approach [79], which is a general approach to map an appli-
cation to an architecture. After construction of a mapping, performance analysis
is performed. If needed, the application, architecture or mapping are changed
and the performance analysis is performed again. The methodology presented in
[90] suggests to use stochastic automata networks [115] to model the application,
architecture and their mapping. The paper shows how communication refinement
can be performed on an application which is modeled with a stochastic automata
network and that is mapped onto a NoC-based MP-SoC. It also gives a compre-
hensive overview of existing algorithms and techniques to map and schedule an
application onto the architecture. Furthermore, the paper observes the need for
system-level design methodologies that allow analysis of the design decisions. The
design flow presented in this chapter is an example of such a design methodology.

Hu et al. present in [64] a compilation flow which considers the binding of
tasks to processors and the scheduling of their communication on a NoC. The flow
assumes that the application is modeled with an acyclic HSDFG. After binding
the actors to the processors, a start time is chosen at which actor firings start.
From these start times, the NoC scheduling problem is derived and subsequently
solved. No additional constraints (e.g., storage-space dimensioning and allocation)
are considered in this flow. The flow assumes that sufficient storage space is
available to store all data between its production and consumption time. Due
to the limitations of the application model, it cannot handle multi-rate behavior,
iterative streaming behavior and cyclic dependencies.

The Artemis/Sesame flow [113, 37] is closely related to the flow presented in
this chapter. Artemis uses a multi-objective optimization strategy based on an
evolutionary algorithm to map an application onto a MP-SoC. Using Compaan
[130], a design flow is available that can map an application modeled with a Kahn
process network onto a MP-SoC architecture. In contrast with the flow presented
in this chapter, their mapping strategy does not consider the dimensioning of
storage space (buffer sizes), the scheduling of NoC communication and it does
not provide any timing guarantees on the application when executed on the MP-
SoC.

Another compilation flow is presented in [95]. This flow is in several aspects
similar to the design flow presented in this chapter. The flow maps a throughput-
constrained HSDFG to an homogeneous MP-SoC in which multiple actors can
share processing resources. The design flow determines latency, bandwidth and
storage-space constraints for the edges of the graph. It also allocates TDMA time
slices for the actors that share a processing resource. However, the flow does
not consider the scheduling of communication on the interconnect. Instead, it
uses an abstract model for the interconnect with some ideal properties (e.g., no
contention between data sent between different tiles), similar to the abstraction

148 9.3. STARTING POINT

a1
1 3d21 1d1

a3a2

Figure 9.2: Example streaming application SDFG.

Table 9.1: Properties of the streaming application SDFG of Figure 9.2.
p1(τ, µ) p2(τ, µ) sz λ

a1 (5, 200) (20, 200) d1 128 0.0085
a2 (5, 350) (∞,∞) d2 64
a3 (∞,∞) (30, 100)

made in Chapter 6 of this thesis. The design flow presented in this chapter
can deal with arbitrary SDFGs and heterogeneous MP-SoCs and it considers the
scheduling of communication onto a NoC interconnect.

9.3 Starting Point

The design flow shown in Figure 9.1 starts with a throughput-constrained, stream-
ing application and a NoC-based MP-SoC onto which the application must be
mapped. This section describes the information that must be available about the
application and the MP-SoC architecture at the start of the design flow.

A streaming application must be modeled with an SDFG. Annotations are
needed to the actors and edges of the graph that specify properties like execution
time or token size. Formally, a throughput-constrained streaming application
SDFG serving as input to the design flow is defined as follows. Let PT be the set
of processor types considered in the flow.

Definition 38. (Streaming application SDFG) A streaming application
SDFG (A, D, Γ, Θ, λ) is a 5-tuple consisting of an SDFG (A, D), the functions
Γ : A× PT → N

∞ × N
∞
0 and Θ : D → N0, and the throughput constraint λ ∈ R.

Function Γ gives for each actor a ∈ A and each processor type pt ∈ PT a tuple
(τ, µ) with τ and µ respectively the execution time (in time units) and memory
requirement (in bits) of actor a when assigned to a processor of type pt or ∞ if
actor a cannot be assigned to a processor of type pt. Function Θ gives for each
dependency edge d ∈ D the size sz of a token (in bits).

Figure 9.2 shows an example of a streaming application SDFG. The require-
ments for the actors and edges are shown in Table 9.1. This table shows, for
example, that actor a1 can be bound to a processor of type p1 and to a processor
of type p2. Actors a2 and a3 on the other hand can only be bound to one processor
type. These properties must be provided by the application designer. They can

9. DESIGN FLOW 149

P1

M1 NI

t1 P2

M2 NI

t2

P2

M2 NI

t4

NI

t3

R2R1

R4R3

l5 l6

l7 l8
l9

l10

l11 l12

l13 l14 l15 l16

l1 l2
l3

l4

P3

M3

Figure 9.3: Example NoC-based MP-SoC architecture.

be derived using the code analysis techniques discussed in Chapter 2.

The design flow needs as input, besides the streaming application SDFG, a
NoC-based MP-SoC architecture. An example of such an architecture is shown in
Figure 9.3. The properties of the resources inside the tiles are shown in Table 9.2.
The architecture consists of three processing tiles (t1, t2 and t4) and one memory
tile (t3) that are interconnected via a NoC with four routers. For each tile, Table
9.2 specifies the processor type (pt), the TDMA time wheel size (ω, in time-units),
the amount of memory (m, in bits), the number of supported connections (c), the
input bandwidth (i, in bits/time-unit) and the output bandwidth (o, in bits/time-
unit). The properties of the NoC are shown in Table 9.3. It shows that each link
has a slot-table with 8 slots (N) and that 96 bits (szflit) can be transferred over
a link in one time-unit (i.e. the flit clock of the NoC is equal to one time-unit),
the size of a packet header (szph) is 32 bits, and that the NI reconfiguration time
is 32 time-units. This reconfiguration time specifies the time that is needed to
update the routing information for a slot in the slot table of a NI (see Section
8.4).

The NoC-based MP-SoC architecture is used in the tile binding and scheduling
phase of the design flow and in the NoC routing and scheduling phase. Both phases
use a different abstraction of the architecture. The tile binding and scheduling
phase abstracts from the links and routers in the interconnect. It uses a platform
graph (see Definition 13) that assumes point-to-point connections with a fixed
latency between the tiles in the platform. The NoC routing and scheduling phase
on the other hand abstracts from the resources inside a tile. It only considers the
links and routers in the NoC and their connections to the tiles. The structure

150 9.4. MP-SOC CONFIGURATION

Table 9.2: Properties of the tiles in the architecture of Figure 9.3.
pt w m c i o

t1 p1 100 1000 10 96 96
t2 p2 100 500 10 96 96
t3 p3 100 1000 10 96 96
t4 p2 100 500 10 96 96

Table 9.3: Properties of the NoC in the architecture of Figure 9.3.
N szflit szph Treconf

8 96 32 32

and properties of the NoC resources are described with an interconnect graph (see
Definition 33).

As mentioned, the platform graph abstracts from the NoC by using the notion
of point-to-point connections between tiles. A system designer must specify the
available connections and their latency. A connection from a tile ti to a tile tj can
only exist when there exists a route in the NoC from ti to tj . As a first estimate,
the latency can be set equal to the number of links in the shortest route from ti to
tj . Other properties of the links on the route (e.g. congestion) can also be taken
into account. A designer can also decide not to specify a connection. This avoids
that the source and destination actor of some dependency edge in the streaming
application SDFG are bound to respectively ti and tj . In this way, a designer can
partition the architecture into smaller sub-parts of which only one is used in the
tile binding and scheduling phase.

9.4 MP-SoC Configuration

The end result of the NoC-based MP-SoC design flow is a streaming application
SDFG that is bound and scheduled onto the resources of the NoC-based MP-SoC
architecture. Formally, the MP-SoC configuration consists of a feasible resource
allocation as discussed in Section 6.5 and a feasible NoC schedule as discussed in
Section 8.5.

Figure 9.4 shows the binding and scheduling of the example application shown
in Figure 9.2 onto the architecture of Figure 9.3 as determined by the design flow.
In this case, the actors a1 and a2 are bound to tile t1. Therefore, also edge
d1 is bound to t1. Actor a3 has been bound to tile t2. This implies that the
edge d2 goes from tile t1 through the NoC to tile t2. Storage-space for 1 token
of d1 and 2 tokens of d2 has been allocated on t1. The actors a1 and a2 are
executed on t1 using the static-order schedule (a1a2)

∗. To separate the execution
of this application from other applications, 75% of the TDMA time-wheel has
been reserved on tile t1. Similar allocations are made for edge d2 and actor a3

9. DESIGN FLOW 151

P1

M1 NI

t1 P2

M2 NI

t2

P2

M2 NI

t4

NI

t3

R2R1

R4R3

l5 l6

l7 l8
l9

l10

l11 l12

l13 l14 l15 l16

l1 l2
l3

l4

P3

M3

a1
1 3d21 1d1

a3a2

ω: 75%, (a1a2)
∗ ω: 75%, (a3)

∗

d1: 1 token, d2: 2 tokens d2: 3 tokens

Figure 9.4: MP-SoC configuration.

on tile t2. The MP-SoC configuration shown in Figure 9.4 specifies further the
allocated slots on the links l1, l3 and l6 that are used to send the tokens from actor
a2 through d2 to a3. Using this resource allocation, the throughput constraint of
the application, λ (see Table 9.1), is met. The streaming application SDFG can
realize under the given resource allocation and schedule a throughput of 0.0088
iterations/time-unit, which is above the throughput constraint of the application.

9.5 Memory Dimensioning

This section discusses the details of the memory dimensioning phase of the design
flow. This is the first phase of the flow shown in Figure 9.1. The result of this
phase is a memory-aware SDFG which is formally defined as follows. Compared
to the streaming application SDFG (see Definition 38), the memory-aware SDFG
contains additional storage constraints for the edges of the graph, redefining func-
tion Θ. These constraints are computed in the memory dimensioning phase.

Definition 39. (Memory-aware SDFG) A memory-aware SDFG (A, D, Γ, Θ, λ)
is a 5-tuple consisting of an SDFG (A, D), the functions Γ : A×PT → N

∞×N
∞
0

and Θ : D → N
4
0, and the throughput constraint λ ∈ R. Function Γ is defined

as in Definition 38. Function Θ gives for each dependency edge d ∈ D from an

152 9.5. MEMORY DIMENSIONING

actor ai = SrcA(d) to an actor aj = DstA(d) a 4-tuple (sz, αtile, αsrc, αdst) with
sz the size of a token (in bits), αtile the memory (in tokens) required when ai and
aj are assigned to a single tile, αsrc and αdst the memory (in tokens) required in
the source and destination tile when ai and aj are assigned to different tiles.

The sets of actors and dependencies of the memory-aware SDFG may in fact
differ from those sets in the application SDFG. This occurs if some of the data
tokens need to be stored in non-local memories.

9.5.1 Modeling Non-Local Memory Accesses

The first step in the memory dimensioning phase, the model non-local memory
accesses step, is responsible for dealing with tokens that are too large to fit into
the memory of the processing tile to which the producing or consuming actor is
bound. These tokens must be stored in a memory tile. The decision to store
tokens in a memory tile must, for two reasons, be modeled into the streaming
application SDFG. First, the modeling of this design decision makes the resource
requirements explicit. Second, the transformed SDFG allows reasoning about the
timing behavior when tokens in a memory tile are accessed by an actor which
executes on a processing tile. An SDF model to make non-local memory accesses
explicit is presented in Chapter 5. This model allows timing analysis and it also
captures the resource requirements for storing tokens in a memory tile.

A system-designer must decide which tokens are stored in a memory tile.
Often, multimedia applications use only a limited number of large data objects.
These applications focus on streaming data and try to avoid producing large
amounts of data in bursts. So, the number of edges that communicate tokens
which are too large to be stored in the memory of a processing tile is limited. The
streaming application SDFG specifies the size of the token communicated over the
dependency edges. The designer can use this information to decide which tokens
should be stored in a memory tile. Alternatively, a designer could initially decide
to assume that all tokens fit into the memories of the processing tiles and continue
with the next step of the design flow. This decision can always be revised when
during a later stage of the design flow no binding of the graph to the architecture
can be found due to insufficient memory resources in the processing tiles. At that
moment, it will be clear which tokens cannot be stored in a processing tile. The
designer must then return to the memory modeling step and model the design
decision to store these tokens in a memory tile into the streaming application
SDFG. If the system designer decides to map a token to a remote memory tile, he
must also provide appropriate execution times, state sizes and token sizes for the
actors and edges of the memory access model that is used to refine the streaming
application SDFG. Currently, the decision to map tokens to non-local memories
and the analysis of resource requirements resulting from such a mapping is not
yet supported by automated tools in the flow. Providing tool support for this
step is an interesting topic for future research.

9. DESIGN FLOW 153

Consider now the streaming application SDFG shown in Figure 9.2 and the
targeted NoC-based architecture shown in Figure 9.3. The memories inside the
processing tiles are large compared to the token sizes. Therefore it does not seem
logical to store any of the tokens in a memory tile. So, it is not needed to model
any remote memory accesses in the streaming application SDFG that is the input
to the flow.

9.5.2 Compute Trade-Offs between Storage-Space and Throughput

After modeling the non-local memory accesses, the design flow continues with
the second step of the flow. In this step, a trade-off is computed between the
storage space allocated to the dependency edges of the SDFG and the maximal
throughput that can be realized within these storage bounds. This trade-off space
can be used as an indication of the storage-space that must be allocated to the
dependency edges to realize a certain throughput.

Chapter 7 presents techniques to find the trade-offs between the storage-space
distributions of an SDFG and the maximal throughput realized within this storage
space. This trade-off space can be computed using the storage-space/throughput
trade-off algorithm presented in Section 7.5 or the approximation technique of
Section 7.7. When using the exact technique, these storage-space distributions
are proved to be the minimal storage distributions needed to realize the associated
throughputs.

The trade-off analysis of Chapter 7 allows auto-concurrency. This enables
multiple copies of an actor to fire simultaneously. In an actual system, only one
instance of an actor can be executed at the same time on a processor. To take
this into account, the second step of the design flow adds a self-edge with one
token to every actor in the memory-aware SDFG before computing the storage-
space/throughput trade-off space. This step of the design flow assigns to ev-
ery actor its minimal execution time on any processor type before executing the
storage-space/throughput algorithm. The trade-off space contains in this case the
trade-offs between the maximal throughput that can be realized within a given
storage-space for any possible mapping. In other words, the trade-off space gives
the trade-off between the storage space and the highest throughput that can be
realized in the design flow. These trade-offs can be used in the remainder of the
flow to minimize the amount of memory allocated to the dependency edges of the
SDFG.

The trade-off space for the storage distributions and their maximal throughput
of the example application is shown in Figure 9.5. The trade-off space shows that
the maximal throughput of the application is 0.033 iterations/time-unit. This is
an upper-bound on the throughput that can be realized when actors have to share
processors and communication introduces a delay. The throughput constraint of
the example application is below this maximal throughput. This indicates that
it might be possible to find a mapping that satisfies the throughput constraint.
When the throughput constraint exceeds the maximal throughput, it is certain

154 9.5. MEMORY DIMENSIONING

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

th
ro

ug
hp

ut
 [i

te
ra

tio
ns

/ti
m

e−
un

it]

distribution size [tokens]

〈 1,3 〉
〈 1,4 〉
〈 2,3 〉 〈 1,5 〉

〈 1,6 〉

Figure 9.5: Pareto space for the example streaming application SDFG.

that no mapping exists that satisfies the timing constraints.

9.5.3 Select Storage Space Requirements Edges

The previous step of the design flow computed the minimal storage distributions
of the streaming application SDFG. In this step of the design flow, one of these
minimal storage distribution is selected. This storage distribution is used to
constrain the storage space allocated to the dependency edges. This decision will
also impact the latency and bandwidth constraints of these edges as computed in
the next phase of the flow.

The smallest storage distribution with a non-zero throughput gives the storage-
space that must be allocated to the dependency edges to allow a deadlock-free ex-
ecution. So, it gives for every dependency edge the smallest storage-space needed
to allow sequential, deadlock-free execution of its source and destination actor.
A sequential execution occurs when the source and destination actor of a depen-
dency edge d ∈ D are bound to the same tile. To minimize the memory usage,
the storage-space constraint αtile for d, specified in the memory-aware SDFG, is
chosen equal to the storage-space allocated to d in the smallest minimal storage
distribution allowing a positive throughput.

