
Throughput-Constrained DVFS for
Scenario-Aware Dataflow Graphs

Morteza Damavandpeyma1, Sander Stuijk1, Twan Basten1,2, Marc Geilen1 and Henk Corporaal1

1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2Embedded Systems Institute, Eindhoven, The Netherlands

{m.damavandpeyma, s.stuijk, a.a.basten, m.c.w.geilen, h.corporaal}@tue.nl

Abstract—Dynamic behavior of streaming applications can be
effectively modeled by scenario-aware dataflow graphs (SADFs).
Many streaming applications must provide timing guarantees
(e.g., throughput) to assure their quality-of-service. For instance,
a video decoder which is running on a mobile device is expected
to deliver a video stream with a specific frame rate. Moreover,
the energy consumption of such applications on handheld devices
should be as low as possible. This paper proposes a technique
to select a suitable multiprocessor DVFS point for each mode
(scenario) of a dynamic application described by an SADF.
The technique assures strict timing guarantees while minimizing
energy consumption. The technique is evaluated by applying it to
several streaming applications. It solves the problem faster than
the state of the art technique for dataflow graphs. Moreover,
the DVFS controller devised using the proposed technique is
more compact and reduces energy consumption compared to the
controller devised using the counterpart technique.

I. INTRODUCTION

Scenario-aware dataflow graphs (SADFs) [1] are introduced

to model dynamic behavior of streaming applications. These

applications are applied iteratively on indefinite input streams.

The dataflow graphs capture such an iterative behavior; the

execution of the model for a single input instance is called an

iteration. For example, in a video decoder which processes

a video stream, the operations involved in processing one

video frame specify one iteration. An SADF is composed

of several application scenarios (modes) and a finite state

machine (FSM). The behavior of the application in each

scenario is modeled through a synchronous dataflow graph

(SDF) [2]. Fig. 1 depicts an example SADF with two scenarios

s1 and s2 which use the same SDF (see Fig. 1(a)), but with

different execution times for the actors (tasks) in each of the

scenarios (see Fig. 1(c)). The FSM of the SADF specifies the

possible scenario occurrence orders (e.g., Fig. 1(b)).

Streaming applications, such as signal processing and mul-

timedia applications, should meet strict timing requirements.

Furthermore, energy consumption is an important design cri-

terion for such applications. Dynamic voltage and frequency

scaling (DVFS) [3] is used to develop low power/energy imple-

mentations. This paper presents a technique to determine for

each application scenario an energy-aware frequency setting

while satisfying a throughput constraint. It is assumed that

the application (SADF) is already mapped and scheduled to

This work was supported in part by the Dutch Technology Foundation
STW, project NEST 10346.

a0
c0

a1 a2
c1

c2

c3
t1t0

(a) SDF.

s1 s2

(b) FSM.

a0 a1 a2
scenario s1 50 35 45
scenario s2 40 15 40

(c) Actor execution times in scenario s1 and s2.

Fig. 1. SADF with two scenarios s1 and s2.

a platform with multiple processing elements. The technique

from [4] can be used to include mapping and scheduling

information into the SADF model. The switching cost of

DVFS is considered in our analysis.

Ref. [5] addresses the same problem as we do. In the DVFS

controller of [5] devised for an SADF, a power mode (i.e.,

DVFS operating point) is specified for each possible state of

the application. Timestamps are used to distinguish between

states; timestamps capture the miss-aligned completion of the

iterations on a platform with multiple processing elements.

In [5], an initial state is selected as starting point; for each

possible scenario transition from that state a low-power mode

that satisfies the timing requirement for the upcoming iteration

is considered as desired power mode for that specific scenario

switch. This can lead to a new state or a recurrent state. In

case of a new state, the exploration should be continued for

the new state. The exploration is stopped if all discovered

states are recurrent. This way, all possible states within the

given power modes are traversed; the authors of [5] categorize

their approach within the state-space based techniques. Our

approach is distinguishable from [5] for several reasons: (1)

in [5], only one iteration is considered in power mode selection

which can result in a greedy slack distribution within just

that iteration; this prevents fair slack distribution over multiple

iterations. In contrast, we do power mode selection over all

iterations involved in all critical timing cycles; a critical timing

cycle is defined as a cycle that limits the throughput. In our

approach, slack can be used across multiple iterations which

generally provides higher energy savings. (2) the state-space

based DVFS technique can result in many distinguishable

states. This makes the analysis a time consuming procedure.

