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Abstract
Remote photoplethysmography (rPPG) enables contactless heart-rate 
monitoring using a regular video camera. Objective: This paper aims to improve 
the rPPG technology targeting continuous heart-rate measurement during 
fitness exercises. The fundamental limitation of the existing (multi-wavelength) 
rPPG methods is that they can suppress at most n  −  1 independent distortions 
by linearly combining n wavelength color channels. Their performance are 
highly restricted when more than n  −  1 independent distortions appear in a 
measurement, as typically occurs in fitness applications with vigorous body 
motions. Approach: To mitigate this limitation, we propose an effective yet very 
simple method that algorithmically extends the number of possibly suppressed 
distortions without using more wavelengths. Our core idea is to increase the 
degrees-of-freedom of noise reduction by decomposing the n wavelength 
camera-signals into multiple orthogonal frequency bands and extracting the 
pulse-signal per band-basis. This processing, namely Sub-band rPPG (SB), can 
suppress different distortion-frequencies using independent combinations of 
color channels. Main results: A challenging fitness benchmark dataset is created, 
including 25 videos recorded from 7 healthy adult subjects (ages from 25 to 40 
yrs; six male and one female) running on a treadmill in an indoor environment. 
Various practical challenges are simulated in the recordings, such as different 
skin-tones, light sources, illumination intensities, and exercising modes. The 
basic form of SB is benchmarked against a state-of-the-art method (POS) on 
the fitness dataset. Using non-biased parameter settings, the average signal-to-
noise-ratio (SNR) for POS varies in [−4.18, −2.07] dB, for SB varies in [−1.08, 
4.77] dB. The ANOVA test shows that the improvement of SB over POS is 
statistically significant for almost all settings (p-value  <0.05). Significance: 
The results suggest that the proposed SB method considerably increases the 
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robustness of heart-rate measurement in challenging fitness applications, and 
outperforms the state-of-the-art method.

Keywords: biomedical monitoring, remote photoplethysmography,  
heart rate, video processing, fitness, healthcare

(Some figures may appear in colour only in the online journal)

1. Introduction

Remote photoplethysmography (rPPG) enables contactless monitoring of cardiac activity by 
measuring the pulse-induced subtle color variations of human skin using a color video camera 
(Takano and Ohta et al 2007, Verkruysse et al 2008). This measurement is based on the fact 
that the pulsatile blood propagating in the human cardiovascular system changes the blood 
volume in skin tissue. The oxygenated blood circulation leads to fluctuations in the amount of 
hemoglobin molecules and proteins thereby causing variations in the optical absorption and 
scattering across the light spectrum (Allen et al 2007). A single-/multi- wavelength camera 
can therefore be used to identify the phase of the blood circulation based on minute changes 
in skin reflections.

A thorough review on the development of rPPG can be found (McDuff et al 2015, Rouast 
et al 2016, Sikdar et al 2016, Sun and Thakor et al 2016). The fundamental use of rPPG leads 
to various applications for video health monitoring, enabling non-contact measurement of 
physiological parameters from a human body, such as heart-rate (Li et al 2014, Tarassenko 
et al 2014, Kumar et al 2015, Wang et al 2015a, Tulyakov et al 2016), heart-rate variability 
(Blackford et al 2016), respiration (Tarassenko et al 2014), SpO2 (Guazzi et al 2015), pulse 
transit time (Shao et al 2014), blood pressure (Jeong et al 2016), atrial fibrillation (Couderc 
et al 2015), mental stress (McDuff et al 2014a), monitoring of neonates (Mestha et al 2014, 
Fernando et al 2015), living-skin detection for face anti-spoofing (Gibert et al 2013, Wang 
et al 2015b, Liu et al 2016), etc. In addition to the clinical and home-based applications, the 
rPPG technique would also be attractive in the gym. Particularly for vigorous exercise, rPPG 
allows a very convenient way to optimize the effectiveness of a workout. As compared to the 
wrist-based PPG function (Zhang et al 2015, Zhang 2015, Temko 2017) that is popular in 
current smart fitness bands or smart watches, the camera-based rPPG function is much less 
explored for the demanding fitness scenario.

In recent years, much progress has been reported in improving the robustness of rPPG in 
terms of skin-tone, body-motion and illumination challenges. The various proposed methods 
include: (i) Blind source separation based methods, which use different criteria (i.e. principal 
component analysis (PCA) (Lewandowska et al 2011) and independent component analysis 
(ICA) (Poh et al 2011, Tsouri et al 2012)) to unmix the RGB-signals obtained by a camera 
into uncorrelated or independent signal sources and select the most periodic one as the pulse; 
(ii) Color-space driven methods, which measure the pulse in different standard color-spaces 
(i.e. HUE color-space (Tsouri and Li 2015) and lab color-space (Yang 2016)), i.e. some opti-
cal disturbances (e.g. intensity variations) can be eliminated in the transformed color-spaces; 
(iii) Chrominance-based method (CHROM) (de Haan G and Jeanne 2013), which uses knowl-
edge of the main distortion (e.g. specular variation) in a skin reflection model to deterministi-
cally extract the pulse; (iv) Blood-volume pulse signature method (PBV) (de Haan and Van 
Leest 2014), which uses the characteristic color absorption variations caused by the blood vol-
ume change as a signature to derive the pulse without assumptions regarding the optical dist-
ortions; (v) Spatial subspace rotation (2SR) (Wang et al 2016b), which measures the temporal 
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hue-change of the subject-dependent skin subspace (e.g. body reflection) for pulse extraction, 
which is similar to the HUE-based approach (Tsouri and Li 2015) in essence; and (vi) Plane 
orthogonal to the Skin-tone method (POS) (Wang et al 2016a), which exploits the same skin 
reflection model as CHROM but uses a different color direction (i.e. a different distortion) for 
real-time projection tuning. All these methods use linear combinations of color channels to 
separate pulse and (motion-induced) distortions. They differ in the assumptions applied for 
deriving the combining weights. Their strength and weakness have been thoroughly bench-
marked and discussed in (Wang et al 2016a).