The source and destination actor of an edge d ∈ D can fire concurrently when
they are bound to different tiles. When more storage-space is available for d
than the minimum needed to guarantee a deadlock-free execution, the actors may
be able to exploit this concurrency. This can lead to an increase in throughput.
The optimal trade-offs between allocated storage space and throughput have been

9. DESIGN FLOW 155

computed in the previous step of the design flow. This step of the design flow
selects one of these storage distributions, to constrain the storage space of the
edges in the graph for the remainder of the flow. I.e., a storage distribution must
be chosen to determine the αsrc and αdst constraints for each edge in the memory-
aware SDFG. Initially, the smallest storage distribution δs is selected which has
a throughput λs ≥ λ. When the throughput constraint, λ, of the streaming
application SDFG cannot be met in a subsequent step of the flow, the storage
space requirements must be increased. In that case, the next minimal storage
distribution from the trade-off space should be used to constrain the storage space
of the edges. This procedure of enlarging the storage space of the dependency
edges should be repeated till either a storage space distribution is used with
which the complete flow can be completed or till all storage space distributions
are tried without success. In the latter case, the design flow is not able to map
the application to the platform while meeting the throughput constraint.

Consider the trade-off space shown in Figure 9.5 for the streaming applica-
tion SDFG of Figure 9.2. The smallest storage distribution 〈1, 3〉 satisfies the
throughput constraint. Therefore, this storage distribution is initially selected
by the design flow to be used in the subsequent steps of the flow. This storage
distribution is also used to constrain the storage space of the dependency edges
d1 and d2 when their source and destination actors are bound to the same tile.

9.5.4 Estimate Storage Distribution per Connection

A storage distribution δs was selected in the previous step of the design flow.
This step of the design flow uses δs to constrain the storage space allocated for
a dependency edge d ∈ D when its source and destination actor are bound to
different tiles. The storage space of d is used to store data produced by an actor
firing before it is consumed by another actor firing. Sufficient storage space should
be allocated to d in both of the tiles to store all tokens produced or consumed
during one firing in the memory of the tile. So, the storage space αsrc allocated
on the source tile should offer at least sufficient room for Rate(SrcP (d)) tokens.
Similarly, the allocated storage space αdst in the destination tile should be at least
Rate(DstP (d)) tokens. Availability of at least these amounts of storage space
guarantees that during the firing of an actor, none of the tokens produced or
consumed by the firing have to be communicated through the interconnect. This
enables analysis of the worst-case execution time of an actor by only considering
the processor and the arbitration mechanism of the memory in the tile to which
the actor is bound. The storage distribution δs may offer more storage space to
d than the number of tokens needed for one firing of the source and destination
actor. In the heuristic used in the flow, the choice is made to distribute the storage
space evenly over the source and destination tile. This gives both the source and
destination actor some flexibility to fire without having to wait before tokens are
communicated over the interconnect. Dependency edge d may contain n initial
tokens. It is assumed that these tokens are initially stored in the memory of the

156 9.6. CONSTRAINT REFINEMENT

Table 9.4: Properties of the example application for storage distribution 〈1, 3〉.
p1(τ, µ) p2(τ, µ) sz αtile αsrc αdst ρ β

a1 (5, 200) (20, 200) d1 128 1 1 1 13 6.98
a2 (5, 350) (∞,∞) d2 64 3 2 3 61 3.49
a3 (∞,∞) (30, 100)

tile to which the source actor of d is bound. This assumption models the worst-
case situation in which the data needed to fire the destination actor is initially
available, but must still be communicated over the interconnect. The storage
space in the source tile should thus be large enough to keep all initial tokens.
Based on the assumptions mentioned above, the storage space constraints for an
edge d in the source and destination tile are given by:

αsrc(d) = max(

⌈

δs(d)

2

⌉

, Rate(SrcP (d)), n) (9.1)

αdst(d) = max(

⌈

δs(d)

2

⌉

, Rate(DstP (d))) (9.2)

In the previous step of the design flow, the storage distribution 〈1, 3〉 was
selected to constrain the storage space of the dependency edges d1 and d2 when
the source and destination actors of the example application are bound to different
tiles. The storage space constraints for d1 and d2, as computed using Equation
9.1 and Equation 9.2, are shown in Table 9.4. This table shows also the αtile

constraint derived in the previous step and the latency (ρ) and bandwidth (β)
constraints of the edges as computed in the next phase of the design flow.

9.6 Constraint Refinement

The tile binding and scheduling phase uses a resource-aware SDFG (see Definition
14). Compared to the memory-aware SDFG, it contains additional latency and
bandwidth constraints for the dependency edges of the graph. The second phase
of the design flow computes these constraints.

9.6.1 Estimate Latency Constraints

When analyzing the throughput of an SDFG, it is assumed that the transfer
of a token over a dependency edge takes no time. In a NoC-based MP-SoC, a
dependency edge may be bound to the NoC. In this case, some time is needed to
transfer a token from the sending to the receiving tile. This is because the NoC
over which the token is sent has a latency and a finite bandwidth. The token
may further be delayed because the actor which consumes it has to wait till the
TDMA time wheel reaches the time slice of the application. The resource-aware

9. DESIGN FLOW 157

SDFG specifies a minimal latency ρ for every edge d in the SDFG. This minimal
latency specifies the minimal time between the production and consumption of a
token on d when the source and destination actor are bound to different tiles. In
other words, it sets the minimal amount of time that can be used to sent a token
between two actors. This provides freedom to the scheduling problems solved in
the design flow.

The minimal latency ρ is used in the construction of a binding-aware SDFG
(see Section 6.6.1). Whenever an edge d from an actor ai to an actor aj is bound
to the interconnect, this edge is replaced with the SDF model shown in Figure
6.4(c). The execution time of the actor aρ is equal to the minimal latency ρ of
the edge. It is important to note that this latency is in general not equal to the
latency of a connection in the interconnect. The latter is included in the execution
time of the actor ac. Actor ac includes further the delay of tokens due to the finite
bandwidth allocation for the edge d on the interconnect.

The latency assigned to edges of a resource-aware SDFG have an impact on
the throughput of the application when mapped to the NoC-based MP-SoC. The
reason for this is that all actors in the graph, due to the storage space allocations,
are part of the same strongly connected component. The latency ρ on an edge
may influence future firings of the edge’s source actor. So, the throughput of
the graph is related to the latency assigned to the edges. The latency assigned
to an edge should therefore never be so large that it decreases the throughput
of the application below its throughput constraint λ. In fact, to compute the
latency constraint for the edges in the resource-aware SDFG, the more strict
requirement is used that the assigned latencies should not reduce the throughput
of the graph below the throughput λs of the minimal storage distribution selected
in the third step of the flow. This couples the allocated storage space to the
scheduling problems solved in the flow; increasing memory usage, which allows
higher throughput, leads to tighter latency constraints. This makes it simpler
for the tile binding and scheduling problem (3rd phase of the flow) to realize the
throughput requirement. More storage space is available for buffering tokens and
the communication latency, which affects the throughput, is smaller. However, it
makes the NoC routing and scheduling (4th phase of the flow) more complex as
the same amount of tokens has to be scheduled in less time.

To avoid an extensive design-space exploration involving many throughput
calculations on the state-space of the SDFG (which may change with every la-
tency assignment), an estimator for the throughput of an SDFG is used in the
computation of the latency constraints. The throughput of an SDFG is known to
be limited by its critical cycle [128]. This is a cycle in the corresponding HSDFG
with the maximal cycle mean. The cycle mean is defined as the ratio between
the execution time of the actors on the cycle and the number of tokens on the
edges of the cycle. The throughput of an SDFG is equal to the inverse of the
maximal cycle mean. The conversion of an SDFG to an HSDFG can lead to an
exponential increase in the number of actors in the graph [46], which makes it
infeasible to analyze the cycle mean of the cycles in the HSDFG. Therefore, as a

158 9.6. CONSTRAINT REFINEMENT

basis for the throughput estimator, an estimate of the cycle mean of every cycle in
the SDFG is used. Following the definition of the cycle mean for an HSDFG, the
cycle mean of a cycle c through a sequence of actors in a memory-aware SDFG is
estimated by the following equation:

CM(c) =

∑

a∈c

min
pt∈PT

τ(Γ(a, pt)) · γ(a)

∑

edges d=(u,v)∈c

n/Rate(v)
, (9.3)

with γ the repetition vector of the SDFG and n the number of tokens on edge
d in the initial state of the SDFG. The equation assumes the best-case binding
of the actors on the cycle to the processor types. This gives a lower-bound on
the time needed to execute all actors on the cycle when bound to the tiles. The
tokens on the edges are normalized with respect to the rate at which they are
consumed from these edges. The sum of these normalized tokens gives a notion
of the number of iterations of the cycle that can fire concurrently. Equation 9.3
considers only simple cycles in the SDFG. It neglects that combinations of simple
cycles in the SDFG can form a simple cycle in the corresponding HSDFG. Such
a simple cycle in the HSDFG could be the critical cycle of the graph. Therefore,
the throughput of the SDFG can be lower than suggested by the maximum cycle
mean found when using Equation 9.3.

Before computing the latency constraints for the dependency edges in the
memory-aware SDFG, the storage constraints that are computed in the previous
step of the flow are also modeled into the SDFG. For every edge d in the memory-
aware SDFG, an edge dδ is added in the opposite direction to model the storage
space of d (see also Section 7.3). The number of tokens on dδ is equal to the
sum of the storage space in the source and destination tile when the source and
destination actor d would be bound to different tiles (i.e., it is equal to αsrc+αdst).
Using this graph with storage constraints, the latency constraints for the edges in
the memory-aware SDFG are determined.

The latencies assigned to the edges of a cycle c increase the cycle mean of c.
The larger the latency assigned to the edges, the larger the freedom is for the
scheduling problems solved in the design flow. However, when the latencies are
too large, the throughput constraint can be violated. The latencies are assigned
to all dependency edges such that the cycle mean of every cycle as estimated
by Equation 9.3 becomes as large as possible, but never goes above 1/λs. The
latency ρ of an edge d ∈ D that is part of all the cycles in set C is then given by
Equation 9.4.

ρ = min
c∈C

(

1
CM(c)·λs

− 1
)

·
∑

a∈c

min
pt∈PT

τ(Γ(a, pt)) · γ(a)

#actors in c

(9.4)

9. DESIGN FLOW 159

The equation computes for every cycle c ∈ C of which d is a part the latency
that can be added to the cycle mean of c such that it becomes equal to 1/λs. This
latency is divided evenly over the edges of the cycle. The latency ρ of d is equal
to the minimum of the latencies computed for all cycles C to which it belongs.

Consider again the example application shown in Figure 9.2. The latency of
the edges in this application, as computed using Equation 9.4, are listed in Table
9.4. To compute these constraints, the storage constraints αsrc and αdst that were
computed in the previous step of the flow are used.

9.6.2 Compute Bandwidth Constraints

The source and destination actor of a dependency edge d can be bound to different
tiles. Tokens communicated via d must then be transferred over the interconnect.
The design flow must schedule the communication of these tokens on the inter-
connect. This is done in the NoC routing and scheduling phase of the design
flow. Before doing so, actors are bound to tiles in the tile binding and scheduling
phase of the flow. The tile binding determines whether a dependency edge uses
the interconnect. To steer the binding decisions, the tile binding phase uses a
notion on the amount of data that must be communicated per time-unit through
a dependency edge d. The required bandwidth β for an edge d with token size sz
is estimated by the design flow using the following equation:

β = Rate(SrcP (d)) · γ(SrcA(d)) · sz · λs (9.5)

The first three terms in the equation give the total amount of data (in bits) that
must be sent in one iteration of the graph through the network. The throughput
λs specifies the average number of iterations of the graph that are completed per
time-unit, if the throughput of the storage distribution selected in step 3 of the
flow is realized. The product of these two parts gives the average number of bits
that must be sent per time-unit through the interconnect.

The estimated bandwidth requirement β is based on the assumption that the
actors produce data at a constant rate. This is valid for streaming applications
in which no bursts occur. Bursts may occur in practice; these should be dealt
with when the communication is actually scheduled on the interconnect (step 12
of the flow). In step 13 of the flow, the actual bandwidth usage is observed and
used to constraint the bandwidth that is available for other application that use
the MP-SoC architecture simultaneously.

Table 9.4 shows the bandwidth constraints for the dependency edges of the
example application shown in Figure 9.2. These bandwidth constraints are com-
puted for the storage distribution 〈1, 3〉 which has a throughput of 0.018 iterations
per time-unit. At the end of this step, all constraints required to transform the
memory-aware SDFG (Figure 9.2 and Table 9.1) to a resource-aware SDFG are
computed. The resulting resource-aware SDFG is shown in Figure 9.2 and Table
9.4. For this example, the structure of the resource-aware SDFG is the same as

160 9.7. TILE BINDING AND SCHEDULING

the structure of the application SDFG. Only if tokens are mapped to non-local
memories, the structure is different.

9.7 Tile Binding and Scheduling

The previous phase of the design flow derived constraints on the edges of the
memory-aware SDFG. These constraints are used in the tile binding and schedul-
ing phase of the design flow to steer the binding of the resource-aware SDFG
to the NoC-based MP-SoC architecture. The first three steps of this phase are
identical to the resource allocation strategy presented in Chapter 6. This strategy
starts with binding actors to the tiles in the architecture (step 7 of the flow). The
resources from the MP-SoC architecture that can be used in this binding process
are described by the platform graph (see Definition 13). After the tile binding, a
static-order schedule is constructed to order the execution of actor from the same
application on a processor (step 8). Step 9 allocates TDMA time slices on the
processors to allow multiple applications to share these processors. The result of
the resource allocation strategy is a binding-aware SDFG. It models all binding
and scheduling decisions made till this point of the design flow.

It is not guaranteed that the storage space allocations for the edges bound to
the interconnect are optimal after the binding and scheduling decisions made by
the resource allocation strategy. It might be possible to assign a smaller storage
space to one or more edges and still realize the same throughput. This is due to
the fact that the resource allocation strategy uses estimates for the storage space
needed in the source and destination tile of an edge (αsrc and αdst) that is bound
to the interconnect. The minimal storage space distributions for a binding-aware
SDFG can be found using the method presented in Section 7.8.

This algorithm computes all optimal trade-offs between the storage space of
the edges and the throughput of the graph under the given binding and scheduling
constraints. When used in the design flow, the method considers only different
storage space allocations for edges whose source and destination actor are bound
to different tiles. These edges are modeled with the SDFG shown in Figure 6.4(c).
Only changes to the number of initial tokens αsrc and αdst are considered, as these
model the storage space allocated in the source and destination tile of edges that
are bound to the interconnect. Furthermore, the method, when used in the design
flow, is not allowed to increase αsrc and αdst above the values assigned to them in
the 4th step of the flow. This guarantees that the minimal storage distributions
that are found by the method always fit within the storage space allocated by the
resource allocation strategy.

Consider again the resource-aware SDFG shown in Figure 9.2 and Table 9.4
and the NoC-based MP-SoC architecture shown in Figure 9.3. The tile binding
and scheduling phase binds the actors a1 and a2 to the tile t1 and actor a3 to
tile t2. However, it fails to find a TDMA time slice allocation which satisfies the
throughput constraint. Using 100% of the timewheels on t1 and t2, it reaches

9. DESIGN FLOW 161

a throughput of 0.0084 iterations/time-unit which is below the throughput con-
straint of 0.0085 iterations/time-unit. As a result, the design flow returns to step
3 of the design flow and selects the next minimal storage distribution from the
trade-off space shown in Figure 9.5. Using the storage distribution 〈2, 3〉, a new
resource-aware SDFG is constructed and bound to the MP-SoC architecture. The
actor to tile binding is identical to the binding found with the previous storage
distribution. The throughput constraint is then satisfied when 75% of the time-
wheels of the tiles t1 and t2 are allocated to the application. Step 10, which
optimizes the storage space allocations, finds no reduction in the storage space
assigned to the edges. The estimated storage assignment is already optimal given
all scheduling and binding constraints.