TABLE I
ACTOR EXECUTION TIMES OF THE EXAMPLE PARAMETRIC SADF.

pe1 pe2
scenario a0 a1 a2 scale factor sets

s1 10p1,1 7p1,2 9p1,2 SFS1 = {1, 2, 3, 4, 5}
s2 8p2,1 3p2,2 8p2,2 SFS2 = {1, 2, 3, 4, 5}

In our approach, the critical timing cycles are identified

and resolved by choosing suitable frequency settings for the

processing elements that execute the actors involved in those

cycles; processing elements not involved in any critical cycle

can operate at their lowest frequency. The analysis time of our

technique on four realistic benchmark models is much smaller

than the analysis time of the state-space based technique on the

same applications. (3) our DVFS controller is more compact

than the one from [5] reducing the storage requirement. For a

WLAN application, our technique only requires storing 4 sets

of processor frequencies (equal to the number of scenarios)

while the state-space based technique requires for the same

application a controller with 277 frequency sets.

Our technique requires to identify which actor firings in

which scenarios are part of the critical timing cycle and on

which processing elements those actors are executed. For this

reason, the SADF model is extended to a parametric SADF

model to accommodate the processor clock cycle periods

(i.e. inverse of the frequencies) in the model. In this model,

instead of using concrete values (e.g., as shown in Fig. 1(c)),

linear expressions (e.g., as shown in Tab. I) provide the actor

execution times in terms of some parameters (scale factors).

The processors are also explicitly modeled with some initial

tokens. This allows us to identify when an iteration has

ended on a processor to allow switching to another DVFS

operating point. The timing expressions of critical cycles in

a parametric SADF reveal which processors are involved in

the critical cycles and how much their clock cycle periods (or

frequencies) contribute to the length of these timing cycles.

This information is used to choose energy-aware frequencies

per application scenario to ensure a throughput-constrained so-

lution. The frequency choices are made at design-time and are

used at run-time to enable DVFS on iteration boundaries. Our

technique is applied to four streaming applications: an MPEG4

video decoder [1], an MP3 audio decoder [6], a WLAN

receiver [7] and the baseband (physical layer) processing of

the Long Term Evolution (LTE) standard [8]. In all cases,

our proposed technique is faster than the technique from [5]

and it provides significant energy saving compared to the

counterpart technique; furthermore, our technique constructs

more compact DVFS controllers.

The remainder of the paper is structured as follows. Sec. II

sketches the basic concepts. Sec. III presents our technique.

The experimental results are given in Sec. IV. Sec. V discusses

related work and Sec. VI concludes.

II. PRELIMINARIES

This section presents the basic terms and approaches re-

quired to follow this paper.

A. Synchronous Dataflow Graphs (SDFs)
An SDF is a directed graph (A,C). A node a ∈ A, called

actor, represents a function (task) of the application and the

time required to read/write its input/output data. An edge

c ∈ C, called channel, captures (data) dependencies between

actors. Fig. 1(a) depicts an example SDF with 3 actors and 4

channels. Tokens model data communicated through channels.

Channels may contain initial tokens, depicted with a solid dot.

The example SDF contains two initial tokens labeled t0 and

t1. An essential property of SDFs is that every time an actor

fires (executes) it consumes the same amount of tokens from

its input channels and produces the same amount of tokens

on its output channels. These amounts are called the rates
(indicated next to the channel ends when the rates are larger

than 1). The rates determine how often actors have to fire

with respect to each other such that the distribution of tokens

over all channels is in balance. This property is captured in

the repetition vector [2] of an SDF. Fixed rates allow SDFs

to execute in a periodic form, which is called an iteration.

In one iteration each actor is fired as often as indicated in

the repetition vector of the SDF. As an essential property

of SDFs, the initial token distribution is achieved after one

iteration. Consistency (i.e., the existence of a repetition vector)

and absence of deadlock are practically, necessary conditions

for SDFs which can be verified efficiently [9], [10]. Any SDF

that is not consistent requires unbounded memory to execute

or deadlocks. So, we only consider consistent and deadlock

free SDFs.