However, there is a common fundamental limitation in existing rPPG methods: the one-
dimensional pulse-signal extracted from three-dimensional RGB-signals can maximally be 
independent of two distortions by linear channel combination. Such a mathematical limitation 
highly restricts the rPPG performance when RGB-signals contain more than two independent 
distortions, which is the typical scenario in the challenging use-case of fitness exercises (see 
figure 1(a)). The reason is that in the non-homogeneous illumination conditions (e.g. different 
light sources with unequal spectrum, or reflections from nearby colored walls), the distribu-
tion of specular reflection on the skin surface (with 3D geometry) is non-uniform. During 
fitness exercises such as running, the vertical body motion has a frequency twice higher than 
that of the horizontal body motion, caused by the fact that the subject runs on two legs where 
each has to hit the ground in a full motion cycle. This implies that different motion frequen-
cies may have different color variation directions in RGB space, which cannot be simultane-
ously eliminated by current rPPG methods (Lewandowska et  al 2011, Poh et  al 2011, de 
Haan G and Jeanne 2013, de Haan and Van Leest 2014, Wang et al 2016b) that exploit three 
degrees-of-freedom pulse extraction offered by the linear projection. One possible solution is 
to physically increase the dimensionality of measurement by using more color channels such 
as a five-band camera (RGBCO) (McDuff et al 2014b). Ignoring the application-related issues 
such as the availability of such devices and price points, it still imposes a clear-cut limit on 
the number of distortions, i.e. the number of distortions that can be eliminated is smaller than 
the number of channels.

In this paper, we propose a new strategy that algorithmically increases the dimensionality 
of pulse extraction given limited color-sensors. Our inspiration is based on the observation that 
different motion frequencies cause apparent distortions in different color variation directions 
in RGB space. This precludes treating them simultaneously, but treating them independently 
in different frequency bands may solve this problem. To this end, we decompose the RGB-
signals into multiple orthogonal frequency bands for sub-band pulse extraction. Once the 
different motion frequencies are separated and suppressed in different frequency bands, we 
can synthesize a clean pulse-signal by combining the processing results from the individual 
sub-bands. This idea leads to a novel pulse extraction method called ‘Sub-band rPPG’ (SB). A 
benchmark is executed to evaluate the basic form of SB and compare its robustness to a state-
of-the-art rPPG method. All the benchmark videos are recorded from the subjects running on a 
treadmill in an indoor environment, involving various challenges such as different skin-tones, 
illumination conditions, body-parts, and motion-types. Results from this benchmark show that 
SB has significant improvement in pulse-rate measurement in challenging fitness applications 
with their characteristic (vigorous and periodical) body movements (see figure  1(b)). The 
contributions made by this paper are threefold:

 • it provides an in-depth analysis of the fundamental limitation in the existing rPPG 
methods, using a mathematical skin reflection model;

 • it introduces a new strategy that uses the sub-band decomposition to extend the degrees-
of-freedom for noise reduction, leading to a novel Sub-band rPPG method that particularly 
benefits the heart-rate measurement in fitness applications;
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 • it contains a fitness video dataset that includes various practical challenges. This dataset 
has been used to evaluate the proposed method, and can be used in future benchmarking.

The remainder of this paper is structured as follows. In section 2, we analyze the con-
sidered problem in a mathematical context. In section 3, we describe the proposed method 
step-by-step. In section 4, we introduce the experimental setup. In sections 5 and 6, the pro-
posed method is experimentally verified and discussed. Finally in section  7, we draw our 
conclusions.

2. Problem definition

Unless stated otherwise, we use the following mathematical conventions throughout the paper. 
Vectors and matrices are denoted as boldface characters, where the column vectors with unit-
length are denoted as u. The variable t denotes the time and 1 denotes (1, 1, 1)�.

The goal of this paper is to improve the rPPG robustness in particularly challenging use-
cases, e.g. pulse-rate monitoring in fitness exercises. As mentioned earlier, the fundamental 
mathematical limitation in all existing rPPG methods is that maximally two independent dist-
ortions can be eliminated in three color channels of an RGB camera. However, in practice, 
there are usually more than two independent distortions in RGB-signals, especially in a fitness 
application. The reason is that the unequal illumination spectra (emitted from different light 
sources or reflected from nearby colored walls) produce spatially-different specular reflec-
tions on the skin surface. The specular distortions, generated by different body motions, are 
varying in different movement directions and may have different color variations that cannot 
be simultaneously eliminated by current rPPG methods.

In order to design a robust solution, we first look into a skin reflection model (Wang et al 
2016a) to define our problem. This model considers the pertinent optical and physiological 
properties of skin reflections in a mathematical context. It assumes a setup where a light 
source illuminates a piece of human skin-tissue containing pulsatile blood and an RGB cam-
era records this image remotely and sequentially.

Averaging the skin-pixel values in individual video frames and concatenating the resulting 
values (e.g. spatial RGB mean) through the video, we can obtain the RGB-traces that describe 
the skin color changes over time. We denote the RGB-signals as C(t), which is a matrix with 

Figure 1. The spectrograms of the pulse-signals obtained by (a) the existing state-of-
the-art method (POS (Wang et al 2016a)) and (b) the proposed SB method in this paper, 
from a subject running on a treadmill. The horizontal and vertical motion frequencies 
induced by running cannot be eliminated by POS, but are almost completely removed 
by SB.
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RGB-channels sorted in rows and time-samples stacked in columns. Based on the dichromatic 
reflection model, we know that C(t) consists of the diffuse and specular reflections from the 
skin surface, where the diffuse reflection contains the target pulse-signal denoted as p(t) and 
the specular reflection contains (non-pulsatile) specular variation signal denoted as s(t). Both 
components are proportional to the light intensity level and thus modulated by the intensity 
variation signal denoted as i(t). Note that p(t), s(t) and i(t) are zero-mean AC-signals with the 
variation amplitudes much smaller than the overall DC component. According to Wang et al 
(2016a), the relation of p(t), s(t) and i(t) in C(t) can be expressed as:

C(t) = I0
(
1 + i(t)

)(
ucc0 + uss(t) + upp(t)

)
, (1)

where I0 denotes the light intensity level; c0 denotes the static reflection strength (i.e. the DC 
component); uc, us and up denote the unit color vectors associated with the skin reflection, 
lighting spectra and relative PPG-strengths in RGB channels (i.e. the blood volume pulse sig-
nature (de Haan and Van Leest 2014)). Equation (1) can be expanded as:

C(t) ≈ I0ucc0 + I0ucc0i(t) + I0uss(t) + I0upp(t), (2)

where the components involving the multiplication of two AC-signals (e.g. p(t) · i(t)) are sev-
eral orders of magnitude smaller than DC, and are therefore neglected in the approximation.