9.8 NoC Routing and Scheduling

In the previous phase of the design flow, the actors and edges are bound to the
resources inside the tiles of the NoC-based MP-SoC architecture. Furthermore, a
static-order schedule has been created for every processor to which at least one
actor of the resource-aware SDFG is bound. TDMA time-slices have also been
allocated on these processors. The binding and scheduling of the resource-aware
SDFG onto the platform graph is captured in a binding-aware SDFG.

The throughput of an application mapped to a predictable platform can be
computed through a constrained self-timed execution of a binding-aware SDFG.
This throughput can be guaranteed when two constraints are met. First, all
resources used by the binding-aware SDFG should be available in the platform
when the application is executed. Second, the tokens sent between the actors in
the binding-aware SDFG during its constrained self-timed execution should be
sent in the interconnect within the time bounds given by this execution. In other
words, the constrained self-timed execution of a binding-aware SDFG determines
the time at which the communication of a token over the interconnect can be
started and when it should be completed. To guarantee the throughput of the
system, a schedule must be constructed which sends all tokens within their timing
constraints over the NoC from their source tile to their destination tile. The NoC
routing and scheduling phase of the design flow solves this problem.

The first step of the NoC routing and scheduling phase (step 11) uses the
technique presented in Section 8.9 to extract the timing constraints for all tokens
that are sent during the constrained self-timed execution of the binding-aware
SDFG. These tokens are then scheduled onto the NoC in step 12 of the flow. Any
of the NoC routing and scheduling strategies presented in Section 8.6 can be used
in this communication scheduling step.

The design flow has successfully mapped an application SDFG onto a NoC-
based MP-SoC as soon as a feasible communication schedule is found. However,
the bandwidth allocations that were made in the tile binding and scheduling phase
of the design flow are only estimates to steer the tile binding process. These

162 9.9. IMPLEMENTATION

estimates were made in the 6th step of the flow. The actual required bandwidth
is known after the communication schedule is constructed (step 12). At this point
in the flow, the actual slot allocations are known and the amount of bandwidth
used by this streaming application SDFG can be computed. This information
should be used to update the bandwidth that is available for other applications
when they are mapped to the same MP-SoC architecture. Updating the available
bandwidth of the architecture is done in the final step of the NoC routing and
scheduling phase.

The MP-SoC configuration that is constructed by the design flow when it maps
the streaming application of Figure 9.2 to the NoC-based MP-SoC architecture
of Figure 9.3 is shown in Figure 9.4. The final phase of the design flow allocated
in this architecture two consecutive time-slots on the links l1, l3 and l6. These
slots are used to send tokens from actor a2, which is mapped on tile t1 to actor
a3, which is mapped to tile t2. The MP-SoC configuration uses two out of eight
slots on the outgoing link of tile t1 and on the incoming link of t2. Basically, 2/8
of the incoming and outgoing bandwidth of the tiles is used. To takes this usage
into account, the available bandwidth (i and o) of these tiles (see Table 9.2) is
reduced from 96 bits/time-unit to 72 bits/time-unit.

9.9 Implementation

The SDF3 tool-kit, introduced in Section 4.6, has been developed to test the
algorithms and strategies presented in this thesis. SDF3 offers a random SDFG
generator that can generate streaming application SDFGs, memory-aware SDFGs
and resource-aware SDFGs. The user can control the characteristics of the graphs
by specifying bounds, averages and variances on various aspects of an SDFG.
The tool contains implementations of all algorithms that are discussed in this
thesis. These algorithms are available through command-line tools and a C/C++
API. This allows a user to experiment with existing techniques and develop novel
algorithms on top of them.

The NoC-based MP-SoC design flow has also been implemented in SDF3. To
use the NoC-based MP-SoC design flow, a user must input a streaming application
SDFG and a NoC-based architecture, both described in XML format, into SDF3.
The tool will automatically perform most of the steps in the design flow. Iterations
to previous steps of the flow are also performed when needed. The only step that
requires manual intervention is the first step of the design flow. In this step,
the user must manually insert the SDF memory access model for the appropriate
actors and specify the properties of the newly added actors and edges. At every
step of the flow, the complete state of the design flow can be outputted in XML.
The user can then manipulate the design decisions made by the flow and continue
the flow on a next step. The tool also allows a user to by-pass part of the flow
and replace this part with his own custom algorithms.

9. DESIGN FLOW 163

9.10 Summary

This chapter presents a design flow that maps an SDFG onto a NoC-based MP-
SoC. The flow combines the various SDFG mapping and analysis techniques
presented in this thesis into a coherent and complete design flow that maps a
throughput-constrained SDFG to a NoC-based MP-SoC. It minimizes the re-
source usage while offering guarantees on the throughput of the application when
mapped to the system. The starting point is an SDFG that models the application
with a throughput constraint. The flow starts with modeling non-local memory
access. Next, it dimensions the storage space for the edges in the graph. It derives
from the selected storage space requirements of the edges and the throughput con-
straint of the graph a number of additional constraints on the edges of the SDFG.
These constraints are used in the next phase of the flow to guide the binding and
scheduling of actors and edges to the tiles of the MP-SoC. The design flow ends
with scheduling the communication of the tokens on the NoC.

164 9.10. SUMMARY

Chapter 10

Case Study

10.1 Overview

A case study has been performed to show that the developed design flow can
be used to map a set of real multimedia application onto a NoC-based MP-SoC
while providing throughput guarantees. The case study considers the following
use-case scenario. A user is using his or her handheld to make a video confer-
encing call. The video stream that is captured with the handheld’s camera is
encoded using an H.263 encoder. The handheld is also running an H.263 decoder
to display the video stream that it receives from the other party involved in the
call. Furthermore, an MP3 decoder is running on the handheld. This MP3 de-
coder is responsible for decoding the received audio stream. The audio stream
produced by the user is ignored in the case study. It is assumed that this au-
dio stream is encoded in some custom hardware. The three other applications
(i.e., the H.263 encoder, the H.263 decoder and the MP3 decoder) are executed
simultaneously on the NoC-based MP-SoC hardware that is available inside the
handheld. The design flow presented in the previous chapter is used in this case
study to find a mapping of the applications onto the handheld hardware such that
every application meets its throughput constraint.

The next section presents the three applications that are used in this case
study. It introduces the SDFGs that model these applications along with their
resource requirement. It also specifies the throughput constraints for the appli-
cations. Section 10.3 presents the hardware architecture that is targeted in this
case study. The mapping of the applications onto the architecture is discussed in
Section 10.4. Based on the results of the case study, extensions and changes to
the design flow are discussed in Section 10.5.

165

166 10.2. APPLICATIONS

10.2 Applications

10.2.1 H.263 encoder

The case study presented in this chapter considers a handheld that is used to make
a video call. The H.263 [70] video compression standard has been specifically
designed for this purpose. It aims at compressing low resolution video streams
for transmission over a phone network. In this case study, it is assumed that the
handheld compresses a video stream with frames that have a resolution of 174 by
144 pixels (QCIF resolution). An H.263 encoder divides a frame in a set of macro
blocks (MBs). A macro block captures all image data for a region of 16 by 16
pixels. The image data inside a MB can be subdivided into 6 blocks of 8 by 8 data
elements. Four blocks contain the luminance values of the pixels inside the MB.
Two blocks contain the chrominance values of the pixels inside the MB. A frame
with QCIF resolution contains 99 MBs that consist, in total, of 594 blocks. In this
case study it is assumed that the handheld’s camera can capture 15 frames per
second. The H.263 encoder must encode all frames in real-time. So, it should be
able to encode, on average, one frame each 67ms. This throughput requirement
must be guaranteed when the application is executed in the handheld.

Figure 10.1 shows an SDFG that models an H.263 encoder. This model was
already introduced in Section 2.3. The H.263 encoder from Figure 10.1 is based
on the SDFG presented in [110]. The SDFG from [110] assumes that the motion
estimation actor can only output a complete frame at a time and not the 99 MBs
that this frame is composed of. The model of [110] uses a separate actor to divide
the frame into 99 MBs. The SDF model of Figure 10.1 assumes that the motion
estimation actor can directly output the MBs. This is a reasonable assumption
as the division of a frame into its MBs is trivial. It essentially implies a merge of
the two actors used in [110].

Telenor Research has made a C-based implementation of an H.263 encoder
[119]. In [80], this implementation is used to derive the worst-case execution times
of the actors in the H.263 encoder SDF model of [110]. Unfortunately, it is not
specified which processor architecture is assumed when computing these worst-
case execution times. Based on analysis of part of the source code with CTAP (see
Section 2.4), it seems that the reported execution times are valid for a processor
architecture similar to the ARM7. The goal of the case study presented in this
chapter is to demonstrate the applicability of the predictable design flow. For
this purpose, it is not needed that the worst-case execution times are completely
accurate. They should only be representative for a processor architecture similar
to the one used in the platform that is presented in the next section. For this
reason, the worst-case execution times as reported in [80] are used in the case
study as the execution times of the actors in the SDFG of Figure 10.1. These
execution times are shown in Table 10.1. The table shows also the worst-case stack
sizes of the actors and the size of the tokens communicated on the edges. The
worst-case stack sizes have been computed using CTAP and the H.263 encoder

10. CASE STUDY 167

VLC
MB

Enc.
Motion

Est.

199 1 99

MB

Dec.

Motion

Comp.

1

1
1

99

1

1

1

1 1

1

1 1

1

Figure 10.1: SDFG model of an H.263 encoder.

Actor Execution time [cycles] Stack size [bytes]
Motion Est. 382419 316352
Motion Comp. 11356 2796
MB Enc. 8409 2216
MB Dec. 6264 864
VLC 26018 1356

Edge Token size [bytes]
VLC self-edge 1024
Motion Comp. self-edge 38016
Motion Comp. to Motion Est. 38016
Others 384

Table 10.1: Worst-case resource requirements for an H.263 encoder.

implementation from [119]. The token sizes are obtained through manual code
analysis.

10.2.2 H.263 decoder

The handheld that is considered in this case study is also running an H.263 de-
coder. This decoder is used to decompress the video stream that the handheld
receives from the other party involved in the call. The decoder reverts all opera-
tions performed by the encoder in order to reconstruct the original video stream.
It is assumed that the H.263 decoder that is used in this case study operates on
frames with QCIF resolution. Furthermore, it is assumed that the received video
stream has a maximal frame rate of 15 frames per second. Sufficient resources
should be reserved in the handheld to allow the decoder to support this frame
rate.

An SDFG that models an H.263 decoder is shown in Figure 10.2. The variable
length decoder (VLD) actor is responsible for decompressing the bitstream. It
performs the inverse operation of the VLC actor in the H.263 encoder model
(see Figure 10.1). On each firing, the VLD actor produces decompressed data
(encoded MBs) for a complete video frame. The inverse quantization (IQ) and

168 10.2. APPLICATIONS

IDCTIQVLD
1594

1 1

1

594

1 1 1 1 1 1

1 1 1

Motion

Comp.

Figure 10.2: SDFG model of an H.263 decoder.

Actor Execution time [cycles] Stack size [bytes]
VLD 26018 1356
IQ 559 50
IDCT 486 50
Motion Comp. 10958 1000

Edge Token size [bytes]
VLD self-edge 1024
IQ self-edge 64
Motion Comp. self-edge 38016
Others 64

Table 10.2: Worst-case resource requirements for an H.263 decoder.

inverse discrete cosine transformation (IDCT) actors revert the MB encoding.
Together they perform the same transformation on the data as the MB decoding
actor in the H.263 encoder. The IQ and IDCT actors operate on a single block
of encoded pixel data instead of a complete MB. This allows smaller memory
requirements for these actors when compared to the MB decoding actor in the
H.263 encoder. The motion compensation (Motion comp.) actor takes a group
of 594 blocks to reconstruct the original video frame. To do this, the Motion
Comp. actor needs also the previously decoded frame. This frame is stored on
the self-edge of the actor. The token on the self-edge of the VLD and IQ actors
model respectively the Huffman decoding table and dequantization table that are
stored between subsequent firings of these actors. A token on the other edges (i.e.
all non self-edges) represents a block of encoded pixel data with a size of 8 by 8
pixels. These tokens requires thus 64 bytes of storage space.

A C-based implementation of an H.263 decoder is available from Telenor Re-
search [119]. Using the techniques described in Section 2.4, the worst-case execu-
tion times, stack sizes and token sizes have been analyzed for this implementation.
These results are summarized in Table 10.2.

10.2.3 MP3 decoder

The MPEG-1 layer 3 (MP3) audio compression format is widely used to compress
audio streams [83]. The decoder that is needed to decompress this format has been
introduced in Section 2.2. An SDFG to model an MP3 decoder has been presented

10. CASE STUDY 169

Huffman

Req.

Req.

2

1

1

2

Reorder

Reorder

Stereo

1 1

1 1

1

1

1

1

Antialias

Antialias

Hybrid

Synth.

Hybrid

Synth.

Freq.

Inv.

Freq.

Inv.

Subb.

Inv.

Subb.

Inv.

11 1 1 1 1

111 1 1 1

1

1

1

1

1
1

1 1

1 1

1

1

1

Figure 10.3: SDFG model of an MP3 decoder.

Actor Execution time [cycles] Stack size [bytes]
Huffman 151977 6068
Req. 72695 104
Reorder 34684 2352
Stereo 53602 68
Antialias 409 636
Hybrid Synth. 7414 10
Freq. Inv. 4912 16
Subb. Inv. 1865001 3736

Edge Token size [bytes]
Huffman self-edge 1024
Req. self-edge 64
Others 576

Table 10.3: Worst-case resource requirements for an MP3 decoder.

in Section 2.3. This SDFG is also shown in Figure 10.3. Similar to the H.263
decoder, the tokens on the self-edges of the graph model data that is needed in
subsequent firings (i.e. these tokens model global data). The tokens send over
the other edges represent a (partly processed) frame of 576 audio samples. Each
sample has a size of 1 byte. So, these tokens have a size of 576 bytes. Since
all actors operate on a frame, the SDFG is said to operate on the frame level.
A frame represents an audio sequence with a duration of 10ms. This duration
determines the throughput constraint for the actors. It implies that on average a
frame should be produced once every 10ms.

The predictable design flow uses the worst-case execution time and stack-size
to allocate sufficient resources for an application to meet its throughput constraint
when executed on a NoC-based MP-SoC. These worst-case figures have been de-

170 10.3. HARDWARE ARCHITECTURE

P
CA

NI

t2
M

R1 R2

P
CA

NI

t1
M

P
CA

M

t5
NI

P
CA

M

t4
NI

P
CA

M

t3
NI

network

R3 R4

motion
pro-

cessing

encoder
/ de-
coder

subband
filter

ARM7ARM7

Figure 10.4: NoC-based MP-SoC architecture.

rived from an MP3 decoder implementation [83] using CTAP (see Section 2.4).
The worst-case execution time and stack-size of the actors in the SDFG from
Figure 10.3, which models an MP3 decoder, are repeated in Table 10.3.

10.3 Hardware Architecture

The handheld that is considered in this case study contains a NoC-based MP-
SoC architecture that follows the platform template presented in Chapter 3. Its
structure is shown in Figure 10.4. This hardware architecture consists of five tiles
with different processing and storage capabilities. The specifications of the tiles
are summarized in Table 10.4. The tiles t1 and t2 are generic processing tiles con-
taining an ARM7 processor. Tile t3 contains a variable length encoder/decoder
accelerator. This accelerator can speed-up the execution of the VLC, VLD and
Huffman actors that are present in the SDF models of the three multimedia ap-
plications. It is assumed that executing these actors on the accelerator requires
only half the number of cycles as executing them on an ARM7 processor. An-
other accelerator is available in tile t4. This accelerator contains special purpose
hardware to perform motion estimation and motion compensation. It can execute
the Motion Est. and Motion Comp. actors, reducing their execution time by 50%
when compared to an ARM7. Tile t5 contains a subband inverter. This acceler-
ator can be used by the Subb. Inv. actor contained in the MP3 decoder model.