B. Max-Plus Analysis for SDFs
An actor a ∈ A can be associated with a value τa ∈ N0

that represents the execution time of the actor plus the time

required to read/write its input/output data. One iteration of

an SDF graph resets the token distribution to the initial token

setting. These tokens may be produced at different points

in time. A token timestamp vector is defined to specify the

production time of tokens. The notation γk (k ∈ N) is used

to accommodate the production time of the tokens needed

in the kth iteration of the graph. Consider γ0 as the initial

token timestamp vector of the SDF. Assume that all entries in

γ0 are set to zero. For each SDF, a characteristic Max-Plus

matrix G|n×n (n = |γ|) exists that can be used to calculate

timestamp vectors [11]. An entry G[i, j] ∈ G corresponds

to the minimum time distance from the jth token in the

previous iteration to the ith token in the current iteration. The

characteristic Max-Plus matrix can be determined using the

technique presented in [12]. Consider τa0
= 50, τa1

= 35 and

τa2
= 45 time units as sample execution times for the three

actors in our example SDF (see Fig. 1(a)). The characteristic

matrix for our example SDF is:

G =

(t0 t1

t0 85 35
t1 130 80

)

As an example, the matrix G specifies that the minimum

time distance from token t0 in the kth iteration to token t1 in

a0
a1

a2

a0
a1

a2
t0

t1
t0

t1

0 85 130 170 215

t0
t1

.........

Fig. 2. Execution of the example SDF.

t0
t1

t0
t1

0 85 130 170 215

t0
t1

.........The 1st iteration The 2nd iteration

�
�

�
�
�

�
�

0
0

0	 �
�

�
�
�

�
�
130
85

1	 �
�

�
�
�

�
�
215
170

2	

Fig. 3. The evolution of the token timestamp vector for the example SDF.

the (k+1)th iteration is 130 time units via a0− a1− a2 (130

time units is the result of τa0
+ τa1

+ τa2
).

The evolution of the token timestamp vector can be deter-

mined by using Max-Plus matrix multiplication as follow:

γk+1 = G · γk (1)

The next example shows how the timestamp vector γ1 is

computed using Eqn. 1:

γ1 =

(
85 30
130 80

)(
0
0

)
=

(
max{85 + 0, 30 + 0}
max{130 + 0, 80 + 0}

)
=

(
85
130

)

Any timestamp vector γk (k ∈ N) can be determined by

iteratively performing the Max-Plus multiplication of Eqn. 1.

Fig. 2 shows the execution of the example SDF for two

iterations; from this execution, the evolution of the token

timestamp vector can also be obtained (see Fig. 3).
The technique presented in [6] explains how the throughput

of an SDF graph can be determined using the Max-Plus

characteristic matrix of the graph; to calculate throughput,

the Max-Plus automaton graph (MPAG) is built using the

characteristic Max-Plus matrix. The corresponding MPAG for

the example SDF is shown in Fig. 4. In an MPAG, a node is

created for each initial token in the SDF and if G[i, j] is not

equal to −∞ an edge with weight G[i, j] is added from the

node of the jth token to the node of the ith token. The −∞
value for an element G[i, j] means that there is no dependency

from the jth token to the ith token. A cycle which is limiting

the throughput is called a critical cycle of the SDF. A critical

cycle of the SDF can be discovered by applying a maximum

cycle mean (MCM) analysis on the MPAG. The MCM of the

MPAG is the inverse of the throughput. The edge related to

G[0, 0], which is shown with a bold arrow, determines the

throughput which is equal to 1/85 iterations/time unit in our

example SDF.

C. Scenario-Aware Dataflow Graphs (SADFs)
The behavior of scenarios in an SADF can be expressed by

using SDFs. An example SADF with two scenarios s1 and

85 80
35

130
t0 t1

Fig. 4. MPAG of the example SDF.

85 4535
130

55 55
15
95

35 95 130 15
55

85
55

45
s1/t0

s2/t1 s2/t0

s1/t1

Fig. 5. Max-Plus automaton graph of the example SADF.

s2 is shown in Fig. 1; s1 and s2 are using the same SDF

(see Fig. 1(a)), but with different execution times for actors

in each of the scenarios (see Fig. 1(c)). Scenario transitions

in the SADF are modeled by an FSM. A scenario is specified

for each state of the FSM. Each edge in the FSM indicates

a scenario transition. The corresponding SDF of an FSM

state is executed for one iteration when that FSM state is

being activated. Dependencies between consecutive executions

of the same or different scenarios are modeled by initial

tokens. Initial tokens are labeled to indicate intra-scenario

dependencies among different SDFs [13].