However, the model (2) has a clear limitation: it is restricted to a single light source and 
also the underlying assumption that motion only creates a single specular variation direction 
w.r.t. the light source (next to those in the intensity variation direction). It cannot be used to 
describe the complex situations with multiple light sources or multiple distortions, such as 
found in the fitness use-case. Therefore, we will consider the more general situation with 
multiple light sources and propose a method to handle this.

Since the effect of multiple lighting spectra on the same piece of skin-tissue is additive, (2) 
can be extended as:

C(t) ≈
J∑

j=1

I0,juc,jc0,j +

J∑
j=1

I0,juc,jc0,jij(t) +
J∑

j=1

I0,jus,jsj(t) +
( J∑

j=1

I0,jup,j

)
p(t),

 

(3)

where j denotes the jth light source; J denotes the total number of light sources in the setup; 
ij(t) and sj(t) denote the intensity variation signal and specular variation signal of the j-the light 
source; p(t) still denotes a single pulse-signal, which has the average blood volume vector 
under multiple lighting spectra, i.e. mankind has only one cardiovascular system.

To eliminate the dependency of C(t) on the average skin reflection color (including the 
light source color and intrinsic skin-tone color), we temporally normalize the DC of C(t). The 
temporal mean of C(t) can be considered as the largest steady component in (3):

C̄(t) ≈
J∑

j=1

I0,juc,jc0,j, (4)

which is used to uniquely define a diagonal normalization matrix N, such that:

N · C̄(t) = N ·
J∑

j=1

I0,juc,jc0,j = 1. (5)

Then we use N to normalize C(t) and remove its mean (by subtracting 1) as:
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C̃(t) =N−1C(t)− 1

≈N−1
(

Intensity︷ ︸︸ ︷
J∑

j=1

I0,juc,jc0,jij(t)+

Specular︷ ︸︸ ︷
J∑

j=1

I0,jus,jsj(t)+

Pulse︷ ︸︸ ︷
( J∑

j=1

I0,jup,j

)
p(t)

)
,

 

(6)

where C̃(t) denotes the temporally normalized RGB-signals with zero-mean. Since skin-
motion (or the relative position change between light source, camera and skin) is the source 
causing variations in ij(t) and sj(t), we can define both components in terms of the ‘motion 
source’. Based on the fact that the intensity and specular variations due to the same motion 
source have the same frequency and phase, we write ij(t) and sj(t) as:




ij(t) = aj,1m1(t) + aj,1m2(t) + ...aj,KmK(t) =
K∑

k=1
aj,kmk(t)

sj(t) = bj,1m1(t) + bj,1m2(t) + ...bj,KmK(t) =
K∑

k=1
bj,kmk(t),

 (7)

where mk(t) denotes the kth motion source; K denotes the total number of motion sources; aj,k 
and bj,k denote the intensity and specular variation strengths induced by the kth motion w.r.t. 
the jth light source. Substituting (7) and (6), (6) gives:

C̃(t) ≈N−1
( J∑

j=1

I0uc,jc0,j

( K∑
k=1

aj,kmk(t)
)
+

J∑
j=1

I0,jus,j

( K∑
k=1

bj,kmk(t)
)
+
( J∑

j=1

I0,jup,j

)
p(t)

)

=N−1
( K∑

k=1

( J∑
j=1

aj,kI0uc,jc0,j

)
mk(t) +

K∑
k=1

( J∑
j=1

bj,kI0,jus,j

)
mk(t) +

( J∑
j=1

I0,jup,j

)
p(t)

)

=

Motion︷ ︸︸ ︷
N−1

K∑
k=1

( J∑
j=1

aj,kI0uc,jc0,j + bj,kI0,jus,j

)
mk(t)+

Pulse︷ ︸︸ ︷
(
N−1

J∑
j=1

I0,jup,j

)
p(t) .

 (8)
Given (8), it is clear that if different motion signals mk(t), under different light sources, 

have different color vectors, they will not be fully eliminated by the three degrees-of-freedom 
noise suppression. Considering the two extreme scenarios with either the ‘single light source’ 
or ‘single motion source’, we have the following two observations:

 • Single light source: J  =  1 and (8) can be written as:

C̃(t) = N−1
K∑

k=1

(
akI0ucc0 + bkI0us

)
mk(t) +N−1I0upp(t), (9)

  where different mk(t) may still have different color vectors, as the kth motion source may 
generate different intensity and specular variation amplitudes, typically when ak and bk 
are unequal.

 • Single motion source: K  =  1 and (8) can be written as:

C̃(t) =
(
N−1

J∑
j=1

ajI0uc,jc0,j + bjI0,jus,j

)
m(t) +

(
N−1

J∑
j=1

I0,jup,j

)
p(t),

 (10)
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  where the color vector of the single motion signal m(t) is a single component averaged 
over multiple lighting spectra, which can be solved by existing rPPG methods.

Based on the above two extreme conditions, we recognize that the complexity of the model 
is essentially determined by the number of motion sources, instead of the number of light 
sources. Our strategy to solve (8) is, therefore, turning the ‘multiple motion sources’ problem 
into the ‘single motion source’ problem that already has a solution. This is equivalent to trans-
lating (8) and (10), separating different motion-sources into different units for independent 
processing.

Triggered by the observation that motion-sources in fitness exercises usually have different 
frequencies4, we propose to apply the ‘frequency’ as a unit to separate mk(t). Once mk(t) are 
separated into different frequency bands, we can use existing rPPG methods in each sub-band 
to extract the pulse and eliminate distortions independently (see figure 2). Theoretically, when 
the number of sub-bands is not smaller than the number of motion sources, multiple motion 
distortions (with different color vectors) can be suppressed simultaneously. This strategy leads 
to a novel rPPG method that uses the sub-band decomposition to extend the dimensionality 
of pulse extraction. In the following section, we shall present the complete method based on 
this analysis step-by-step.

3. Method

This section presents the proposed Sub-band rPPG method and its implementation.