10. CASE STUDY 171

Table 10.4: Properties of the tiles in the architecture of Figure 10.4.
pt w m c i/o

[time-units] [bytes] [bits/time-unit]
t1 ARM7 100000 200·103 8 96/96
t2 ARM7 100000 200·103 8 96/96
t3 Encoder/Decoder 100000 500·103 8 96/96
t4 Motion processing 100000 500·103 8 96/96
t5 Subband filter 100000 500·103 8 96/96

Table 10.5: Properties of the NoC in the architecture of Figure 10.4.
N szflit [bits] szph [bits] Treconf [time-units]
8 96 32 32

This accelerator also reduces the execution time of the actor by 50% when com-
pared to an ARM7. All processors inside the architecture operate on a 500MHz
frequency. The NoC, which interconnects the tiles, uses a flit-clock with the same
frequency. A flit consists of 96 bits (see Table 10.4). Assuming a word-size of 32
bits for the NoC, which matches with the word-size of the processors, the NoC
needs three cycles to send one flit. Therefore, it must operate at a core frequence
which is three times as high. In other words, the NoC is running at a frequency
of 1.5GHz. The communication assist (CA) and network interface (NI) inside
each tile support up-to 8 connections. These connections can be used to receive
96 bits/time-unit (one flit) and also send one flit per time-unit. The three tiles
containing an accelerator each have 500k bytes of storage space. This allows these
tiles to buffer large tokens (e.g., a frame). The less compute intensive actors are
typically also the less data intensive actors. These actors can be executed on the
tiles with an ARM core. Tiles t1 and t2 have therefore a more limited storage
space.

The design flow schedules individual flits into a single time-unit. This implies
that the time-unit that is used in the design flow is equal to a single flit-clock cycle.
The flit-clock has a frequency of 500MHz. Therefore, a time-unit has a duration
of 1/500µs (=2ns). Using this duration, the size of the TDMA time wheels inside
the processors can be converted to wall-clock time. These time wheels have a
size of 100000 time-units (see Table 10.4). So, one full rotation the time wheels
occurs once every 0.2ms. The duration of the time-unit is also important as the
throughput constraints of the applications have to be converted from wall-clock
time to the abstract time-unit that is used inside the flow. Consider the H.263
decoder as an example. Its timing constraint requires the production of 15 frames
per second. The throughput as used in the design flow is given by Definition 11.
It considers the number of iterations per time-unit. During one iteration of the
H.263 decoder model (see Figure 10.2), the graph produces one frame. So, 15

172 10.4. MAPPING

frames/second is equivalent to 15 iterations/second. Converting the seconds to
the abstract time-unit, the throughput constraint of the H.263 decoder becomes
3·10−8 iterations/time-unit. The throughput constraint of the H.263 encoder (15
frames/second) and MP3 decoder (10 ms/frame) can be converted in the same
way, resulting in constraints of respectively 3·10−8 iterations/time-unit and 2·10−7

iterations/time-unit.

10.4 Mapping

Section 10.2 introduces the three applications that are used in this case study. The
targeted hardware architecture is presented in the previous section. This section
discusses the mapping of the applications onto this architecture. This mapping is
performed using the design flow that is presented in the previous chapter.

The design flow maps a single application at a time onto the architecture.
When mapping this application, the flow takes into account the resources that
are already used by other applications. However, it cannot change the mapping
of these applications. Therefore, selecting the order in which applications are
handled is important, as this may influence the resource usage and/or number
of applications that can be mapped to the architecture. One specific ordering
has been chosen in this case study to map the applications onto the architecture.
This ordering is based on the memory requirements of the applications. Both
the stack-size of the actors and the storage space requirements of the edges are
considered when estimating, by hand, these memory requirements. Based on
these estimates, the H.263 encoder is the first application to be mapped onto the
NoC-based MP-SoC. The second application that is bound and scheduled on the
architecture is the H.263 decoder. The MP3 decoder is the last application to be
mapped.

The tile binding and scheduling strategy presented in Chapter 6 is used in
the design flow. This strategy uses a cost function to steer the binding of the
actors of an application onto the various resources in the hardware architecture.
The experimental evaluation presented in Section 6.8 shows that it is important
to minimize the communication on the interconnect. This is due to the fact that
when data is sent between tiles, the time wheels need to synchronize. The time
spent on synchronization can become almost as large as a full time wheel rotation.
This introduces large potential delays for tokens communicated between actors
that are bound to different tiles. To accommodate for these delays, the design
flow will allocate large time slices on the processors. This leads, in turn, to a
poor resource usage as time wheels are quickly occupied. For this reason, a cost
function (1, 0, 2, 0) is used that minimizes the communication overhead. The cost
function also aims at balancing the processing load. These two objectives allow
the tile binding step (step 7) to make a trade-off between the communication
overhead and the use of accelerators present in the hardware architecture. The
memory usage is ignored in this cost function as the potential bindings have similar

10. CASE STUDY 173

memory requirements. The cost function also ignores the latency overhead as all
possible connections in the NoC have a similar latency.

Three different NoC routing and scheduling strategies can be used in the
communication scheduling step of the flow (step 12). The experimental evaluation
presented in Chapter 8 shows that both the H.263 decoder and MP3 decoder can
be handled with the greedy strategy. This strategy is the fastest of the three
heuristics presented in Chapter 8. Based on these results, this strategy is used
in the case study. The greedy strategy allows the use of a detour when selecting
the routes through the NoC. Using a detour, routes larger than those with the
minimal length are considered by the strategy. This can be useful in case all
minimal routes are already occupied. For this experiment, a detour of 3 links is
used. This detour allows the communication scheduling strategy to explore all
possible routes between the tiles in the NoC when scheduling the communication.

As mentioned, the design flow starts with mapping the H.263 encoder onto the
hardware architecture shown in Figure 10.4. The flow starts with the modeling
of non-local memory accesses in the graph. This is needed when an actor uses
tokens that are too large to fit into the memory of the tile to which the actor is
bound. The tokens in this application are small when compared to the storage
space available inside the tiles. Therefore, it is assumed that no tokens need to
be stored in a non-local tile. So, no changes are made to the graph in the first
step of the flow. In the second step, the storage-space/throughput trade-off space
is computed. This space contains, as shown in Section 7.6, 20 different trade-off
points. The first trade-off point from this space is selected in the storage distri-
bution selection step (step 3) as this point meets the throughput constraint of the
application. The first phase of the flow is then finished by estimating the storage
space of the edges, when their source and destination actors are bound to differ-
ent tiles. The constraint refinement phase uses this information to compute the
latency and bandwidth constraints of the edges. This completes the construction
of the resource-aware SDFG that is used in the tile binding and scheduling phase.
This phase starts with binding the actors to the various tiles contained in the
hardware architecture. The tile binding strategy binds actor MB Enc. to tile t1,
actor MB Dec. to t2, actor VLC to t3 and the Motion Est. and Motion Comp.
actor to t4. Following this binding, static-order schedules are constructed for the
actors bound to the various tiles. The schedule on tile t4 contains two states, all
other schedule contain a single state. The flow continues with allocating TDMA
time-slices in step 9. This requires a total of 16 throughput calculations of the
bound and scheduled graph before time slices are found with which the through-
put constraint is met and that also minimize the time wheel usage. Next, the flow
tries to optimize the storage space allocated to the edges of the graph. It turns out
that the used storage space is already minimal given the throughput constraint
of the application. At this point, the last phase of the design flow is started. The
flow extracts the timing constraints for the tokens that must be communicated via
the interconnect (step 11) and it schedules these tokens on the links of the NoC
(step 12). A total of 792 tokens are sent in the transient phase. Scheduling these

174 10.4. MAPPING

CA

NI

t2
M

R1 R2

CA

NI

t1
M

CA

M

t5
NI

CA

M

t4
NI

CA

M

t3
NI

network

R3 R4

VLC
MB

Enc.
Motion

Est.

199 1 99

MB

Dec.

Motion

Comp.

1
11

99

1
1

1

ω : 6%, (MB Enc.)∗ ω : 6%, (MB Dec.)∗

ω : 6%, (VLC)∗

ω : 6%, (Motion Est., Motion Comp.)∗

P

motion
pro-

cessing

P

encoder
/ de-
coder

P

subband
filter

P

ARM7

P

ARM7

Figure 10.5: MP-SoC configuration of the H.263 encoder.

10. CASE STUDY 175

Table 10.6: Run-time of the design flow steps.
H.263 H.263 MP3
enc. dec. dec.

1. Model non-local memory accesses [ms] 0 0 0
2. Compute storage-space / throughput trade-offs [ms] 2 1611 143
3. Select storage distribution [ms] 0 0 0
4. Estimate storage distribution per connection 1 0 0
5. Estimate latency constraints [ms] 0 0 1
6. Compute bandwidth constaints [ms] 0 0 0
7. Bind SDFG to tiles [ms] 1 5 6
8. Constrcuct static-order schedule per tile [ms] 15 110 3
9. Allocate TDMA time-slices [ms] 227 675 43
10. Optimize storage space allocations [ms] 2 26 2
11. Communication constraint extraction [ms] 37 59 3
12. Communication scheduling [ms] 86 199 2
13. Update bandwidth allocations [ms] 2 3 0

Total [ms] 415 2688 203

tokens takes 86ms. The periodic phase contains 395 tokens, which are scheduled
in 22ms. As a final step, the flow computes the bandwidth usage and updates
the available resources for the next application to be mapped onto the hardware
architecture of Figure 10.4. This completes the mapping of the H.263 encoder
onto the hardware architecture. The resulting MP-SoC configuration is shown in
Figure 10.5. This MP-SoC configuration is found by SDF3, which implements the
design flow, within 415ms when executed on a P4 at 3.2GHz. The run-time used
for the various steps in the design flow is shown in Table 10.6. The resource usage
of the H.263 encoder when mapped to the architecture is shown in Table 10.7.
This table shows also the resource usage of the other applications considered in
this case study.

The H.263 decoder is the second application that is mapped onto the hard-
ware architecture of Figure 10.4. When mapping this application, the design flow
takes into account the resources that are already used by the H.263 encoder. The
mapping of the H.263 decoder is done in a similar way as the H.263 encoder. The
tile binding step (step 7) decides to map both the IQ and IDCT actors onto tile t1.
This leads to an unbalanced processing load for the identical tiles t1 and t2, but
it avoids the communication of tokens over the interconnect. This shows one of
the trade-offs made by the cost function in the tile binding strategy. The TDMA
time wheel optimization step (step 9) performs 20 throughput computations, each
requiring between 18ms and 71ms. It is interesting to note that the H.263 decoder
needs much smaller time slices than the H.263 encoder to achieve the same frame
rate (see Table 10.7). This is due to the fact that the decoder allows pipelining of
the frames that are processed, while the encoder can only process a single frame
at a time. Similar to the H.263 encoder, the storage-space allocated to the de-

176 10.4. MAPPING

Table 10.7: Resource usage of the applications.
H.263 encoder

t1 t2 t3 t4 t5
#actors bound 1 1 1 2 0
#channels bound 3 2 1 3 0
time slice [time-units] 6250 6156 5879 5963 0
memory [bytes] 41000 20448 244172 305656 0
#connections 3 2 1 2 0
input bw [bits/time-unit] 12 24 36 24 0
output bw [bits/time-unit] 36 24 0 12 0
#states in schedule 1 1 1 2 0

H.263 decoder
t1 t2 t3 t4 t5

#actors bound 2 0 1 1 0
#channels bound 3 0 1 1 0
time slice [time-units] 1916 0 71 47 0
memory [bytes] 38386 0 43468 191080 0
#connections 2 0 1 1 0
input bw [bits/time-unit] 12 0 0 24 0
output bw [bits/time-unit] 24 0 12 0 0
#states in schedule 2 0 1 1 0

MP3 decoder
t1 t2 t3 t4 t5

#actors bound 0 12 0 0 2
#channels bound 0 14 0 0 2
time slice [time-units] 0 13957 0 0 75000
memory [bytes] 0 19892 0 0 4888
#connections 0 2 0 0 2
input bw [bits/time-unit] 0 0 0 0 24
output bw [bits/time-unit] 0 24 0 0 0
#states in schedule 0 86 0 0 2

Table 10.8: Combined resource usage of the applications.
t1 t2 t3 t4 t5

#actors bound 3 13 2 3 2
#channels bound 6 16 2 4 2
time slice [time-units] 8166 20113 5950 6010 75000
memory [bytes] 79386 40340 287640 496736 4888
#connections 5 4 2 3 2
input bw [bits/time-unit] 24 24 36 48 24
output bw [bits/time-unit] 60 48 12 12 0

10. CASE STUDY 177

coder cannot be optimized after it is bound and scheduled on the architecture.
The communication scheduling step (step 12) has to schedule 2376 tokens onto
the interconnect. This takes a total of 199ms. In total, SDF3 spends 2688ms
on mapping this application onto the hardware architecture. The largest part of
this time is spent in step 9 (time wheel optimization) and step 3 (computing the
storage-space/throughput trade-off space). It takes 1.6s to compute the complete
storage-space/throughput trade-off space that contains 183 minimal storage dis-
tributions. These results differ from the run-time (53 minutes) and number of
minimal storage distributions (3255) reported for the same application in Section
7.6. The reason is that the H.263 decoder used in this case study operates at
QCIF resolution (174 by 144 pixels), while the H.263 decoder consider in Section
7.6 works at CIF resolution (348 by 288 pixels). The VLD and Motion Comp.
actors operate at a complete frame and have therefore a different execution time
in both models. As a result, a much smaller trade-off space needs to be searched
in this case study then in Section 7.6.

The last application that is bound and scheduled on the handheld’s hardware
architecture is the MP3 decoder. To avoid communication overhead, in particular
the costly reservations needed to guarantee throughput in the absence of time
wheel synchronization (see Section 10.5), most of the actors are bound to tile t2.
Only the actors modeling the subband inversion are bound to an accelerator (tile
t5). As a result, only a very limited number of 18 token communications must
be scheduled onto the interconnect. SDF3 computes the MP-SoC configuration
for this application in 203ms. At this point, all three applications are bound
and scheduled onto the NoC-based MP-SoC architecture of Figure 10.4. The
combined resource usage of the applications when bound to the architecture is
shown in Table 10.8. Compared to the available resources in the architecture (see
Table 10.4), it shows that only about half of the available resources are used. This
is due to the fact that the architecture has not been optimized for this specific
set of applications. The data in Table 10.8 could be used to perform such an
optimization.

SDF3 used a total of 3.3s to find a mapping for all three applications. This
shows that the predictable design flow and its implementation allow a fast map-
ping of real multimedia applications onto a heterogeneous NoC-based MP-SoC.
The chosen resource allocations and schedules allow guarantees to be provided
on the throughput of individual applications independent of other applications
executed simultaneously on the architecture.

10.5 Discussion on the Design Flow

This section discusses modifications and extensions of the design flow. Studying
the exact impact of these changes is left as future research.

The current design flow assumes that the relative position of the time slices
on the various processors is unknown. To analyze the worst-case throughput

178 10.5. DISCUSSION ON THE DESIGN FLOW

correctly, the design flow assumes that tokens that are sent from one tile to another
arrive just after the time slice of the application on the receiving tile has passed.
The tokens can only be used after a full time wheel rotation minus the reserved
time slice. When large time wheels are used, the worst-case waiting time that is
taken into account can become quite large. For example, on a processor with a
time wheel of 10ms of which 10% is allocated to an application, the waiting time
is equal to 9ms. To accomodate for these worst-case waiting times, the time slice
allocation step (step 9) may have to allocate large time slices. The waiting time,
and thus the large time slices, can be avoided when the relative position of the
time wheels on the processors is known. When this relative position is known, it
becomes possible to compute the exact amount of time that tokens have to wait
before they can be used on the receiving tile. The disadvantage of this approach is
that it requires that specific slices are allocated to an application instead of just a
fraction of the time wheel. This may make it harder to map multiple applications
to a hardware architecture as the time slice allocations may conflict. Another
solution to solve this problem is to allow the design flow to resize the time wheels.
Reducing a time wheel reduces the waiting time of the communicated tokens.
Note that a reduction of a time wheel does not affect the compositionality of the
design flow. It is still possible to provide throughput guarantees on individual
applications as long as the sum of the time slices allocated to all applications
mapped to a processor does not exceed the size of the time wheel.