For each scenario, a characteristic Max-Plus matrix can be

specified. The following shows the characteristic Max-Plus

matrices for scenarios s1 and s2 of our example SADF:

Gs1 =

(
85 35
130 80

)
Gs2 =

(
55 15
95 55

)

An MPAG can be built for each of the Max-Plus matrices

using the approach explained in Sec. II-B. The MPAGs of all

scenarios can be merged into a single MPAG by using the

technique of [6]. Fig. 5 shows the MPAG for our example

SADF. In brief, a node is added to the MPAG for each token

in the scenario graph of an FSM state (e.g., node s1/t0 for

token t0 in scenario s1 in Fig. 5). If GM [y, x] is not equal to

−∞ and there is a state transition from a state in the FSM that

executes scenario N to a state that executes scenario M , an

edge with weight GM [y, x] is added from node N/tx to node

M/ty in the MPAG. The critical timing cycle of the SADF

can be determined by applying MCM analysis on the MPAG.

The cycle denoted by the bold arrow shows the critical cycle

for our example SADF; the calculated MCM is 85 time units

and as a result the throughput of the example SADF is limited

to 1/85 iterations/time unit.

D. Parametric SADF: modeling processor frequencies

The execution time of an actor running on a processing

element linearly depends on the clock cycle period of the

underlying processing element. Hence, the execution time of

the actor can be expressed by using a linear expression. Let

PE = {pe1 . . . pen} be the set of processing elements and

S = {s1 . . . sm} the set of all scenarios in an SADF. The aim

of this paper is to assign for each scenario si ∈ S a set of

scale factors (parameters) denoted by pi,1 . . . pi,n to minimize

the energy consumption while satisfying a certain throughput

constraint; pi,j expresses the scale factor (parameter) with

which the clock cycle period of the processing element pej
is scaled in scenario si (i.e., the actor execution times scale

with the same factor). A processing element usually operates

in specific discrete clock cycle points. Hence, we assume that

those discrete points are known for each of the processing

elements. SFSj represents the finite set that contains all

possible scale factors for processing element pej . Let minj

(maxj) be the smallest (largest) scale factor amongst all values

in the set SFSj .

A parametric SADF is defined as a model in which the

execution times of the actors are expressed in terms of the

scale factors. For example, consider the SADF of Fig. 1 in

which actor a0 is mapped to processing element pe1 and

actors a1 and a2 are mapped to processing element pe2.

Tab. I contains the execution time of the actors in terms

of the scale factors of the processing elements. For each

processing element two parameters (i.e., scale factors) are

specified because two scenarios exist in the example SADF

(e.g., p1,1 and p2,1 for pe1). Let F be a set which contains all

parameters (e.g., P = {p1,1, p1,2, p2,1, p2,2} for the example

parametric SADF).

Sec. III contains the proposed technique to determine the

suitable scale factors (parameters). For that technique, the

expression of the critical timing cycle must be determined for

a set of concrete parameters. A set of concrete parameters

specifies a parameter point represented by p. A parameter

point p is a concrete point in the n×m dimensional parameter

space (n and m are respectively the number of processing

elements and the number of scenarios); p specifies a concrete

value pi,j ∈ SFSj for each pi,j ∈ P .

a0 a1 a2
8p2,1+t0

a0 c0 a1 a2c1
t1t0

c2
c3

t1

c2
c3

c0
c1

S.1

S.2

a0 a1 a2
max(8p2,1+3p2,2+t0, 3p2,2+t1)

max(8p2,1+3p2,2+t0, 3p2,2+t1)

c0
c1

c2
c3

S.3

a0 a1 a2
max(8p2,1+11p2,2+t0, 11p2,2+t1)max(8p2,1+3p2,2+t0, 3p2,2+t1)

c0
c1

c2
c3

S.4

Fig. 6. Symbolic execution of scenario graph s2 of the example SADF (t0
and t1 represent the token labels).