3.1. Spatial quantization and temporal normalization

The first step is common to that in the model-based rPPG methods (Wang et al 2016a, de Haan 
G and Jeanne 2013, de Haan and Van Leest 2014): given an input video sequence containing 
living skin-tissue, we spatially average the RGB values of skin-pixels in each frame as the 
spatial RGB mean, and then temporally concatenate these values obtained from consecu-
tive frames into a matrix C, i.e. assuming a video interval has N frames, the RGB traces are 
contained in a 3 × N  matrix. Each row represents a color-channel and three rows are sorted 
in R-G-B order. Given a video camera recording at 20 frames per second (fps), the time span 
of the data in C covers N/20 s. To eliminate the DC-color, each row of C is temporally nor-
malized as:

C̃i =
Ci

µ(Ci)
− 1, (11)

where Ci denotes the ith row (i.e. ith color-channel) of C and µ(·) denotes the temporal aver-
aging operator. The spatial pixel averaging reduces the camera quantization error, while the 
temporal normalization eliminates the dependency of C on the average skin reflection color 
(including the light source color and intrinsic skin-tone color).

3.2. Sub-band decomposition

The second step in current rPPG methods (Wang et al 2016a, Lewandowska et al 2011, Poh 
et al 2011, de Haan G and Jeanne 2013, de Haan and Van Leest 2014) is linearly combining 

4 In most fitness exercises (e.g. running, biking and stepping), body motions of a subject usually have different 
frequencies, as the subject exercises on two legs where each has to complete a full motion cycle.
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the RGB-signals into a pulse-signal. However, such a combination can maximally suppress 
two independent distortions, thus restricting its application to simple use-cases. Based on our 
earlier analysis, we propose to extend the degrees-of-freedom of noise suppression by decom-
posing the RGB-signals into different frequency bands for the sub-band pulse estimation.

Essentially, the frequency-based decomposition exploits an important property: the pul-
satile/motion component has the same frequency in different color channels5. This property 
allows us to use the frequency band as a unit to group the different components for local pro-
cessing. To this end, Ci is transformed into the frequency domain using the discrete fourier 
transform (DFT):

Fi = DFT(C̃i), (12)

where Fi denotes the frequency spectrum of the ith color channel (i.e. containing real and 
imaginary parts); DFT(·) denotes the DFT operator.

Next, we decompose Fi into different sub-bands. Here the sub-band particularly refers to 
the frequency bin within a broad human heart-rate band. The rationale is: the frequency bins 
inside the human heart-rate band (e.g. 40–240 bpm) could all possibly contain the pulsatile 
content, and thus should be analyzed independently. In contrast, the frequency bins outside the 
human heart-rate band are clearly noise that can be safely ignored. Therefore, only the RGB 
components within the assumed broad heart-rate band need to be transformed back to the 
time-domain for analysis, using the inverse discrete Fourier transform (IDFT):

C̃i,k = real
(
IDFT(Fi,k)

)
, k ∈ b, (13)

Figure 2. Illustration of the proposed Sub-band rPPG method. The temporally 
normalized RGB-signals are transformed into the frequency domain. Within a broad 
human heart-rate band (e.g. [40,240] beats per minute (bpm)), the RGB frequency 
spectrum are decomposed into multiple orthogonal sub-bands for local and parallel 
pulse extraction using an existing rPPG algorithm (e.g., POS). The extracted sub-band 
pulse-signals are combined into a global pulse-signal as the final output.

5 All color channels of a camera should sense the same heart-rate, i.e. it is impossible for the R-channel to have 70 
bpm heart-rate and the G-channel to have 60 bpm heart-rate.
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where Fi,k denotes the kth sub-band (frequency bin) of Fi selected between the human heart-
rate range b = [b1, b2]; C̃i,k denotes the ith channel signal in the kth sub-band; IDFT(·) 
denotes the IDFT operator; real(·) denotes the operator that takes the real part of a complex 
value. The reason why we need to take the real part of the transformed signal is that the con-
jugate symmetry of IDFT has been destroyed, since only a number of Fi,k within the assumed 
heart-rate band are selected for transformation.

Different sub-band RGB-signals C̃k are orthogonal to each other, as they are sampled from 
independent DFT frequency-bins. Thus the signal is split into K independent signal comp-
onents, each of which can be used as input to a pulse extraction algorithm. This allows us to 
address the color distortions associated with each distortion-frequency individually, which is 
impossible in a single channel system.

3.3. Local pulse extraction

Given the sub-band RGB-signals C̃k, we can now use the rPPG method to extract the pulse-
signal from it. This step can be generally expressed as:

Pk = rPPG(C̃k), (14)

where Pk denotes the pulse-signal extracted from the kth sub-band; rPPG(·) denotes the 
rPPG function that converts the input 3D RGB-signals into the 1D pulse-signal. As a mat-
ter of fact, not all rPPG methods (Lewandowska et al 2011, Poh et al 2011, de Haan G and 
Jeanne 2013, de Haan and Van Leest 2014, Wang et  al 2016b) can be used for this task. 
The covariance-related methods (e.g. PCA-based (Lewandowska et al 2011), ICA-based (Poh 
et al 2011), PBV (de Haan and Van Leest 2014)) should be avoided. The reason is that the 
covariance matrix could be singular/near-singular in sub-band RGB-signals, especially when 
different color-signals in C̃k have no phase-shift, i.e. C̃k may contain purely noise or pulse. 
Since the sub-band color signals are not spatially redundant, 2SR (Wang et al 2016b) cannot 
be applied. Thus only G-R (Hülsbusch 2008), HUE (Tsouri and Li 2015), Lab (Yang 2016), 
CHROM (de Haan G and Jeanne 2013) and POS (Wang et al 2016a) are considered as can-
didates here.

Since POS reports the overall best performance in general use-cases in a large benchmark 
of Wang et al (2016a), we choose POS to demonstrate the sub-band pulse extraction, even 
though its performance does not significantly differ from CHROM in the fitness use-case 
(Wang et al 2016a). Accordingly, Pk in (14) can be derived, for example, by:

Pk = Xk +
σ(Xk)

σ(Yk)
·Yk with

{
Xk = Gk −Bk

Yk = Gk +Bk − 2Rk
, (15)

where Rk, Gk and Bk denote the RGB-signals of C̃k, respectively; σ(·) denotes the standard 
deviation operator.