When the communication scheduling step (step 12) fails to find a valid sched-
ule, the flow iterates back to step 3 and increases the storage space allocations
of the edges. It also computes new latency constrains for these edges. Currently,
the latency assigned to the edges decreases when the storage space is increased.
Increasing the storage space combined with decreasing the latency increases the
freedom in the time wheel allocation step (step 9). However, reducing the latency
puts additional constraints on the communication scheduling (step 12). In the
situation that the flow fails to find a valid communication schedule, it is okay to
increase the storage space allocated to the edges. This adds potential scheduling
freedom. The latency should however not be decreased; it should be increased.
Note that when an edge is not part of a cycle in the application graph, its latency
can be made arbitrarily large while still meeting the throughput constraint of
the application. This requires only that sufficient storage space is allocated to it.
So, the communication scheduling problem can always be relaxed for these edges
when sufficient storage space is available.

The run-times as reported in the case study show that it is feasible to complete
the design flow within seconds. Many throughput computations are performed
during the flow. Throughput computation are for example performed to find the
storage-space/throughput trade-off space (step 3 and step 10) and to allocate
TDMA time slices (step 9). A single throughput computation requires typically
only milliseconds. The design flow currently uses latency and bandwidth esti-
mates that are based on a throughput estimate and the throughput constraint.
Considering the run-time needed for a single throughput computation, it might

10. CASE STUDY 179

be feasible to add additional steps after step 7 (tile binding) and step 10 (storage-
space optimization) in which the latency and bandwidth requirements of the edges
are dimensioned using the throughput analysis technique that is used in the de-
sign flow while taking into account the design decisions that have already been
taken. This may lead to latency and bandwidth constraints that fit better with
the tile binding. For example, it may lead to decreased time slice allocations on
the processors and/or to increased latencies for edges bound to connections. The
former is due to decreased latency and bandwidth constraints and leads to a lower
resource usage. The latter relaxes the communication scheduling problem (step
12).

10.6 Summary

This chapter presents a case study in which a set of multimedia applications are
mapped onto a NoC-based MP-SoC platform. This mapping is performed using
the predictable design flow presented in the previous chapter. This design flow,
in turn, uses all techniques presented in this thesis. The case study shows that
the design flow can be used to map real applications onto a NoC-based MP-SoC
platform, with a total run-time of only a few seconds, while providing throughput
guarantees on the individual applications. The chapter presents, based on the
results of the case study, also several potential changes and additions to improve
the quality of the design flow.

180 10.6. SUMMARY

Chapter 11

Conclusions and Future Work

11.1 Conclusions

Consumers expect that more and more functionality is integrated into novel mul-
timedia devices. At the same time, they expect a seamless and reliable behavior
of these devices. To manage this increasing design complexity, a design flow is
needed that guarantees predictable behavior of the resulting system. This implies
that it must map an application to a platform in such a way that the timing
behavior of the application, when running on the platform, can be guaranteed,
independent of other applications running on the platform. This requires that the
timing behavior of the hardware, the software, as well as their interaction can be
predicted.

To accommodate the increasing number of applications that are integrated
into multimedia devices, system designers are starting to use heterogeneous multi-
processor Systems-on-Chip (MP-SoCs). An MP-SoC offers a good computational
efficiency for many applications. A Network-on-Chip is often suggested as in-
terconnect in these systems. It offers scalability and guarantees on the timing
behavior when communicating data between various processing and storage ele-
ments. Combining this with a predictable resource arbitration strategy for the
processors and storage elements gives a predictable platform. A predictable sys-
tem requires also that the timing behavior and resource usage of an application,
when mapped to a predictable platform, can be analyzed and predicted. For
this purpose, the Synchronous Dataflow (SDF) Model-of-Computation is used in
this thesis. It fits well with the characteristics of streaming multimedia applica-
tions, it can capture many mapping decisions, and it allows design-time analysis
of timing and resource usage. The third aspect that is required to obtain a pre-
dictable system is the use of a predictable design flow. This design flow must
allocate resources for streaming applications, modeled as SDF graphs (SDFGs),
in NoC-based MP-SoC platforms such that the timing behavior of each individual

181

182 11.1. CONCLUSIONS

application can be guaranteed. This thesis studies several of the steps that are
needed for such a predictable design flow in detail. It also embeds the proposed
techniques into a coherent design flow.

An important aspect that influences the throughput of an SDFG is the storage
space that is allocated for the edges of the graph. Chapter 7 proposes a technique
to find the complete trade-off space between the storage-space allocation for the
edges of a graph and the maximal throughput that can be realized under these
storage constraints. The experimental results show that, using this technique, the
complete storage/throughput trade-off space of real multimedia applications can
often be computed in seconds or even milliseconds. An approximation technique
that provides throughput guarantees and that has an analytical bound on the
buffer size over-estimation is also presented. This approximation technique can be
used when the run-time of the exact algorithm becomes too long. The experiments
show that it can drastically improve the run-time needed for the exploration of
the trade-off space with only very limited overestimation of the storage space.

The storage space requirements of the edges and actors of an SDFG might be
larger than the storage space available in the memory that is close to a processor.
The solution to this problem is to embed large, shared memories in the platform
that are accessed through the NoC. An SDFG model is presented in Chapter 5 to
model accesses to this memory. It allows modeling of arbitrary access patterns to
the memory and analysis of the timing behavior of the various system components
(i.e. processor, memory, NoC) involved in the memory operations. This chapter
also outlines a technique to extract the SDF memory access model from the source
code of an application.

The allocation of resources for throughput-constrained SDFGs is studied in
Chapter 6. The proposed resource allocation technique binds and schedules an
SDFG onto a heterogeneous multi-processor system while providing throughput
guarantees, even in the context of resource sharing. The technique can deal with
multi-rate and cyclic dependencies between actors without converting it to a ho-
mogeneous SDFG. Building on an efficient technique to calculate throughput of a
bound and scheduled SDFG, it becomes possible to perform resource allocation for
real multimedia applications much faster than when existing resource allocation
techniques are used.

After binding and scheduling the actors to the MP-SoC platform, it remains
to schedule the communication onto the NoC. Chapter 8 presents three differ-
ent scheduling strategies that minimize resource usage by exploiting all schedul-
ing freedom offered by NoCs while guaranteeing that the timing constraints are
met. The experimental results show that these strategies outperform existing
NoC scheduling techniques. Furthermore, a technique is presented to extract the
timing constraints on the communication from a bound and scheduled SDFG.
This connects the communication scheduling to the tile binding and scheduling
mentioned before.

Chapter 9 proposes a predictable design flow that maps an application, mod-
eled with an SDFG, onto a predictable platform. This design flow combines all

11. CONCLUSIONS AND FUTURE WORK 183

the techniques presented in this thesis. The objective of the flow is to minimize
the resource usage while offering throughput guarantees on the application when
mapped to the platform. A case study is performed in which a set of multimedia
applications are mapped onto a NoC-based MP-SoC. It shows that the design
flow, SDFG mapping techniques, and SDFG analysis techniques presented in this
thesis enable a mapping of a streaming application onto a NoC-based architec-
ture that has a predictable timing behavior. This makes it the first complete
design flow that maps a time-constrained SDFG to a NoC-based MP-SoC while
providing throughput guarantees.

The predictable design flow and all techniques presented in this thesis have
been implemented in SDF3. The result is a versatile tool that can be used to
design multi-processor systems with a predictable timing behavior. It can also
serve as a starting point for future research on predictable design flows. The tool
and its source code are freely available from http://www.es.ele.tue.nl/
sdf3.

11.2 Open Problems and Future Research

The design flow presented in this thesis offers an interesting starting point for
research into the design of predictable systems. However, in order to increase
its applicability in designing real systems, several issues need to be researched
further:

• A technique is outlined in Chapter 5 to extract the memory access model
presented in this chapter automatically from a source code fragment. This
technique is currently not implemented in SDF3. The tool should be ex-
tended with this technique to allow a fully automatic design flow that can
explore alternative memory mappings to a multi-level memory architecture
with both shared and private memory modules without user intervention.

• The ordering of the steps in the design flow has not been extensively tested.
More research is needed into the ordering of the steps. Potentially this may
also lead to the introduction of new steps in the flow. For example, an
additional step may be introduced to reduce the storage-space allocation of
edges further. The static-order schedule of the actors of an application on a
processor makes it possible to perform life-time analysis on the data stored
in the edges between those actors. Using this technique, the storage space
requirements of the edges can be reduced further. Section 10.5 discusses
more options for changes to the design flow based on the results of the case
study presented in Chapter 10.

• The SDF Model-of-Computation is not suitable for modeling dynamic be-
havior. A first step to address this issue, is to extend the techniques pre-
sented in this thesis to the Cyclo-Static Dataflow Model-of-Computation.

http://www.es.ele.tue.nl/sdf3
http://www.es.ele.tue.nl/sdf3

184 11.2. OPEN PROBLEMS AND FUTURE RESEARCH

This Model-of-Computation can express some dynamism and it seems pos-
sible to extend all techniques presented in this thesis to CSDF. A more
general solution seems to be the extension of the design flow and techniques
to support scenarios, as proposed in [48, 89]. When using scenarios, an ap-
plication is partitioned into a set of SDFGs that each describe a different
behavior (scenario) of the application. The design flow must then map this
set of graphs to a platform while providing timing guarantees. To exploit
scenarios in a system, techniques are also needed to perform run-time re-
source allocation in order to allow run-time switching between scenarios.
Novel analysis techniques are necessary to provide timing guarantees on a
context with switches.

• The presented design flow focuses on streaming applications. Often mod-
ern streaming applications contain also a (small) control part. Therefore, it
might be interesting to study an extension of the design flow to deal with
event-driven reactive behavior and control processing. The SDF or CSDF
based version of Reactive Process Networks (RPN) [43] might be an inter-
esting candidate to allow a predictable design flow for systems that have
both (dynamic) streaming and reactive, control-oriented components. In
addition, the RPN Model-of-Computation is sufficiently rich to allow the
integration of scenarios. As a prerequisite, it is necessary to develop analy-
sis and synthesis techniques for RPN, in particular the SDF or CSDF based
version of it.

• A fixed platform is input to the design flow. The flow does not consider
changing scheduler settings such as the number of TDMA slots on the links
of the NoC or the size of the TDMA time wheels on the processors. Changing
these scheduler settings may reduce the resource requirements of applica-
tions. In certain situations, these changes can be made without affecting the
composability of the resulting mappings (see Section 10.5). When a single
iteration of the design flow is sufficiently, a fast a design-space exploration
algorithm can be build on top of the design flow to explore the architec-
ture space. The design flow could then be used both in a compilation and
synthesis approach.

• The design flow presented in this thesis focuses on providing throughput
guarantees. Other system properties and requirements like latency and code
size are not taken into account. Extension of the flow to take also these
aspects into account would allow a more extensive exploration of the system
design space.

• The current flow focuses on providing hard guarantees. Many multimedia
applications require only soft guarantees. Designing a system with soft guar-
antees might reduce resource usage (e.g., smaller buffer sizes). It may also
reduce the requirements for the platform. For example, a NoC can be used

11. CONCLUSIONS AND FUTURE WORK 185

that provides best-effort connections [107] instead of guaranteed through-
put connections and the processor utilization may improve as unreserved
TDMA slots can be used. Novel analysis techniques are needed to reason
about soft guarantees.

• Currently the flow focuses on minimizing the resource usage which is typi-
cally also beneficial for the the power and energy consumption of a system.
Novel systems will have strict power and energy budgets. Therefore, the
design flow should be extended to take these constraints into account. This
requires the development of novel system-level and system wide power and
energy models.

• A feasibility study should be performed in which the back-end of the flow
developed in this thesis is extended to map applications onto a real plat-
form, e.g. a NoC-based MP-SoC embedded into an FPGA. This feasibility
study should demonstrate the use of the design flow in building predictable
systems.

186 11.2. OPEN PROBLEMS AND FUTURE RESEARCH

Bibliography

[1] E. Aarts, R. Harwig, and M. Schuurmans. Ambient Intelligence, pages
235–250. The Invisible Future: The Seamless Integration of Technology in
Everyday Life. McGraw-Hill, 2002.

[2] J. Absar and F. Catthoor. Analysis of scratch-pad and data-cache per-
formance using statistical methods. In Conference on Asia South Pacific
design automation, ASP-DAC 06, Proceedings, pages 820–825. IEEE, 2006.

[3] B. Ackland, A. Anesko, D. Brinthaupt, S.J. Daubert, A. Kalavade,
J. Knobloch, E. Micca, M. Moturi, C.J. Nicol, J.H. O’Neill, J. Othmer,
E. Sackinger, K.J. Singh, J. Sweet, C.J. Terman, and J. Williams. A single
chip 1.6 billion 16-b MAC/s multiprocessor DSP. IEEE Journal of Solid-
State Circuits, 35(3):412–424, March 2000.

[4] M. Adé, R. Lauwereins, and J.A. Peperstraete. Data minimisation for syn-
chronous data flow graphs emulated on DSP-FPGA targets. In 34th Design
Automation Conference, DAC 97, Proceedings, pages 64–69. ACM, 1997.

[5] K. Altisen, G. Gößler, and J. Sifakis. A methodology for the construction
of scheduled systems. In International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, FTRTFT 00, Proceedings, volume
1926 in LNCS, pages 106–120. Springer-Verlag, 2000.

[6] G.M. Amdahl. Validity of the single processor approach to achieve large
scale computing capabilities. In American Federation of Information Pro-
cessing Societies Conference, AFIPS 67, Proceedings, pages 483–485. Thom-
son Book Company, 1967.

[7] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems. In
Formal Modeling and Analysis of Timed Systems, FORMATS 03, Proceed-
ings, volume 2791 in LNCS, pages 60–72. Springer-Verlag, 2003.

[8] ARM. ARM7TDMI processor. http://www.arm.com/products/
CPUs/ARM7TDMI.html.

187

http://www.arm.com/products/CPUs/ARM7TDMI.html
http://www.arm.com/products/CPUs/ARM7TDMI.html

188 BIBLIOGRAPHY

[9] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation
scheme for scratch-pad-based embedded systems. Transactions on Embedded
Computing Systems, 1(1):6–26, November 2002.

[10] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Transactions on Dependable
and Secure Computing, 1(1):11–33, January 2004.

[11] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization and
linearity: an algebra for discrete event systems. Wiley, 1992.

[12] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara, editors. Hardware-Software Co-design of Embedded Systems:
The POLIS Approach. Kluwer Academic Publishers, June 1997.

[13] N. Bambha, V. Kianzad, M. Khandelia, and S.S. Bhattacharyya. Interme-
diate representations for design automation of multiprocessor DSP systems.
Design Automation for Embedded Systems, 7(4):307–323, November 2002.

[14] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: a design alternative for cache on-chip memory inem-
bedded systems. In 10th International Conference on Hardware-Software
Codesign, CODES 02, Proceedings, pages 73–78. ACM, 2002.

[15] T. Basten, L. Benini, A. Chandrakasan, M. Lindwer, J. Liu, R. Min, and
F. Zhao. Scaling into ambient intelligence. In Conference on Design Au-
tomation and Test in Europe, DATE 03, Proceedings, pages 76–81. IEEE,
2003.

[16] T. Basten, M.C.W. Geilen, and H.W.H. de Groot, editors. Ambient Intelli-
gence: Impact on Embedded System Design. Kluwer Academic Publishers,
November 2003.

[17] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman,
J.D. Mol, S. Stuijk, V. Gheorghita, and J. van Meerbergen. Dynamic and
Robust Streaming in and between Connected Consumer-Electronic Devices,
chapter Dataflow Analysis for Real-Time Embedded Multiprocessor System
Design, pages 81–108. Springer, May 2005.

[18] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. van
Meerbergen. Predictable multiprocessor system design. In International
Workshop on Software and Compilers for Embedded Systems, SCOPES 04,
Proceedings, pages 77–91. Springer, 2004.

[19] L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm.
IEEE Computer, 35(1):70–78, January 2002.

BIBLIOGRAPHY 189

[20] L. Benini and G. De Micheli. Multiprocessor Systems on Chips, chapter
Networks on Chip: A new Paradigm for component-based MPSoC Design,
pages 49–80. Morgan Kaufmannn, 2004.

[21] S. Bhattacharyya, P. Murthy, and E.A. Lee. Synthesis of embedded soft-
ware from synchronous dataflow specifications. Journal on VLSI Signal
Processing Systems, 21(2):151–166, June 1999.