E. Critical cycle identification

A parametric throughput analysis technique for SADFs is

presented in [14]; this technique builds the MPAG of an

SADF to capture the dependencies among initial tokens of

consecutive iterations. The technique of [14] can be used for

parametric SADFs to determine a throughout expression for

a parameter point p. In [14], a symbolic execution - up to

one iteration - of the scenario graphs of the SADF is used to

determine information required to construct the MPAG. The

symbolic execution of scenario s2 in our example parametric

SADF is shown in Fig. 6. The initial graph is shown in step

S.1. Consecutive firings of actors a0, a1 and a2 - up to one

iteration - are shown in steps S.2, S.3 and S.4. Step S.4 indi-

cates that the graph has reset to the initial token distribution

after one iteration. The token timestamps in step S.4 capture

the symbolic dependencies of the initial tokens with respect

to their initial values when scenario s2 is being executed. For

instance, the timestamp max(8p2,1+3p2,2+ t0, 3p2,2+ t1) of

the reproduced token t0 (on channel c1) in step S.4 implies

that t0 can be reproduced if 8p2,1 + 3p2,2 time unites has

elapsed after production of token t0 in the previous iteration

and 3p2,2 time units has elapsed after production of token t1
in the previous iteration. This information is used to construct

the MPAG of the SADF in the way that [6] suggests. The

symbolic MPAG of the example SADF is shown in Fig. 7.

In this figure, a node is placed for each initial tokens of

the scenarios. The edges are added using the information

acquired from the symbolic execution of the scenario graphs.

For example in Fig. 7, an edge from node s2/t0 to node

s2/t1 with weight of 8p2,1 + 3p2,2 is added to the MPAG.

The MPAG is evaluated for a given parameter point p to

form a concrete MPAG. The result of the evaluation for

p : {p1,1 = 1, p1,2 = 2, p2,1 = 3, p2,2 = 1} is shown in Fig. 7

10p1,1+7p1,2= 24

7p1,2=14

11p2,2= 11

8p
2,
1+
11
p 2
,2
=
35

s1/t0

s2/t1

10
p 1
,1
+1
6p

1,
2=
42

s1/t1

s2/t0

3p2,2= 3

16p1,2=32

8p2,1+3p2,2= 27

7p1,2=14
10p1,1+16p1,2= 42

3p2,2= 3
8p2,1+11p2,2= 35

16p
1,2
=328p2,1+3p2,2= 27

11p
2,2
= 1
1

10p1,1+7p1,2= 24

Fig. 7. Symbolic MPAG of the example SADF.

s1
reconf1

s2
reconf2

(a) Scenario FSM of reconfiguration.

pe1 pe2

1
a

2
a

(b) Reconfiguration SDF.

a0
c0

a1 a2
c1

c2

c3
t1t0

pe1 pe2 c4
c5

(c) Mapped scenario graph.

Fig. 8. Modeling mapping and reconfiguration in the example SADF.

as the numbers that follow from the edge terms. The critical

timing cycle can be found by applying a maximum cycle

mean (MCM) analysis on the concrete MPAG. The bold arrow

in Fig. 7 shows the critical timing cycle in our example graph.

The symbolic terms of each edge in this cycle are used to

determine the critical cycle expression for the given parameter

point p (i.e., 16p1,2 for our example). This critical timing cycle

implies that with the chosen parameter point, the throughput

of the application is limited by the frequency of processor

pe2. Increasing its frequency when executing scenario s1 may

increase the throughput of the application.

III. PROPOSED TECHNIQUE

Power consumption in VLSI circuits depends linearly on the

operating frequency and quadratically on the supply voltage

of the processing elements [15]. While lowering the voltage

supply, the maximal possible operating frequency also reduces.

Hence, lowering the voltage and frequency could reduce the

total energy consumption quadratically at linear time cost [16].

So, in our technique, the execution times are expressed linearly

in terms of the processor clock cycle periods (i.e. inverse

of the frequencies) and energy consumption is expressed

quadratically in terms of the processor frequencies.

A. Overview

This section presents a multiprocessor frequency assignment

technique for dynamic applications modeled by SADF graphs

in such a way that a strict throughput requirement is guaran-

teed. In the following subsection, we show how to capture the

timing delays resulting from DVFS in an SADF model. Our

DVFS assignment technique starts with the minimum energy

option; in other words, it assigns the lowest possible frequency

(or the highest clock cycle period) to each processor running

in an application scenario. The initial setting may violate the

required throughput. So, the technique checks whether or not

the initial setting satisfies the throughput; if the throughput is

satisfied, the initial setting is reported as final solution. In the

other case, our technique finds a critical timing cycle in the

application which violates the throughput. Then, the frequency

of the processors involved in the critical cycle are increased to

make that cycle fit within the required throughput. Even after

resolving the first critical cycle, some other timing cycles may

exist which are violating the throughput. Those timing cycles

are similarly resolved one after another until all of the timing

cycle in the SADF model respect the required throughput.