3.4. Global pulse combination

In order to output a single pulse-signal, we need to combine individual sub-band pulse-sig-
nals. This can be done either by averaging (i.e. take the mean of different Pk) or by weight-
ing. Since the sub-bands influenced by motion frequencies have typically large energies, their 
estimated Pk remain to have large variations in their amplitudes. To further suppress the Pk 
from motion-dominated sub-bands, we introduce a weighted summation to combine Pk into 
a final pulse-signal
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P̄ =

b2∑
k=b1

wk ·Pk, (16)

where P̄ denotes the combined pulse-signal; wk denotes the weighting factor for the kth sub-
band within [b1, b2]. Since large motion distortions usually present large intensity variations 
(Wang et al 2016a), we use the ratio between the pulsatile amplitude and intensity variation 
amplitude to define the combining weight:

wk =
σ(Pk)

σ(Rk +Gk +Bk)
, (17)

where Rk +Gk +Bk is the projection of the color-signals onto the direction of 1, which is 
the intensity variation direction in the temporally normalized RGB space (Wang et al 2016a, 
de Haan G and Jeanne 2013). According to (17), the sub-bands suffering from large inten-
sity variations w.r.t. the pulsatile variations will receive a lower weight in (16). Note that the 
presented solution is one way of creating the weighted combination. Although there could be 
alternatives, we do not aim to find the optimal combination in this work.

Consequently, we arrive at a long-term pulse-signal P̂ by overlap-adding P̄ (after removing 
its mean and normalizing its standard deviation) estimated in each short video interval using a 
sliding window (with one time-sample shift similar to (Wang et al 2016a, de Haan G and Jeanne 
2013, de Haan and Van Leest 2014, Wang et al 2016b)), and output P̂ as the final pulse-signal.

3.5. Algorithm

3.5.1. Overview. The overview of the complete method is illustrated in figure 2. The novelty 
of our method is an algorithmic extension of the degrees-of-freedom for pulse extraction using 
sub-band analysis. Thus it is named Sub-band rPPG (SB). In order to show the fundamen-
tal behavior of SB and facilitate its replication, we keep it as clean and simple as possible, 
although we acknowledge that there are various known techniques that could improve it fur-
ther, i.e. using dedicated post-processing (e.g. adaptive band-pass filtering (Wang et al 2015a) 
or singular spectrum analysis for motion de-noising (Wang et al 2016c)) to improve the time-
consistency of the outcome or using other filter-banks (e.g. wavelet-based) for the sub-band 

Algorithm 1. Sub-band rPPG (SB)

Input: The raw RGB-signals RGB with dimension 3 × N
     1: Initialize: l  =  128 (for example), B = [6, 24] (adapted to l), P̂ = zero(1, N)

     2: for n  =  1, 2, ..., N  −  1  +  1 do
     3:    C = RGB(:, n : n + l − 1);

     4:    C̃ = diag(mean(C, 2))−1 ∗C− 1;

     5:    F = fft(C̃, [ ], 2);
     6:    S = [0, 1,−1;−2, 1, 1] ∗ F; Z = S(1, :) + abs(S(1, :))./abs(S(2, :)). ∗ S(2, :);
     7:    Z̄ = Z. ∗ (abs(Z)./abs(sum(F, 1)));
     8:    Z̄(:, 1 : B(1)− 1) = 0; Z̄(:,B(2) + 1 : end) = 0;

     9:    P̄ = real(ifft(Z̄, [ ], 2));

   10:    P̂(1, n : n + l − 1) = P̂(1, n : n + l − 1) + (P̄−mean(P̄))/std(P̄);
   11: end for

Output: The pulse-signal P̂ with dimension 1 × N
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decomposition. The bare algorithm of SB is shown in algorithm 1, which can be implemented 
in a few lines of Matlab code.

3.5.2. Parameter selection. The proposed SB method has only two parameters: the process-
ing window length l and the human heart-rate band b. Since b (a broad band representing 
[40,240] bpm) is adapted to l, we only need to define l. Given a video camera recording at  
20 fps, the time scale of l is in seconds. We expect that a longer window is better for pulse and 
motion separation. The reason is that a longer time-signal has higher frequency resolution. It 
allows more dense sub-band segmentation, thus increasing the chance for the pulsatile comp-
onent and motion component to be separated. However, it may not be suitable for instanta-
neous pulse-rate measurement, as a longer window is less sensitive to beat-to-beat variations. 
Different parameter settings leading to the final method will all be benchmarked and discussed 
in our experiments.

3.5.3. Limitation. For fair assessment, we also indicate the limitation in our SB method. We 
expect it to have quality drops when using the short processing window, especially in the 
case that the pulsatile component cannot be clearly separated from the motion components. 
Besides, the effect of motion suppression could be sub-optimal when the number of dist-
ortions is larger than the number of used sub-bands.

4. Experimental setup

This section  presents the experimental setup for the benchmarking. First, we introduce the 
recording setup in fitness. Next, we present the evaluation metrics. Finally, two rPPG methods 
are adopted for comparison, i.e. one is the state-of-the-art POS and the other is the proposed SB.

4.1. Benchmark dataset

We create a benchmark dataset containing 25 videos (with 169 998 frames) recorded in the 
fitness scenario, and categorize them into individual challenges to study different use-cases. 
The videos are recorded using a regular RGB camera6 in an uncompressed bitmap format and 
constant frame-rate. The ground-truth is the contact-based ECG-signal sampled by the NeXus 
device7 and synchronized with the video frames. All videos are recorded from the subjects 
exercising on a treadmill. This study has been approved by the Internal Committee Biomedical 
Experiments of Philips Research, and informed consent has been obtained from each subject.

To thoroughly investigate the practical functionality of SB, we simulate various challenges 
in recordings by changing the experimental setup (i.e. monitoring conditions). Unless men-
tioned otherwise, each recording uses the following default settings: the camera is placed 
around 2 meters in front of the subject running on a treadmill, which, with the used optics, 
results in approximately 20 000 skin-pixels. The default subject has a skin-type III according 
to the Fitzpatrick scale and the face region is recorded for pulse extraction. The subject is illu-
minated by the office ceiling light with an illumination direction oblique to the skin-normal, 
which is the typical illumination condition in a fitness setting. During the recording, the sub-
ject varies the running speed between low-intensity (3 km h−1) and high-intensity (12 km h−1) 
within 5–8 min, depending on his endurance. The background is a skin-contrasting cloth to 

6 Global shutter RGB CCD camera USB UI-2230SE-C from IDS, with 640 × 480 pixels, 8 bit depth, and 20 frames 
per second (fps).
7 The wireless physiological monitoring and feedback device. The type of the device is NeXus-10 MKII.