[22] S.S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Pro-
cessing. PhD thesis, UC Berkeley, July 1994.

[23] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, 1996.

[24] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static
dataflow. IEEE Transactions on signal processing, 44(2):397–408, February
1996.

[25] S.Y. Borkar, H. Mulder, P. Dubey, S.S. Pawlowski, K.C. Kahn, J.R. Rattner,
and D.J. Kuck. Platform 2015: Intel processor and platfrom evolution for
the next decade. Technical report, Intel, 2005.

[26] R.J. Bril, C. Hentschel, E.F.M. Steffens, M. Gabrani, G. van Loo, and
J.H.A. Gelissen. Multimedia QoS in consumer terminals. In Workshop on
Signal Processing Systems, Proceedings, pages 332–343. IEEE, 2001.

[27] J.T. Buck. Scheduling dynamic dataflow graphs with bounded memory using
the token flow model. PhD thesis, UC Berkeley, 1993.

[28] M. Coenen, S. Murali, A. Rădulescu, K. Goossens, and G. De Micheli. A
buffer-sizing algorithm for networks on chip using tdma and credit-based
end-to-end flow control. In 4th International Conference on Hardware-
Software Codesign and System Synthesis, CODES+ISSS 06, Proceedings,
pages 130–135. ACM, 2006.

[29] F. Commoner, A.W. Holt, S. Even, and A. Pneuli. Marked directed graphs.
Journal of Computer and System Sciences, 5(5):511–523, October 1971.

[30] D.E. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.

[31] W.J. Dally and C.L. Seitz. The torus routing chip. Journal of distributed
computing, 1(4):187–196, December 1986.

[32] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In 38th Design Automation Conference, DAC 01, Proceedings,
pages 684–689. ACM, 2001.

190 BIBLIOGRAPHY

[33] A. Dasdan. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. ACM Transactions on Design Automation of Electronic
Systems, 9(4):385–418, October 2004.

[34] A. Dasdan and R.K. Gupta. Faster maximum and minimum mean cycle
algorithms for system performance analysis. Technical Report ICS-TR-97-
07, UC Irvine, 1997.

[35] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF: task graphs for free. In In-
ternational Conference on Hardware/Software Codesign, CODES 98, Pro-
ceedings, pages 97–101. IEEE, 1998.

[36] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SoC for
advanced set-top box and digital tv systems. IEEE Design and Test of
Computers, 18(5):21–31, September 2001.

[37] C. Erbas, S. Cerav-Erbas, and A.D. Pimentel. Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem in
multiprocessor system-on-chip design. IEEE Transactions on Evolutionary
Computation, 10(3):358–374, June 2006.

[38] R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Herrmann, and
M. Trawny. The COSYMA environment for hardware/software cosynthesis
of small embedded systems. Microprocessors and Microsystems, 20(3):159–
166, May 1996.

[39] A. Ferrari and A. Sangiovanni-Vincentelli. System design: Traditional con-
cepts and new paradigms. In International Conference on Computer Design,
ICCD 99, Proceedings, pages 2–12. IEEE, 1999.

[40] O.P. Gangwal, A. Rădulescu, K. Goossens, S. González Pestana, and
E. Rijpkema. Dynamic and Robust Streaming In and Between Connected
Consumer-Electronics Devices, volume 3 of Philips Research Book Series,
chapter Building Predictable Systems on Chip: An Analysis of Guaranteed
Communication in the AEthereal Network on Chip, pages 1–36. Springer,
2005.

[41] E.R. Gansner and S.C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, August 2000.

[42] M.R. Garey and D.S. Johnson. Computers and interactability: a guide to
the theory of NP-completeness. W.H. Freeman and Co., 1979.

[43] M.C.W. Geilen and T. Basten. Reactive process networks. In 4th Interna-
tional Conference on Embedded Software, EMSOFT 04, Proceedings, pages
137–146. ACM, 2004.

BIBLIOGRAPHY 191

[44] M.C.W. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements
of synchronous dataflow graphs with model-checking. In 42nd Design Au-
tomation Conference, DAC 05, Proceedings, pages 819–824. ACM, 2005.

[45] A.H. Ghamarian, M.C.W. Geilen, T. Basten, B.D. Theelen, M.R. Mousavi,
and S. Stuijk. Liveness and boundedness of synchronous data flow graphs.
In 6th International Conference on Formal Methods in Computer Aided
Design, FMCAD 06, Proceedings, pages 68–75. IEEE, 2006.

[46] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A.J.M. Moonen,
M.J.G. Bekooij, B.D. Theelen, and M.R. Mousavi. Throughput analysis of
synchronous data flow graphs. In 6th International Conference on Applica-
tion of Concurrency to System Design, ACSD 06, Proceedings, pages 25–36.
IEEE, 2006.

[47] A.H. Ghamarian, S. Stuijk, T. Basten, M.C.W. Geilen, and B.D. Theelen.
Latency minimization for synchronous data flow graphs. In 10th Euromicro
Conference on Digital System Design, DSD 07, Proceedings, pages 189–196.
IEEE, 2007.

[48] S.V. Gheorghita, T. Basten, and H. Corporaal. Application scenarios in
streaming-oriented embedded system design. In International Symposium
on System-on-Chip, SoC 06, Proceedings, pages 175–178. IEEE, 2006.

[49] S.V. Gheorghita, T. Basten, and H. Corporaal. Profiling driven scenario
detection and prediction for multimedia applications. In 6th International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation, IC-SAMOS 06, Proceedings, pages 63–70. IEEE, 2006.

[50] S.V. Gheorghita, T. Basten, and H. Corporaal. Scenario selection and pre-
diction for dvs-aware scheduling. Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, July 2007. http://dx.
doi.org/10.1007/s11265-007-0086-1.

[51] S.V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Automatic sce-
nario detection for improved WCET estimation. In 42nd Design Automation
Conference, DAC 05, Proceedings, pages 101–104. ACM, 2005.

[52] C.J. Glass and L.M. Ni. The turn model for adaptive routing. In 19th Inter-
national Symposium on Computer architecture, Proceedings, pages 278–287.
ACM, 1992.

[53] K. Goossens, J. Dielissen, O.P. Gangwal, S. González Pestana,
A. Rădulescu, and E. Rijpkema. A design flow for application-specific
networks on chip with guaranteed performance to accelerate SoC design
and verification. In Conference on Design Automation and Test in Europe,
DATE 05, Proceedings, pages 1182–1187. IEEE, 2005.

http://dx.doi.org/10.1007/s11265-007-0086-1
http://dx.doi.org/10.1007/s11265-007-0086-1

192 BIBLIOGRAPHY

[54] R. Govindarajan, G.R. Gao, and P. Desai. Minimizing buffer requirements
under rate-optimal schedule in regular dataflow networks. Journal of VLSI
Signal Processing, 31(3):207–229, July 2002.

[55] M. Gries. Methods for evaluating and covering the design space during
early design development. Integration, the VLSI Journal, 38(2):131–183,
December 2004.

[56] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-
switched interconnections. In Conference on Design Automation and Test
in Europe, DATE 00, Proceedings, pages 250–256. IEEE, 2000.

[57] U. Hansmann, M.S. Nicklous, and T. Stober. Pervasive computing handbook.
Springer-Verlag, January 2001.

[58] A. Hansson, M. Coenen, and K. Goossens. Channel trees: Reducing latency
by sharing time slots in time-multiplexed networks on chip. In Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 07, Proceedings. IEEE, 2005.

[59] A. Hansson, K. Goossens, and A. Rădulescu. A unified approach to con-
strained mapping and routing on network-on-chip architectures. In Inter-
national Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 05, Proceedings, pages 75–80. IEEE, 2005.

[60] R. Heckmann and C. Ferdinand. Verifying safety-critical timing and
memory-usage properties of embedded software by abstract interpretation.
In Conference on Design Automation and Test in Europe, DATE 05, Pro-
ceedings, pages 618–619, 2005.

[61] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 4th edition, 2007.

[62] R. Holsmark, M. Palesi, and S. Kumar. Deadlock free routing algorithms for
mesh topology NoC systems with regions. In 9th Euromicro Conference on
Digital System Design, DSD 06, Proceedings, pages 696–703. IEEE, 2006.

[63] N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In 2nd
International Workshop on Worst-Case Execution Time Analysis, WCET
02, Proceedings, pages 36–41, 2002.

[64] J. Hu and R. Marculescu. Communication and task scheduling of
application-specific networks-on-chip. IEE Proceedings: Computers and
Digital Techniques, 152(5):643–651, September 2005.

[65] J. Hu and R. Marculescu. Energy- and performance-aware mapping for
regular NoC architectures. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(4):551–562, April 2005.

BIBLIOGRAPHY 193

[66] J. Hu, U.Y. Ogras, and R. Marculescu. System-level buffer allocation for
application-specific networks-on-chip router design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systemss, 25(12):2919–
2933, December 2006.

[67] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu. A formal approach to the scheduling
problem in high-level synthesis. IEEE Transactions on Computer-Aided
Design, 10(4):464–475, April 1991.

[68] In-Stat. Consumer electronics sales. http://www.itfacts.biz/
index.php?id=P8224.

[69] ITRS. International technology roadmap for semiconductors 2005 edition.
Technical report, ITRS, 2005.

[70] ITU-T. Video coding for low bit rate communication. Technical report,
ITU-T Recommendation H.263, 1996.

[71] ITU-T. Advanced video coding for generic audiovisual services. Technical
report, ITU-T Recommendation H.264, 2005.

[72] A.A. Jerraya, A.Bouchhima, and F. Pétrot. Programming models and HW-
SW interfaces abstraction for multi-processor SoC. In 43th Design Automa-
tion Conference, DAC 06, Proceedings, pages 280–285. ACM, 2006.

[73] A.A. Jerraya and W. Wolf, editors. Multiprocessor Systems-on-Chip. Else-
vier, September 2005.

[74] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM Journal of Re-
search and Development, 49(4):589–604, 2005.

[75] G. Kahn. The semantics of a simple language for parallel programming.
In Information Processing 74, IFIP 74, Proceedings, pages 471–475. North-
Holland, 1974.

[76] R.M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3):309–311, September 1978.

[77] R.M. Karp and R.E. Miller. Properties of a model for parallel computations:
Determinancy, termination, queueing. SIAM Journal of Applied Mathemat-
ics, 14(6):1390–1411, November 1966.

[78] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(12):1523–1543, December 2000.

http://www.itfacts.biz/index.php?id=P8224
http://www.itfacts.biz/index.php?id=P8224

194 BIBLIOGRAPHY

[79] B. Kienhuis, E.F. Deprettere, K.A. Vissers, and P. van der Wolf. An ap-
proach for quantitative analysis of application-specific dataflow architec-
tures. In International Conference on Application-specific Systems, Archi-
tectures and Processors, ASAP 97, Proceedings, pages 338–349. IEEE, 1997.

[80] D. Kim. System-Level Specification and Cosimulation for Multimedia Em-
bedded Systems. PhD thesis, Seoul National University, February 2003.

[81] H. Kopetz and N. Suri. Compositional design of real-time system: A con-
ceptual basis for the specification of linking interfaces. In 6th International
Symposium on Object Oriented Real-Time Computing, ISORC 03, Proceed-
ings, pages 51–60. IEEE, 2003.

[82] K. Kuchcinski. Constraint-driven scheduling and resource assignment. ACM
Transactions on Design Automation of Electronic Systems, 8(3):355–383,
July 2003.

[83] K. Lagerstrom. Design and implementation of an MPEG-1 layer III audio
decoder. Master’s thesis, Chalmers University of Technology, Sweden, May
2001.

[84] R. Lauwereins, P. Wauters, M. Ade, and J.A. Peperstraete. Geometric
parallelism and cyclo-static data flow in GRAPE-II. In 5th International
Workshop on Rapid System Prototyping, Proceedings, pages 90–107. IEEE,
1994.

[85] E.A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel
and Distributed Systems, 2(2):223–235, April 1991.

[86] E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Transactions on Comput-
ers, 36(1):24–35, January 1987.

[87] Y. Li and W. Wolf. Hierarchical scheduling and allocation of multirate
systems on heterogeneous multiprocessors. In European Design and Test
Conference, ED&TC 97, Proceedings, pages 134–139. IEEE, 1997.

[88] H. De Man. System design challenges in the post-PC era. In 37th Design
Automation Conference, DAC 00, Proceedings, page x. ACM, 2000.

[89] P. Marchal, C. Wong, A. Prayati, N. Cossement, F. Catthoor, R. Lauw-
ereins, D. Verkest, and H. DeMan. Dynamic memory oriented transforma-
tions in the MPEG4 IM1-Player on a low power platform. In 1st Interna-
tional Workshop on Power-Aware Computer Systems, PACS 00, Proceed-
ings, pages 40–50. Springer-Verlag, 2000.

BIBLIOGRAPHY 195

[90] R. Marculescu, U.Y. Ogras, and N.H. Zamora. Computation and com-
munication refinement for multiprocessor SoC design: A system-level per-
spective. ACM Transactions on Design Automation of Electronic Systems,
11(3):564–592, July 2006.

[91] G. Martin. Overview of the MPSoC design challenge. In 43th Design Au-
tomation Conference, DAC 06, Proceedings, pages 274–279. ACM, 2006.

[92] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transac-
tions on Modeling and Computer Simulation, 8(1):3–30, January 1998.

[93] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth
using looped containers in temporally disjoint networks within the Nostrum
network on chip. In Conference on Design Automation and Test in Europe,
DATE 04, Proceedings, pages 890–895. IEEE, 2004.

[94] A. Moonen, M. Bekooij, and J. van Meerbergen. Timing analysis model
for network based multiprocessor systems. In 15th annual Workshop of
Circuits, System and Signal Processing, ProRISC 04, Proceedings, pages
91–99. STW, 2004.

[95] O. Moreira, J.-D. Mol, M. Bekooij, and J. van Meerbergen. Multiprocessor
resource allocation for hard-real-time streaming with a dynamic job-mix.
In 11th Real Time and Embedded Technology and Applications Symposium,
RTAS 05, Proceedings, pages 332–341. IEEE, 2005.

[96] MPEG-2. Generic coding of moving pictures and associated audio. Technical
report, ISO/IEC 13818-2.

[97] MPEG-4. Information technology coding of audio-visual objects. Technical
report, ISO/IEC 14496-2.

[98] S. Murali, L. Benini, and G. De Micheli. An application-specific de-
sign methodolofy for on-chip crossbar generation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(7):1283–
1296, July 2007.

[99] S. Murali, M. Coenen, A. Rădulescu, K. Goossens, and G. De Micheli. A
methodology for mapping multiple use-cases onto networks on chip. In Con-
ference on Design Automation and Test in Europe, DATE 06, Proceedings,
pages 118–123. European Design and Automation Association, 2006.

[100] P.K. Murthy. Scheduling Techniques for Synchronous Multidimensional
Synchronous Dataflow. PhD thesis, UC Berkeley, December 1996.

[101] P.K. Murthy and S.S. Bhattacharyy. Shared memory implementations of
synchronous dataflow specifications. In Conference on Design Automation
and Test in Europe, DATE 00, Proceedings, pages 404–410. IEEE, 2000.

196 BIBLIOGRAPHY

[102] P.K. Murthy and E.A. Lee. On the optimal blocking factor for blocked, non-
overlapped multiprocessor schedules. In 28th Asilomar Conference on Sig-
nals, Systems and Computers, Proceedings, pages 1052–1057. IEEE, 1994.

[103] C. Neeb and N. Wehn. Designing efficient irregular networks for hetero-
geneous systems-on-chip. In 9th Euromicro Conference on Digital System
Design, DSD 06, Proceedings, pages 665–672. IEEE, 2006.

[104] Q. Ning and G.R. Gao. A novel framework of register allocation for software
pipelining. In 20th Symposium on Principles of Programming Languages,
Proceedings, pages 29–42. ACM, 1993.

[105] U.Y. Ogras, J. Hu, and R. Marculescu. Key research problems in NoC
design: A holistic perspective. In International conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS 05, Proceed-
ings, pages 69–74. ACM, 2005.

[106] U.Y. Ogras and R. Marculescu. ”it’s a small world after all”: NoC per-
formance optimization via long-range link insertion. IEEE Transactions on
Very Large Scale Integration Systems, 14(7):693–706, July 2006.