Sec. III-C discusses our technique in detail.

B. Modeling voltage & frequency scaling in SADF

DVFS can be viewed upon as a reconfiguration at run-time.

This can be effectively modeled in SADFs as a reconfigu-
ration scenario. In the FSM of the SADF, an intermediate

state must be placed before switching to another original

FSM’s state. Two reconfiguration states are added to the FSM

of our example SADF to capture the reconfiguration steps

(see Fig. 8(a)). For a reconfiguration state, a reconfiguration

scenario is defined. A reconfiguration scenario captures any

step involved in the reconfiguration operation. For instance

in our example SADF which is mapped to a platform with

two processing elements, the reconfiguration requires setting

the frequencies and voltages for two processing elements. The

SDF of the reconfiguration scenario for each of the processing

elements contains an actor with a self-edge; on that self-

edge, a token with a label indicating the related processing

element models the processing resource dependency between

consecutive iterations (see Fig. 8(b)). The execution time of the

added actors are set to the DVFS delay. This way, the overhead

of switching between different frequency points on iteration

boundaries is considered. Mapping should also be modeled

in the scenario graphs of the SADF. The technique from [4]

is used for this purpose. Fig. 8(c) shows such a modeling

for the scenario graph of the example SADF; the processor

tokens in this SDF establish the resource dependencies among

all scenarios. This effect is shown graphically in Fig. 9; in

this figure, an example scenario transition from scenario s1
to scenario s2 is depicted. The time required to capture the

DVFS delay is modeled by a reconfiguration scenario shown

with Reconfig1 in Fig. 9. Hence processor tokens pe1 and

pe2 can be released (to be used by s2) after the DVFS setting

completion on both of the processing elements.

C. Clock cycle period settings under a throughput constraint

The used SADF is a parametric model according to

Sec. II-D. Algorithm 1 contains our heuristic technique to

identify the scale factors (parameters) which result in energy

savings under a throughput constraint. G represents the given

parametric SADF and Period represents the inverse of the

required throughput. The set SFS of scale factors is also

pe1

time

t0
t1

scenario s1

pe2 scenario s1 scenario s2Reconfig1

DVFS delay on pe1
DVFS delay on pe2

Fig. 9. Processor tokens to model resource dependency across scenarios.

required as an input to the algorithm. Each SFSj ∈ SFS
contains all concrete values that a parameter pi,j can obtain

(i.e., all allowed scale factors for processor pej). Solution
is a set which contains the final concrete values for all

parameters (as the output of the algorithm). For the example

SADF, 65 time units is specified as the timing constraint (i.e,

Period = 65). The DVFS delay is assumed to be 1 time unit

in our example.

Algorithm 1: Throughput-constrained DVFS for SADF

input : Parametric SADF G
input : Timing constraint Period
input : Scale factor sets SFS = {SFS1 . . . SFSn}
output: Scale factor set Solution

if feasibilityCheck(G, min1 . . .minn, Period) �= ”Feasible” then1
return Solution ← ∅2

n ← number of processing elements3
m ← number of scenarios in G4
for j ← 1 to n do5

for i ← 1 to m do6
pai,j = maxj7

while true do8
/* step 1 */9
criticalCycleExpr1 ← getCriticalCycle(G, pa)10
if |criticalCycleExpr1| > Period then11

pb ← resolveCycle(criticalCycleExpr1, pa, SFS, Period)12
else13

return Solution ← pa14

/* step 2 */15
criticalCycleExpr2 ← getCriticalCycle(G, pb)16
if |criticalCycleExpr2| > Period then17

pc ← resolveCycle(criticalCycleExpr2, pb, SFS, Period)18
else19

return Solution ← pb20

/* re-initialization */21
for j ← 1 to n do22

for i ← 1 to m do23
if pbi,j �= pci,j then24

pai,j = pci,j25

As a first step, the existence of any valid solution for the

given scale factors is checked by the function feasibility-

Check (lines 1-2 in Algorithm 1); this is checked by extracting

the critical timing cycle for the case that all parameters (scale

factors) are set to their minimum values (i.e. the highest

processor frequencies). The problem is not feasible in case the

length of the critical cycle is larger than the timing constraint

(i.e., Period); otherwise, the analysis is continued to find the

desired solution.