W Wang et alPhysiol. Meas. 38 (2017) 1023



1034

facilitate the skin-detection/segmentation, which we regard as an independent research chal-
lenge outside the scope of this paper.

Based on this default experiment, we vary selected parameters to study their effects (the 
bold number in brackets denotes the number of frames recorded for each category):

 • Skin-tone (40 951) A total of 6 subjects (ages 25–45 yrs, 5 male and 1 female) with 
various skin-tones are recorded and categorized into three different skin-types based 
on the Fitzpatrick scale: 2 Western European subjects (skin-type I–II), 2 Eastern Asian 
subjects (skin-type III), and 2 Southern Asian subjects (skin-type IV–V).

 • Light source (52 085) The type and position of the light source influence the rPPG 
performance. This is because different lighting spectra may result in different specular 
reflections on the skin surface and also different relative PPG-strength in RGB chan-
nels (de Haan and Van Leest 2014), while the position of the light source w.r.t. the skin 
determines the motion artifact (Moco et al 2016). To investigate this challenge, we use 3 
light sources, i.e. oblique fluorescent light (from ceiling), frontal fluorescent light (fluo), 
and frontal halogen light, to create 7 different illumination conditions, which are respec-
tively the single light (ceiling), single light (fluo), single light (halogen), double lights 
(ceiling  +  fluo), double lights (fluo  +  halogen), double lights (ceiling  +  halogen), and 
triple lights (ceiling  +  fluo  +  halogen).

 • Luminance level (61 089) The luminance intensity, determining the amount of skin 
reflections that can be received by the camera, also affects the rPPG performance. High 
intensities may cause clipping on the skin surface, while low intensities may lead to low 
pulsatile amplitude in RGB channels while the camera sensor noise is not reduced. To 
vary the intensity, we adjust the camera aperture to increase/decrease the amount of light 
entering the camera shutter. A total of 8 intensity-levels, from level-1 (low intensity) to 
level-8 (high intensity), are defined to study this challenge.

 • Miscellaneous (15 873) To improve our understanding to the studied topic of rPPG 
applications in fitness, we define four challenges in this category: (i) different running 
paces, where the subject runs at a constant speed with different paces; (ii) different running 
slopes, where the subject runs at a constant speed with different slopes, i.e. the gradient 
of the treadmill is adjusted from 0◦ (flat) to 15◦ (maximum); (iii) running-hand, where the 
subject’s hand is recorded instead of the face during running, i.e. the raised hand intro-
duces more erratic motion components than the face; and (iv) fake-face, where the running 
subject wears a skin-mask (with skin-similar color) for false positive/negative assessment.

Figure 3 exemplifies the snapshots of some recordings in our benchmark dataset. Since a skin-
contrasting background is used in the setup, we apply a simple thresholding method in YCrCb 
space (Bousefsaf et al 2013) to detect and segment the skin-region across the video and save the 
temporal RGB traces of spatially averaged skin-pixels for processing. In this way, we ensure that 
the experimental results are minimally affected by non-rPPG techniques, and thus the essence of 
the proposed method is highlighted and the replication of the experiment is facilitated.

4.2. Evaluation metrics

We use the following two metrics to evaluate the rPPG performance:

 • SNR In line with (de Haan G and Jeanne 2013), the rPPG-signal is quantitatively meas-
ured by the signal-to-noise-ratio (SNR). Given an rPPG frequency spectrum, the SNR 
is calculated by the ratio between the energy around the fundamental pulse frequency 
components and remaining components, where the fundamental pulse frequency is deter-
mined from the reference ECG spectrum using its frequency peak within [40,240] bpm 
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(see figure 4). Since the pulse-frequency of an exercising subject is time-varying, we use 
a sliding window to measure the SNR of short-term pulse spectrum within a time-interval 
and concatenate the subsequent SNR values into a long SNR-trace. Finally, we take the 
average/mean of the SNR-trace as the output metric value. More specifically, the length 
of the sliding window is 256 frames (corresponding to 6.4 s in 20 fps camera), and its 
sliding step is 1 frame per measurement.

 • ANOVA the analysis of variance (ANOVA) is applied to compare the statistical per-
formance (SNR) of benchmarked methods in the entire dataset. It reflects whether the 
difference between the compared methods is significant. In ANOVA, the p-value is used 
as the indicator for statistical significance and a widely used threshold 0.05 is specified as 
the criterion, i.e. if p-value  <0.05, the difference is considered to be significant. Through 
the ANOVA test, we can clearly see whether the proposed method introduces significant 
improvement to the heart-rate measurement in fitness applications, as compared to the 
state-of-the-art method.

4.3. Compared methods

The SB method proposed in this paper is an independent algorithmic component in an rPPG 
monitoring-system. Thus we compare it with the direct algorithmic alternative in the same 
system where SB is replaced, i.e. the input RGB-signals and used parameters remained the 
same. Since we use POS for the sub-band pulse extraction, the most straightforward com-
parison is between SB and POS. This essentially compares the ‘sub-band POS’ (i.e. the 
SB method introduced in this paper) with the ‘full-band POS’ (i.e. the POS method intro-
duced in Wang et al (2016a)), which shall show the independent advantage of the sub-band 
strategy. Both methods have been implemented in Matlab and run on a laptop with an Intel 
Core i7 processor (2.70 GHz) and 8 GB RAM. The implementation of SB strictly follows  
algorithm 1.

According to Wang et  al (2016a), the difference between model-based rPPG methods 
(CHROM, PBV and POS) is non-significant in fitness. Therefore their comparison is not 
repeated in this paper, although CHROM could be integrated into SB as well. Since a broad 
human heart-rate band (e.g. [40,240] bpm) is used in SB, we use the same heart-rate band 
to band-pass filter the POS-signal for fair comparison. This is to show that the actual ben-
efit of the sub-band processing is from the dimensionality extension and not from the band-
limitation. To draw solid conclusions on the comparison, we show the results obtained by 

Figure 3. Snapshots of some recordings in the benchmark dataset, which show different 
challenges simulated in our recordings.
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both methods using different parameters without biasing8. Considering a 20 fps recording 
camera, we define four groups of parameters: (i) l  =  32 (1.6 s), b = [3, 6], (ii) l  =  64 (3.2 s), 
b = [4, 12], (iii) l  =  128 (6.4 s), b = [6, 24], and (iv) l  =  256 (12.8 s), b = [10, 50]. For each 
method, each video has been processed four times using these settings.