[107] U.Y. Ogras and R. Marculescu. Prediction-based flow control for network-
on-chip traffic. In 43th Design Automation Conference, DAC 06, Proceed-
ings, pages 839–844. ACM, 2006.

[108] H. Oh, N. Dutt, and S. Ha. Memory optimal single appearance schedule
with dynamic loop count for synchronous dataflow graphs. In Conference on
Asia South Pacific Design Automation, ASP-DAC 06, Proceedings, pages
497–502. ACM, 2006.

[109] H. Oh and S. Ha. Efficient code synthesis from extended dataflow graphs. In
39th Design Automation Conference, DAC 02, Proceedings, pages 275–280.
ACM, 2002.

[110] H. Oh and S. Ha. Fractional rate dataflow model for efficient code synthesis.
Journal of VLSI Signal Processing, 37(1):41–51, May 2004.

[111] P.G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin, and D. Lyonnard.
Application of a multi-processor SoC platform to high-speed packet for-
warding. In Conference on Design Automation and Test in Europe, DATE
04, Proceedings, pages 58–63. IEEE, 2004.

[112] C.A. Petri. Kommunikation mit automaten. PhD thesis, Institute für in-
strumentelle Mathematik, 1962.

[113] A.D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to explor-
ing embedded system architectures at multiple abstraction levels. IEEE
Transactions on Computers, 55(2):99–112, February 2006.

BIBLIOGRAPHY 197

[114] J.L. Pino, S.S. Bhattacharyya, and E.A. Lee. A hierarchical multiprocessor
scheduling system for DSP applications. In 29th Asilomar Conference on
Signals, Systems and Computers, Proceedings, pages 122–126. IEEE, 1995.

[115] B. Plateau and K. Atif. Stochastic automata network of modeling parallel
systems. IEEE Transactions on Software Engineering, 17(10):1093–1108,
October 1991.

[116] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mes-
man. Task-level timing models for guaranteed performance in multipro-
cessor networks-on-chip. In International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems, CASES 03, Proceedings,
pages 63–72. ACM, 2003.

[117] W. Reisig and G. Rozenberg. Advances in Petri Nets, volume 1491 of Lecture
Notes in Computer Science. Springer-Verlag, 1998.

[118] R. Reiter. Scheduling parallel computations. Journal of the ACM,
15(4):590–599, October 1968.

[119] Telenor Research. Tmn (h.263) encoder/decoder, version 1.7, June 1997.

[120] E. Rijpkema, K.G.W. Goossens, A. Rădulescu, J. Dielissen, J. van Meer-
bergen, P. Wielage, and E. Waterlander. Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip. IEE
Proceedings: Computers and Digital Techniques, 150(5):294–302, Septem-
ber 2003.

[121] S. Ritz, M. Willems, and H. Meyr. Scheduling for optimum data memory
compaction in block diagramoriented software synthesis. In International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 95, Pro-
ceedings, pages 2651–2654. IEEE, 1995.

[122] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage.
An efficient on-chip network interface offering guaranteed services shared-
memory abstraction, and flexible network configuration. In Conference on
Design Automation and Test in Europe, DATE 04, Proceedings, pages 878–
883. IEEE, 2004.

[123] A. Rădulescu, J. Dielissen, S. González Pestana, O.P. Gangwal, E. Rijp-
kema, P. Wielage, and K. Goossens. An efficient on-chip network interface
offering guaranteed services, shared-memory abstraction, and flexible net-
work programming. IEEE Transactions on CAD of Integrated Circuits and
Systems, 24(1):4–17, January 2005.

198 BIBLIOGRAPHY

[124] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano.
Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip. In Conference on Design Au-
tomation and Test in Europe, DATE 06, Proceedings, pages 3–8. European
Design and Automation Association, 2006.

[125] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P.
Gangwal, A. Timmer, and E.-J.D. Pol. A heterogeneous multiprocessor ar-
chitecture for flexible media processing. IEEE Design & Test of Computers,
19(4):39–50, July 2002.

[126] K. Salomonsen. Design and implementation of an MPEG/Audio layer III
bitstream processor. Master’s thesis, Aalborg University, Denmark, 1997.

[127] S.K. Shukla and R.K. Gupta. A model checking approach to evaluating sys-
tem level dynamic power management policies for embedded systems. In 6th
High-Level Design Validation and Test Workshop, HLDVT 01, Proceedings,
pages 53–57. IEEE, 2001.

[128] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling
and Synchronization. Marcel Dekker, 2000.

[129] S. Sriram and E.A. Lee. Determining the order of processor transactions
in statically scheduled multiprocessors. Journal of VLSI Signal Processing,
15(3):207–220, March 1997.

[130] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette. System
design using Khan process networks: the Compaan/laura approach. In Con-
ference on Design Automation and Test in Europe, DATE 04, Proceedings,
pages 340–345. IEEE, 2004.

[131] S. Steinke, L. Wehmeyer, L. Bo-Sik, and P. Marwedel. Assigning program
and data objects to scratchpad for energyreduction. In Conference on De-
sign Automation and Test in Europe, DATE 02, Proceedings, pages 409–415.
IEEE, 2002.

[132] S. Stuijk, T. Basten, M.C.W. Geilen, and H. Corporaal. Multiprocessor re-
source allocation for throughput-constrained synchronous dataflow graphs.
In 44th Design Automation Conference, DAC 07, Proceedings, pages 777–
782. ACM, 2007.

[133] S. Stuijk, T. Basten, M.C.W. Geilen, A.H. Ghamarian, and B.D. Thee-
len. Resource-efficient routing and scheduling of time-constrained streaming
communication on networks-on-chip. Journal of Systems Architecture. (to
be published).

BIBLIOGRAPHY 199

[134] S. Stuijk, T. Basten, M.C.W. Geilen, A.H. Ghamarian, and B.D. Thee-
len. Resource-efficient routing and scheduling of time-constrained network-
on-chip communication. In 9th Euromicro Conference on Digital System
Design, DSD 06, Proceedings, pages 45–52. IEEE, 2006.

[135] S. Stuijk, T. Basten, B. Mesman, and M.C.W. Geilen. Predictable em-
bedding of large data structures in multiprocessor networks-on-chip. In
8th Euromicro Conference on Digital System Design, DSD 05, Proceedings,
pages 388–395. IEEE, 2005.

[136] S. Stuijk, T. Basten, B. Mesman, and M.C.W. Geilen. Predictable embed-
ding of large data structures in multiprocessor networks-on-chip (extended
abstract). In Conference on Design Automation and Test in Europe, DATE
05, Proceedings, pages 254–255. IEEE, 2005.

[137] S. Stuijk, M.C.W. Geilen, and T. Basten. Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs.
In 43th Design Automation Conference, DAC 06, Proceedings, pages 899–
904. ACM, 2006.

[138] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In 6th
International Conference on Application of Concurrency to System Design,
ACSD 06, Proceedings, pages 276–278. IEEE, 2006.

[139] E. Teruel, J. Chrzastowski-Wachtel, M. Colom, and M. Silva. On weighted
T-systems. In 13th International Conference on Application and Theory of
Petri Nets, APN 92, Proceedings, pages 348–367. Springer, 1992.

[140] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run
average and worst-case performance analysis. In 4th International Con-
ference on Formal Methods and Models for Co-Design, MEMOCODE 06,
Proceedings, pages 185–194. IEEE, 2006.

[141] R. Thid, I. Sander, and A. Jantsch. Flexible bus and NoC performance
analysis with configurable synthetic workloads. In 9th Euromicro Confer-
ence on Digital System Design, DSD 06, Proceedings, pages 681–688. IEEE,
2006.

[142] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. In 11th International Symposium on Compiler
Construction, CC 02, Proceedings, volume 2304 in LNCS, pages 179–196.
Springer-Verlag, 2002.

[143] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory alloca-
tion for scratch-pad based embedded systems. In International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, CASES
03, Proceedings, pages 276–286. ACM, 2003.

200 BIBLIOGRAPHY

[144] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for
scratch-pad memory using compile-time decisions. Transactions on Embed-
ded Computing Systems, 5(2):472–511, May 2006.

[145] F. Vaandrager. Lectures on Embedded Systems, LNCS 1494, chapter Intro-
duction, pages 1–3. Springer-Verlag, 1998.

[146] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratchpad
memory for energy minimization. In 2nd International Conference on Hard-
ware/software codesign and system synthesis, CODES+ISSS, Proceedings,
pages 104–109. ACM, 2004.

[147] Ogg Vorbis. Ogg vorbis rc3. Technical report, Xiph.org.

[148] L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on pre-
dictability for time constrained embedded software. In Conference on De-
sign Automation and Test in Europe, DATE 05, Proceedings, pages 600–605.
IEEE, 2005.

[149] M. Weiser. Ubiquitous computing. Computer, 26(10):71–72, October 1993.

[150] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient computation
of buffer capacities for multi-rate real-time systems with back-pressure. In
4th International Conference on Hardware-Software Codesign and System
Synthesis, CODES+ISSS 06, Proceedings, pages 10–15. ACM, 2006.

[151] M. Wiggers, M. Bekooij, and G. Smit. Efficient computation of buffer ca-
pacities for cyclo-static dataflow graphs. In 44th Design Automation Con-
ference, DAC 07, Proceedings, pages 658–663. ACM, 2007.

[152] W. Wolf. Multimedia applications of multiprocessor systems-on-chips. In
Conference on Design Automation and Test in Europe, DATE 05, Proceed-
ings, pages 86–89. IEEE, 2005.

Glossary

Acronyms and abbreviations

API application program interface
BDF boolean dataflow
BDFG boolean dataflow graph
CA communication assist
CIF common intermediate format
CSDF cyclo-static dataflow
CSDFG cyclo-static dataflow graph
DCT discrete cosine transform
DSP digital signal processing
FPGA field-programmable gate array
HSDFG homogeneous synchronous dataflow graph
IDCT inverse discrete cosine transform
IQ inverse quantization
ITRS international technology roadmap for semiconductors
KPN Kahn process network
MB macro block
MCM maximum cycle mean
MCR maximum cycle ratio
M memory
MoC model-of-computation
MPEG motion pictures experts group
MP-SoC multi-processor system-on-chip
NI network interface
NoC network-on-chip
P processor
QCIF quarter common intermediate format
RPN reactive process network
R router
SADF scenario-aware dataflow
SADFG scenario-aware dataflow graph

201

202 Glossary

SDF synchronous dataflow
SDFG synchronous dataflow graph
TDMA time-division multiple-access
VLC variable length encoder
VLD variable length decoder
WCRT worst-case response time
XML extensible markup language

Symbols and Notations

The list of symbols and notations is split into three categories. The first category
contains the symbols and notations used for SDFGs. The second category con-
tains symbols and notations used for tile binding and scheduling. This includes
symbols and notations used to describe the resource requirements of SDFGs.
The last category contains the symbols and notations used in the communication
scheduling.

Synchronous Dataflow

a actor
d dependency edge
p port
A set of actors
D set of dependency edges
Ports set of ports
I set of input ports
O set of output ports
Rate(p) rate of port p
SrcA(d) source actor of a dependency edge d
DstA(d) destination actor of a dependency edge d
SrcP (d) source port of a dependency edge d
DstP (d) destination port of a dependency edge d
InD(a) set of all dependency edges connected to input ports of

actor a
OutD(a) set of all dependency edges connected to output ports of

actor a
Rd(a) number of tokens read by actor a from its edges on a firing
Wr(a) number of tokens written by actor a to its edges on a firing
γ repetition vector
δ edge quantity which gives the distribution of tokens or stor-

age space over the dependency edges
n number of tokens on a dependency edge in the initial state
υ set of remaining execution times of all actors in a given

state

Glossary 203

Υ(a) execution time of actor a
Th throughput
λ throughput constraint
σ self-timed execution of an SDFG
∆ (abstract) dependency graph
step(d) step size of dependency edge d

Resource Allocation

t tile in a platform graph
T set of tiles in a platform graph
C set of connections between tiles in a platform graph
L(c) latency of a connection c in the platform graph
pt processor type
PT set of all processor types
w size of the processor’s TDMA time wheel
Ω(t) time slice reserved by other applications on tile t
mt size of the memory inside tile t
ct number of connections supported by tile t
it incoming bandwidth of tile t
ot outgoing bandwidth of tile t
Γ(a, pt) resource requirements of actor a on processor type pt

(Γ(a, pt) = (τa,pt, µa,pt))
τa,pt execution time of actor a on processor type pt
µa,pt memory requirement of actor a on processor type pt
Θ(d) resource requirements of dependency edge d (Θ(d) =

(sz, αtile, αsrc, αdst, ρ, β))
sz size of a token on dependency edge d
αtile storage-space constraint on a dependency edge when this

edge is bound to a tile
αsrc storage-space constraint on the source tile when the depen-

dency edge is bound to a connection in the platform graph
αdst storage-space constraint on the destination tile when the

dependency edge is bound to a connection in the platform
graph

ρ latency constraint on a dependency edge when this edge is
bound to a connection in the platform graph

β bandwidth constraint on a dependency edge when this edge
is bound to a connection in the platform graph

B(a) = t function gives binding of actor a to tile t
At set of actors bound to tile t
Dt,src set of dependency edges of which only the source port is

bound to tile t

204 Glossary

Dt,dst set of dependency edges of which only the destination port
is bound to tile t

Dt,tile set of dependency edges of which both the source and des-
tination port are bound to tile t

S(t) = (ωt, St) function gives schedule on tile t
ωt size of the TDMA time slice reserved for the application on

tile t
St static-order schedule on tile t
̺(St, κ) the function gives the next position in a static-order sched-

ule
ι position of the processor’s time wheels in a given state
κ position of the static-order schedules in a given state

Communication Scheduling

u, v vertex in the interconnect graph
V set of vertexes in the interconnect graph
li link li in the interconnect graph
L set links in the interconnect graph
N number of slots in the TDMA tables of the links
szflit size of a flit
szph size of the packet header
Treconf time needed to reconfigure a slot in a NI
CS set of communication scenarios
Pi period of the communication scenario i
M set of messages
m message (m = (u, v, s, n, τ, δ, sz))
s stream identifier
n sequence number of message in stream
τ earliest start time of a message
δ maximal duration of a message
sz size of a message
E set of scheduling entities
e scheduling entity (e = (t, d, r, st))
t time-stamp
d duration of a scheduling entity
r the route used by a scheduling entity
st the set of slots used by a scheduling entity
ϕ(e) number of slots used by scheduling entity e
φ(e) number of reserved slots by scheduling entity e
π(e) number of packets send by scheduling entity e
σ(e, li, t) function indicates whether scheduling entity e uses the link

li at time t

Glossary 205

U(li, t) function indicates whether link li is used at time t by other
communication scenarios

S(m) = e scheduling function assigns scheduling entity e to message
m

R set of routes
X maximum detour

206 Glossary

Samenvatting

Het ontwerp van nieuwe consumentenelektronica wordt voortdurend complexer
omdat er steeds meer functionaliteit in deze apparaten gëıntegreerd wordt. Een
voorspelbaar ontwerptraject is nodig om deze complexiteit te beheersen. Het
resultaat van dit ontwerptraject zou een systeem moeten zijn, waarin iedere ap-
plicatie zijn eigen taken binnen een strikte tijdslimiet kan uitvoeren, onafhankelijk
van andere applicaties die hetzelfde systeem gebruiken. Dit vereist dat het tijdsge-
drag van de hardware, de software, evenals hun interactie kan worden voorspeld.