Initially, all parameters in the parametric SADF are set to

their maximum value (lines 5-7 in Algorithm 1); this assures

the lowest energy consumption, although this may not satisfy

the timing requirement. The technique iteratively refines the

initial parameter setting to obtain a parameter point that meets

the timing constraint. The repetitive part of the algorithm

(lines 8-25 in Algorithm 1) is composed of two main steps

followed by a re-initialization step. In each of the main steps,

a critical cycle of the SADF for the given parameter point is

extracted by function getCriticalCycle; the approach explained

in Sec. II-E is used for this. In case of multiple critical

cycles with equal length, one of them is chosen arbitrarily.

The other cycles can be processed in later repetitions of the

algorithm. The extracted critical cycle must be resolved by

choosing a proper scale factor for the parameters involved

in the critical cycle; our scale factor selection approach,

which is abstracted by function resolveCycle in the algorithm,

picks a parameter point amongst all possible combinations

of the involved parameters in the critical cycle to achieve

the lowest energy consumption while still meeting the timing

requirement. The complexity of resolveCycle depends on the

number of parameters that contribute to the critical cycle

(denoted by ρ) and the number of possible clock cycle (or

frequency) points for each of the processing elements (denoted

by π). So, the number of parameter points required to be

verified by resolveCycle is equal to πρ because each parameter

in the critical cycle can get π different values. The value of

π depends on the platform property; the value of ρ depends

on the application property and at worst case ρ can be equal

to the number of parameters in the parametric SADF model.

Hence, resolveCycle has an exponential complexity. However,

our experiments on several real applications reveal that only a

few parameters contribute to the critical cycle (i.e., in practice

ρ is small); hence, verifying all parameter points can be done

quickly (refer to Sec. IV).

Figure 10 depicts the application of our algorithm to the

example SADF. At step 1 of the 1st repetition, the critical

timing cycle with expression 10p1,1+7p1,2 is extracted when

all parameters are initialized with a value of 5 time units.

This cycle violates the required timing constraint of 65 time

units. Hence, the parameters p1,1 and p1,2 must be set in a

way that this cycle gets bounded within the required period.

All parameter combinations of p1,1 and p1,2 are shown in

Fig. 10(a) (left-top); the points marked with solid black dots

are not valid selections as they violate the timing constraint.

Among the rest of the parameter points, p1,1 = 3 and

p1,11 5

1

5

3

2

4

p1,2

2

3 4

Lo
w
er
en
er
gy

Lower energy

1

5

3

4

p1,2

2

Lo
w
er
en
er
gyp1,1=5

p1,2=5
p2,1=5
p2,2=5

p1,1=3
p1,2=4

p2,1=5
p2,2=5

p1,11 5

1

5

3

2

4

p1,2

2

3 4
Lo
w
er
en
er
gy

Lower energy

pa pb pc

10p1,1+7p1,2 : 85 16p1,2 : 80

10p1,1+7p1,2 : 61

pbre
pe
tit
io
ns

Step 1 Step 2
R
ep
et
iti
on
1

solution

R
ep
et
iti
on
2

p1,1=5
p1,2=4

p2,1=5
p2,2=5

pa

10p1,1+7p1,2 : 78

p1,1=3
p1,2=5

p2,1=5
p2,2=5

p1,1=4
p1,2=3

p2,1=5
p2,2=5

>65 >65

>65 <65

(a) (b)

(c)

p2,1=5
p2,2=5

pa
p1,1=5
p1,2=4

Re-init.

Fig. 10. Applying our technique to the example SADF.

p1,2 = 5 are selected since this choice assures the lowest

energy consumption at this stage. In this example, we assume

that the platform is homogeneous and processing elements

consume equal amounts of energy when they are operating at

the same frequency. The resulting parameter point after step

1 (i.e., parameter point pb) is fed to step 2. The first critical

cycle now has been resolved by step 1; the next critical cycle

can be extracted in step 2. The new critical cycle found in step

2 can be resolved similarly as step 1. As shown in step 2 of

the 1st repetition in Fig. 10, only parameter p1,2 contributes to

the second critical cycle; so, p1,2 is reduced to value 4 in order

to resolve the critical cycle found in step 2. The outcome of

the second step is the parameter point pc. Resolving a critical

cycle by one step cannot enlarge other critical cycles found

in prior steps; because in function resolveCycle, we restrict

our choice to parameter points in which all parameters have

values smaller than or equal to the ones in the input parameter

point argument of resolveCycle.