5. Results

This section  presents the experimental results of POS and SB. Table  1 lists the SNR val-
ues obtained by both methods on all benchmark videos9 using different window lengths. 
Figures 5–7 exemplify the spectrograms of the rPPG-signals (and also the motion-signals in 
figure 6) obtained by POS and SB10. Figure 8 compares the average SNR between POS and 
SB per category per window length. Figure 9 shows the statistical comparison between POS 
and SB over the entire dataset as a function of window length setting.

From table 1, we can clearly see that the average SNR (last row) of POS is improved by SB 
for all window lengths. By increasing the window length l (from 32 to 256), the average SNR for 
SB increases from  −1.08 dB to 4.77 dB, whereas for POS drops from  −2.07 dB to  −4.18 dB.  
This is further confirmed by figures 5 and 6, where SB demonstrates much cleaner spectro-
grams. Figure 8 shows that, on average, SB outperforms POS in almost all categories with all 
settings, except for the ‘skin-tone’ category with l  =  32. Figure 9 shows the increased statisti-
cal improvements of SB over POS with the increased window lengths.

6. Discussion

In this section, we will perform a detailed comparison and discussion on the benchmarked 
methods, first considering each category and then the overall dataset.

Figure 4. Procedure of calculating the SNR for an rPPG extraction. First, the ECG 
HR-trace (dashed red line) is derived from the ECG spectrum, using the maximum 
frequency peak within [40,240] bpm. Next, a reference HR range (solid black lines) is 
determined based upon the ECG HR-trace (±6 beats). In the end, the HR range is used 
to create a binary mask (i.e. the values inside the range are 1, otherwise 0) to measure 
the SNR of the rPPG spectrum.

8 The performance of SB is tested under different parameter settings, without selecting the optimal setting for this 
benchmark.
9 The ‘fake-face’ challenge under the ‘miscellaneous’ category is not considered in our SNR comparison. It does not 
contain any living skin-pixels and thus no pulse-signal can be extracted.
10 Due to the limited space of the paper, we only show the spectrograms obtained by POS and SB using l  =  128, i.e. 
a window length offering a compromise between the robustness and latency.
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6.1. Discussion per category

 • Skin-tone category Since SB is not designed for addressing the low pulsatility problem 
of dark skin, we expect that its improvement in various skin-types is mainly from the 
motion suppression. All recordings are performed on a treadmill, so the skin-tone chal-
lenge is accompanied with the motion challenge in this category. For example, SB obtains 
much higher SNR in subject 5 (skin-type IV-V) than subject 2 (skin-type I-II). This is not 
because the dark skin is easier for SB to extract the pulse than the bright skin, but the run-
ning motion of subject 2 is much more vigorous than that of subject 5. We notice that both 
methods obtain high SNR (>5 dB) on subject 1, who is jogging during the largest part 
of the recording (i.e. the speed is around 7 km h−1) and therefore this subject shows less 
significant body motions. In contrast, both methods obtain rather low SNR (<−6 dB) on 
subject 6. This is not only due to the dark skin, but also the limited number of skin-pixels, 
i.e. subject 6 bows his face during the largest part of the running (see figure 3).

Figure 5. The ECG reference signal and spectrograms of the pulse-signals of POS and 
SB obtained on videos in the categories of ‘skin-tone’, ‘light source’ and ‘luminance 
level’. The x-axis and y-axis denote the frame number and frequency, respectively.
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 • Light source category As compared to POS, SB shows clearly improved robustness in 
various light source conditions. Both methods perform better under a single light source 
than under multiple light sources. The reason is: when the subject is moving under the 
multiple light sources, the motion-induced specular variations have different color vec-
tors due to different lighting spectra. In such cases, SB enabling the multi-dimensional 
noise suppression is expected to attain most gain relative to the existing methods.

  Also as we expected, both methods achieve their best performance under the frontal 
fluorescent light source. The ‘Fluo’ challenge in figure 5 shows that the high frequency 
component (i.e. the specular distortion) corresponding to the vertical body motion is 
much less significant than the ones in the ceiling light conditions. This observation has 
been studied and verified in (Moco et al 2016): the position of the light source has a large 
impact on the motion distortion, and thus the rPPG performance. The frontal, diffuse and 
homogeneous illumination is suggested for an rPPG setup to improve the rPPG-signal 
quality (Moco et  al 2016), which also holds for our fitness setup. Additionally, both 
methods (especially POS) have better performance under the frontal fluorescent lamp 
than the frontal halogen lamp. This could due to the different spectra of two light sources, 
i.e. the blue channel is much weaker in the halogen illumination.

 • Luminance level category SB demonstrates a clear advantage in motion suppression 
over the tested light intensity range. Figure  5 shows that both methods obtain better 
results at mid-level intensities (e.g. level 3–6) than low-level intensities (e.g. level 1–2) 
and high-level intensities (e.g. level 7–8). The reasons are the following. (i) The skin-
pixels at low-level intensities have much lower pulsatile amplitudes in RGB channels, i.e. 
the skin pulsatility is proportional/multiplicative to the intensity. However, the camera 
sensor noise is not reduced at lower intensity levels. These together lead to a low signal-
to-noise ratio of the measured rPPG-signal. (ii) The skin-pixels at high-level intensities 
may contain clipping (see the second snapshot starting from the left side in the last row 
of figure 3), which obviously constitutes a major deviation from the signal model (10). In 
contrast, the mid-level intensities, providing sufficient amount of intensity energies and 
also avoiding the clipping, is recommended for the setup.

 • Miscellaneous category SB also demonstrates improved motion robustness over POS in 
this category, except the ‘fake-face’ challenge that does not contain a living skin-pixel. 
When the subject is running at constant speed (e.g. 9 km h−1) but varying the pace or the 
treadmill slope, SB is consistently better than POS for all the window lengths. Even when 

Figure 6. The ECG reference signal and the spectrograms of the horizontal motion 
(motion-x, denoted as ‘Mot-X’), vertical motion (motion-y, denoted as ‘Mot-Y’), and 
pulse-signals of POS and SB obtained from the ‘miscellaneous’ category. The signals of 
Mot-X and Mot-Y are measured using the center of gravity of segmented skin-regions 
across the video.
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the hand is recorded during running, SB can still provide a reasonable pulse-signal as 
compared to POS.