Er wordt vaak voorgesteld om een heterogeen multi-processor systeem (MP-
SoC) te gebruiken in moderne elektronische systemen. Een MP-SoC heeft voor
veel applicaties een goede verhouding tussen rekenkracht en energiegebruik. On-
chip netwerken (NoCs) worden voorgesteld als interconnect in deze systemen.
Een NoC is schaalbaar en het biedt garanties wat betreft de hoeveelheid tijd
die er nodig is om gegevens te communiceren tussen verschillende processoren en
geheugens. Door het NoC te combineren met een voorspelbare strategie om de
processoren en geheugens te delen, ontstaat een hardware platform met een voor-
spelbaar tijdsgedrag. Om een voorspelbaar systeem te verkrijgen moet ook het
tijdsgedrag van een applicatie die wordt uitgevoerd op het platform voorspelbaar
en analyseerbaar zijn. Het Synchronous Dataflow (SDF) model is erg geschikt
voor het modelleren van applicaties die werken met gegevensstromen. Het model
kan vele ontwerpbeslissingen modelleren en het is mogelijk om tijdens het ontwerp-
traject het tijdsgedrag van het systeem te analyseren. Dit proefschrift probeert
om applicaties die gemodelleerd zijn met SDF grafen op een zodanige manier af
te beelden op een NoC-gebaseerd MP-SoC, dat garanties op het tijdsgedrag van
individuele applicaties gegeven kunnen worden.

De doorstroomsnelheid van een applicatie is vaak een van de belangrijkste eisen
bij het ontwerpen van systemen voor applicaties die werken met gegevensstromen.
Deze doorstroomsnelheid wordt in hoge mate bëınvloed door de beschikbare ruimte
om resultaten (gegevens) op te slaan. De opslagruimte in een SDF graaf wordt
gemodelleerd door de pijlen in de graaf. Het probleem is dat er een vaste grootte
voor de opslagruimte aan de pijlen van een SDF graaf moet worden toegewezen.
Deze grootte moet zodanig worden gekozen dat de vereiste doorstroomsnelheid
van het systeem gehaald wordt, terwijl de benodigde opslagruimte geminimaliseerd

207

208 Samenvatting

wordt. De eerste belangrijkste bijdrage van dit proefschrift is een techniek om de
minimale opslagruimte voor iedere mogelijke doorstroomsnelheid van een appli-
catie te vinden. Ondanks de theoretische complexiteit van dit probleem presteert
de techniek in praktijk goed. Doordat de techniek alle mogelijke minimale com-
binaties van opslagruimte en doorstroomsnelheid vindt, is het mogelijk om met
situaties om te gaan waarin nog niet alle ontwerpbeslissingen zijn genomen. De
ontwerpbeslissingen om twee taken van een applicatie op één processor uit te
voeren, zou bijvoorbeeld de doorstroomsnelheid kunnen bëınvloeden. Hierdoor
is er een onzekerheid in het begin van het ontwerptraject tussen de berekende
doorstroomsnelheid en de doorstroomsnelheid die daadwerkelijk gerealiseerd kan
worden als alle ontwerpbeslissingen zijn genomen.

Tijdens het ontwerptraject moeten de taken waaruit een applicatie is opge-
bouwd toegewezen worden aan de verschillende processoren en geheugens in het
systeem. Indien meerdere taken een processor delen, moet ook de volgorde bepaald
worden waarin deze taken worden uitgevoerd. Een belangrijke bijdrage van dit
proefschrift is een techniek die deze toewijzing uitvoert en die de volgorde bepaalt
waarin taken worden uitgevoerd. Bestaande technieken kunnen alleen omgaan
met taken die een één-op-één relatie met elkaar hebben, dat wil zeggen, taken die
een gelijk aantal keren uitgevoerd worden. In een SDF graaf kunnen ook com-
plexere relaties worden uitgedrukt. Deze relaties kunnen omgeschreven worden
naar een één-op-één relatie, maar dat kan leiden tot een exponentiële groei van
het aantal taken in de graaf. Hierdoor kan het onmogelijk worden om in een
beperkte tijd alle taken aan de processoren toe te wijzen en om de volgorde te
bepalen waarin deze taken worden uitgevoerd. De techniek die in dit proefschrift
wordt gepresenteerd, kan omgaan met de complexe relaties tussen taken in een
SDF graaf zonder de vertaling naar de één-op-één relaties te maken. Dit is mo-
gelijk dankzij een nieuwe, efficiënte techniek om de doorstroomsnelheid van SDF
grafen te bepalen.

Nadat de taken van een applicatie toegewezen zijn aan de processoren in het
hardware platform moet de communicatie tussen deze taken op het NoC gepland
worden. In deze planning moet voor ieder bericht dat tussen de taken wordt
verstuurd, worden bepaald welke route er gebruikt wordt en wanneer de commu-
nicatie gestart wordt. Dit proefschrift introduceert drie strategieën voor het ver-
sturen van berichten met een strikte tijdslimiet. Alle drie de strategieën maken
maximaal gebruik van de beschikbare vrijheid die moderne NoCs bieden. Ex-
perimenten tonen aan dat deze strategieën hierdoor efficiënter omgaan met de
beschikbare hardware dan bestaande strategieën. Naast deze strategieën wordt
er een techniek gepresenteerd om uit de ontwerpbeslissingen die gemaakt zijn tij-
dens het toewijzen van taken aan de processoren alle tijdslimieten af te leiden
waarbinnen de berichten over het NoC gecommuniceerd moeten worden. Deze
techniek koppelt de eerder genoemde techniek voor het toewijzen van taken aan
processoren aan de drie strategieën om berichten te versturen over het NoC.

Tenslotte worden de verschillende technieken die in dit proefschrift worden
gëıntroduceerd gecombineerd tot een compleet ontwerptraject. Het startpunt

Samenvatting 209

is een SDF graaf die een applicatie modelleert en een NoC-gebaseerd MP-SoC
platform met een voorspelbaar tijdsgedrag. Het doel van het ontwerptraject is
het op een zodanige manier afbeelden van de applicatie op het platform dat
de doorstroomsnelheid van de applicatie gegarandeerd kan worden. Daarnaast
probeert het ontwerptraject de hoeveelheid hardware die gebruikt wordt te mini-
maliseren. Er wordt een experiment gepresenteerd waarin drie verschillende mul-
timedia applicaties (H.263 encoder/decoder en een MP3 decoder) op een NoC-
gebaseerd MP-SoC worden afgebeeld. Dit experiment toont aan dat de tech-
nieken die in dit proefschrift worden voorgesteld, gebruikt kunnen worden voor
het ontwerpen van systemen met een voorspelbaar tijdsgedrag. Hiermee is het
voorgestelde ontwerptraject het eerste traject dat een met een SDF-gemodelleerde
applicatie op een NoC-gebaseerd MP-SoC kan afbeelden, terwijl er garanties wor-
den gegeven over de doorstroomsnelheid van de applicatie.

210 Samenvatting

Acknowledgments

This thesis would not have reached its current form without the guidance and
support from many people. At the end of this work, I would like to express my
sincere gratitude to all those who supported me while working on this PhD project.

In the past few years I have had the privilege of being coached by Twan Bas-
ten. His support and encouraging style of working have constituted an eminent
incentive to complete this project. He invested a lot of time and effort in reading
and commenting on all the manuscripts that I produced during my PhD project.
These comments were of enormous value for the quality of the resulting publica-
tions. Furthermore, they often sparked ideas for new research directions. Twan
also initiated the weekly PROMES meetings in which we discussed together with
AmirHossein Ghamarian, Bart Theelen and Marc Geilen many new ideas around
the PhD topics of Amir and me. These meetings were always very useful as they
stimulated an intense discussion on the problems at hand and often led to new
insights that could be used in my research.

I would like to thank Jef van Meerbergen and Marco Bekooij for inviting me to the
Hijdra meetings at Philips research. These meetings increased my understanding
of the problems that designers are facing when developing novel embedded mul-
timedia systems. The discussion that we had during those meetings helped in
defining the research problem that is addressed in this thesis.

Also, I would like to thank my promoter, Henk Corporaal, for the useful dis-
cussions, difficult questions and critical comments that I received throughout my
PhD project. My thanks also extend to Jef van Meerbergen for being my sec-
ond promoter, and Axel Jantsch, Radu Marculescu and Ralph Otten for being
part of the PhD core-committee. Your thorough review of, and constructive com-
ments on, the draft version of this thesis were very helpful. Also Kees Goossens
is thanked for being part of the PhD committee.

The last few years I had the pleasure to work in the electronic systems group. I
really enjoyed the nice atmosphere and discussions that we had over the coffee

211

212 Acknowledgments

breaks and lunches. I would like to thank all members of the electronic systems
group for the great time we had together.

I would also like to thank my family and friends for their interest in my project
and the much needed relaxation. I would especially like to thank my parents
without whom I would not have been able to achieve this result.

Sander Stuijk
September 2007

Curriculum Vitae

Sander Stuijk was born in Breda, The Netherlands, on August 3, 1979. After
finishing the “Atheneum” (secondary school) at the Onze Lieve Vrouwe Lyceum
in Breda in 1997, he started studying electrical engineering at the Eindhoven
University of Technology in Eindhoven. The research for his M.Sc. thesis was
concerned with the analysis of concurrency in multimedia applications. He re-
ceived his M.Sc. degree with honors in 2002.

In October 2002, he started working towards a Ph.D. degree within the electronic
systems group at the department of electrical engineering of the Eindhoven Uni-
versity of Technology. His research was funded by the NWO within the PROMES
project. It has led among others to several publications and this thesis.

Sander is currently a post-doc researcher, continuing his research in the electronic
systems group at the electrical engineering department of the Eindhoven Univer-
sity of Technology.

213

214 Curriculum Vitae

List of Publications

First author

• S. Stuijk, T. Basten, M.C.W. Geilen, A.H. Ghamarian, and B.D. Thee-
len. Resource-efficient routing and scheduling of time-constrained streaming
communication on networks-on-chip. In Journal of Systems Architecture,
Elsevier, (to be published).

• S. Stuijk and T. Basten. Analyzing Concurrency in Streaming Applications.
In Journal of Systems Architecture, Elsevier, http://dx.doi.org/10.
1016/j.sysarc.2007.05.002, (published online).

• S. Stuijk, T. Basten, M.C.W. Geilen and H. Corporaal. Multiprocessor re-
source allocation for throughput-constrained synchronous dataflow graphs.
In 44th Design Automation Conference, DAC 07, Proceedings, pages 777–
782. ACM, 2007.

• S. Stuijk, T. Basten, M.C.W. Geilen, A.H. Ghamarian and B.D. Theelen.
Resource-efficient routing and scheduling of time-constrained network-on-
chip communication. In 9th Euromicro Conference on Digital System De-
sign, DSD 06, Proceedings, pages 45–52. IEEE, 2006.

• S. Stuijk, M.C.W. Geilen and T. Basten. Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs.
In 43th Design Automation Conference, DAC 06, Proceedings, pages 899–
904. ACM, 2006.

• S. Stuijk, M.C.W. Geilen and T. Basten. SDF3: SDF For Free. In 6th
International Conference on Application of Concurrency to System Design,
ACSD 06, Proceedings, pages 276–278. IEEE, 2006.

• S. Stuijk, T. Basten, B. Mesman and M.C.W. Geilen. Predictable em-
bedding of large data structures in multiprocessor networks-on-chip. In
8th Euromicro Conference on Digital System Design, DSD 05, Proceedings,
pages 388–395. IEEE, 2005.

215

http://dx.doi.org/10.1016/j.sysarc.2007.05.002
http://dx.doi.org/10.1016/j.sysarc.2007.05.002

216 List of Publications

• S. Stuijk, T. Basten, B. Mesman and M.C.W. Geilen. Predictable embed-
ding of large data structures in multiprocessor networks-on-chip (extended
abstract). In Conference on Design Automation and Test in Europe, DATE
05, Proceedings, pages 254–255. IEEE, 2005.

• S. Stuijk and T. Basten. Analyzing Concurrency in Computational Net-
works (extended abstract). In 1st International Conference on Formal
Methods and Models for Codesign, MEMOCODE 03, Proceedings, pages
47–48. IEEE, 2003.

• S. Stuijk, T. Basten and J. Ypma. CAST - A Task-Level Concurrency
Analysis Tool (extended abstract). In 3rd International Conference on
Application of Concurrency to System Design, ACSD 03, Proceedings, pages
237–238. IEEE, 2003.

Co-author

• A.H. Ghamarian, S. Stuijk, T. Basten, M.C.W. Geilen, and B.D. Theelen.
Latency minimization for synchronous data flow graphs. In 10th Euromicro
Conference on Digital System Design, DSD 07, Proceedings, pages 189–196.
IEEE, 2007.

• A.H. Ghamarian, M.C.W. Geilen, T. Basten, B.D. Theelen, M.R. Mousavi,
and S. Stuijk. Liveness and boundedness of synchronous data flow graphs.
In 6th International Conference on Formal Methods in Computer Aided De-
sign, FMCAD 06, Proceedings, pages 68–75. IEEE, 2006.

• B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run
average and worst-case performance analysis. In 4th International Con-
ference on Formal Methods and Models for Co-Design, MEMOCODE 06,
Proceedings, pages 185–194. IEEE, 2006.

• A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A.J.M. Moonen,
M.J.G. Bekooij, B.D. Theelen, and M.R. Mousavi. Throughput analysis of
synchronous data flow graphs. In 6th International Conference on Applica-
tion of Concurrency to System Design, ACSD 06, Proceedings, pages 25–36.
IEEE, 2006.

• M. Pasternak, P.H.N. de With, S. Stuijk and J. van Meerbergen. Parallel
Implementation of Arbitrary-Shaped MPEG-4 Decoder for Multiprocessor
Systems. In International Conference on Visual Communications and Im-
age Processing, VCIP 06, Proceedings, pages 60771I-1 - 60771I-10. IST
Society for Imaging Science and Technology, 2006.

List of Publications 217

• M.C.W. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements
of synchronous dataflow graphs with model-checking. In 42nd Design Au-
tomation Conference, DAC 05, Proceedings, pages 819–824. ACM, 2005.

• S.V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Automatic sce-
nario detection for improved WCET estimation. In 42nd Design Automa-
tion Conference, DAC 05, Proceedings, pages 101–104. ACM, 2005.

• M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman,
J.D. Mol, S. Stuijk, V. Gheorghita, and J. van Meerbergen. Dynamic and
Robust Streaming in and between Connected Consumer-Electronic Devices,
chapter Dataflow Analysis for Real-Time Embedded Multiprocessor System
Design, pages 81–108. Springer, May 2005.

	Abstract
	Introduction
	Trends in Embedded Systems: A Consumers Perspective
	Trends in Embedded Systems: A Designers Perspective
	Problem Statement
	A Predictable Design Flow
	Contributions
	Thesis Overview

	Streaming Multimedia Applications
	Overview
	Application Domain
	Application Modeling
	Analyzing Actor Resource Requirements
	Summary

	Network-on-Chip-based Multi-Processor Platform
	Overview
	Multi-Processor Platform Template
	Resource Arbitration Strategies
	Resource Arbitration in the Platform
	Summary

	Dataflow Preliminaries
	Overview
	Synchronous Dataflow
	Synchronous Dataflow and Time
	Throughput Analysis
	Scheduling
	SDF3: Synchronous Dataflow for Free
	Comparison of Dataflow Models
	Summary

	Modeling Memory Mappings
	Overview
	Related Work
	SDF model for Memory Accesses
	Memory Allocation
	Experimental Evaluation
	Summary

	Resource Allocation
	Overview
	Related Work
	Platform Graph
	Resource-Aware Application Graph
	Resource Allocation Problem
	Throughput Analysis
	Resource Allocation Strategy
	Experimental Evaluation
	Summary

	Throughput-Buffering Trade-Off Exploration
	Overview
	Related Work
	Storage Requirements
	Storage Dependencies
	Design-Space Exploration
	Experimental Evaluation
	Approximation of Buffer Sizes
	Buffer Requirements for Binding-aware SDFGs
	Summary

	Network-on-Chip Routing and Scheduling
	Overview
	Related Work
	Communication Modeling
	Interconnect Graph
	Time-Constrained Scheduling Problem
	Scheduling Strategies
	Benchmark
	Experimental Evaluation
	Extracting Communication Scenarios from SDFGs
	Summary

	Design Flow
	Overview
	Related Work
	Starting Point
	MP-SoC Configuration
	Memory Dimensioning
	Constraint Refinement
	Tile Binding and Scheduling
	NoC Routing and Scheduling
	Implementation
	Summary

	Case Study
	Overview
	Applications
	Hardware Architecture
	Mapping
	Discussion on the Design Flow
	Summary

	Conclusions and Future Work
	Conclusions
	Open Problems and Future Research

	Bibliography
	Glossary
	Samenvatting
	Acknowledgments
	Curriculum Vitae
	List of Publications