Figure 6 shows more insights of the fitness application: (i) when the subject is running 
at the constant speed but doubling the pace frequency, the motion frequencies are increased 
accordingly but the pulse frequency remains relatively constant. This can be explained by 
the law of conservation of energy: the constant input energy/speed of the treadmill does not 
change the total energy consumption (and therefore the pulse-rate) of the subject; (ii) when the 
subject is running at the same constant speed but the slope of the treadmill is increased (from 
0◦ to 15◦), the pulse frequency is increased whereas the motion frequencies remain stable. 
This is because the elevated treadmill slope introduces the gravitational potential energy to the 
subject. Thus the subject needs to consume more energy to stay on the treadmill, i.e. the pulse-
rate will be raised; (iii) when the subject’s hand is recorded, the hand movement introduces 
erratic and irregular motion components to RGB-signals, which makes the pulse extraction 
more challenging. We also notice that the vertical motion frequency of the hand is no longer 
twice higher than its horizontal motion frequency (see figure 6). The reason is that the raised 
hand has more space to move in the air and its moving trace is more arbitrary as compared 
to that of the head. Besides, a hand has less skin-pixels than a face, thus larger quantization 
noise that makes the pulse extraction even more difficult; and (iv) when the subject is wear-
ing a (skin-color similar) mask during running (see figure 3), both methods cannot measure a 
pulse-signal as there is no real skin-pixels. This experiment is to confirm that when the living 
skin-tissue is absent in a video, no false pulse-signal is created.

6.2. Overall discussion

Figure 9 shows the statistical comparison between POS and SB per window setting: the 
median SNR of SB is higher than that of POS for all window lengths, although the amount 
of improvement of SB is much more obvious for the longer windows. To verify this, we 
perform the ANOVA test between POS and SB over the entire dataset per window setting. 
Table 2 shows that the improvement of SB over POS is statistically significant with longer 

Table 2. ANOVA test between POS and SB over the entire dataset per window length 
setting.

Comparison POS & SB (32) POS & SB (64) POS & SB (128) POS & SB (256)

p-value 0.2937 0.0018 6.15×10-7 3.90×10-9

Note: Smaller p-values suggest larger differences between POS and SB. If p-value  <0.05  
(denoted by the bold entry), the difference between POS and SB is considered to be significant.

Figure 7. The spectrograms of the pulse-signals of POS and SB obtained on the video 
of skin-type IV-V (subject 5) using different window lengths. By increasing the window 
length, the SNR of SB is significantly increased from 0.23 dB to 9.27 dB, whereas the 
SNR of POS decreases from 1.20 dB to  −1.35 dB.
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window lengths (e.g. l = 64 128 256), as the p-values for these settings are smaller than 0.05. 
Moreover, we show a qualitative spectrogram comparison in figure 7. The pulse spectrum of 
POS does not vary much when changing l, i.e. it is a bit cleaner at l  =  32. In contrast, the pulse 
spectrum of SB becomes much cleaner when increasing l, and such improvement is mono-
tonic, i.e. it obtains the cleanest spectrum at l  =  256.

The proceeding observation is in line with our expectation: (i) SB performs better with the 
longer window, as the longer window provides higher frequency resolution that allows dense 
sub-band segmentation. The chance that the pulsatile component can be separated from the 
motion component is increased, i.e. SB has only 4 sub-bands at l  =  32, but 41 sub-bands at 
l  =  256; (ii) POS performs slightly better with the shorter window, as it can quickly adapt the 
alpha-tuning (Wang et al 2016a) to suppress the instant motion distortions. Note that even in 
the worst case of SB (e.g. l  =  32), it is still better than POS in the overall comparison, although 
the improvement is not as large as that obtained with the longer windows. Meanwhile, we 
have to recognize that increasing the window length means increasing the processing latency. 
The purpose of benchmarking with different parameters is to provide readers a full-view on 
SB under different settings. Based on our benchmark results, ones can choose their preferred 
settings in a specific application scenario. Considering both the robustness and latency in a 
fitness setup, we recommend l  =  128 for SB, in case of a 20 fps camera.

Notwithstanding the improvements and overall good results, there are still certain limi-
tations to the usage of rPPG in fitness scenarios. Since our SB method uses the sub-band 

Figure 8. The average SNR (SNRa) of POS and SB per challenge category.

Figure 9. Statistical comparison of the SNR values obtained by POS and SB as a 
function of window length setting. The median values are indicated by horizontal bars 
inside boxes, the quartile range by boxes (POS by blue, SB by green), the full range by 
whiskers, disregarding the outliers (red crosses).
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decomposition to separate and suppress motion frequencies, it cannot deal with the case that 
motion has exactly the same frequency as the pulse. This is an inherent restriction of the 
method originated from design, irrespective of the used sliding window length. Next to that, 
some other physical restrictions may preclude the heart-rate extraction. Based on our experi-
ments, we find that the extremely low light intensity conditions or extremely dark skins (or 
the skin with coverage like make-up) will be very tough11, as no (or only a limited amount of) 
light can penetrate deep into the skin and is reflected and received by the camera. Although 
a near infrared (NIR) camera could be used in these cases to bypass the problem, the PPG-
absorption (and thus the skin pulsatility) in NIR wavelengths is much lower than that in visible 
wavelengths, especially the pulsatility in the G-channel is much higher than that in NIR chan-
nels. Thus the robustness of applying the NIR-camera in a fitness setup is still questionable.

7. Conclusion

In this paper, we improve the robustness of rPPG in fitness applications that measures con-
tinuous heart-rate. We analyze the fundamental limitation of the existing rPPG methods and 
propose a novel method to overcome it. Our strategy is using the sub-band decomposition to 
extend the degrees-of-freedom of noise reduction. This process, namely Sub-band rPPG (SB), 
enables the independent suppression of multiple motion-frequencies. The basic form of SB is 
benchmarked against a state-of-the-art method (POS) on a challenging fitness video dataset 
using non-biased parameter settings. The results clearly show that SB outperforms POS in 
all-round statistical comparisons, and in particular shows significant improvements at longer 
sliding window lengths.
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