Both of the main steps decrease parameters in order to

shrink the identified critical cycles. The re-initialization step

(lines 22-25 in Algorithm 1) provides an opportunity for

parameters to avoid unnecessary frequency increase for some

processing elements involved in critical timing cycles when

possible. Consider that pa is the parameter point to be used in

the subsequent algorithm repetition. The re-initialization step

updates the parameters in pa with the values of the parameters

whose values have been reduced in step 2. Parameters which

were only reduced in step 1 of the current repetition keep

their original values. In this way, they are reconsidered in the

next algorithm repetitions. The reason for not changing the

parameter values for those parameters that were only changed

in the first step is that the critical cycle of the first step may

have been affected by the adaptations made in the second

step. As a result of the re-initialization step, the information

obtained in one repetition is used in subsequent repetitions

to provide better parameter point selection. In the second

repetition of the algorithm for our example SADF, resolving

the first critical cycle 10p1,1 + 7p1,2 is performed with the

knowledge that parameter p1,2 should get a value smaller than

5 because of the critical cycle 16p1,2; the solid red dots in

Fig. 10(c) display this effect. Hence, step 1 in the second

repetition of the algorithm reduces p1,1 to 4 (instead of 3 after

step 1 of the 1st repetition). The critical cycle identified by step

2 in the second repetition is already smaller than the required

Period and the algorithm stops further analysis and reports

the current parameter point (i.e., pb in the second repetition)

as the final solution.

The algorithm stops either after step 1 or step 2 (line

15 or line 20 in the algorithm) whenever the length of the

critical cycle in one of those steps is smaller than the timing

requirement; if not, the re-initialization step fixes the values

of those parameters which are reduced in step 2 for the

subsequent repetitions. This ensures that by each repetition

of the algorithm some parameters get smaller and eventually

the timing requirement is met. In our algorithm, two main

steps perform parameter point selection, each considering the

information from one critical cycle. Increasing the number of

main steps in our algorithm allows considering more critical

cycles in our parameter point selection; however, more steps

implies more analysis time. Empirically, the number of main

steps is set to two in our heuristic.

TABLE III
EXPERIMENTAL RESULTS.

the technique from [5] our technique
Benchmark #states analysis times (ms) #rep analysis times (ms) ρ energy gain
MPEG4 dec. (9 scenarios) over 300k not finished in 3 days 4 104 2 N/A

MPEG4 dec. clustered (4 scenarios) 189 415 47 192 700 2 16 2 34 %

MP3 dec. over 700k not finished in 3 days 9 416 3 N/A

MP3 dec. quantized 4370 162 550 9 416 3 9%

WLAN 277 3 796 3 10 8 10%

LTE 65 456 3 8 3 44%

TABLE II
THE SPECIFICATION OF BENCHMARK APPLICATIONS.

Benchmark #sce. #p.e. π #par timing constraint
MPEG4 dec. 9 4 2 36 20 frames/sec.

MP3 dec. 5 3 2 15 20 frames/sec.

WLAN 4 3 2 12 250k OFDM symbols/sec.

LTE 5 2 5 10 100 symbols/sec.

IV. EXPERIMENTAL RESULTS

The proposed DVFS technique for SADFs is compared to

the related work (i.e., [5]) which uses an approach based

on state-space exploration. This comparison is performed

because [5] is the closest approach to our technique in the

literature and we solve a similar problem for (scenario-aware)

dataflow graphs. A set of realistic applications is used for

this comparison: an MPEG4 video decoder [1], an MP3 audio

decoder [6], a WLAN receiver [7] and the baseband (physical

layer) processing of the Long Term Evolution (LTE) stan-

dard [8]. Tab. II shows for each of the applications the number

of application scenarios (#sce.), the number of processing

elements (#p.e.) in the platform to which the application is

mapped, the number of the available frequency points (π), the

number of parameters in the parametric SADF (#par) and the

timing constraint of each application. The overhead of DVFS

is set to a value taken from [17], [18]. Hence, 10 ns is used

as delay of DVFS in our experiments. All experiments are

performed on an Intel core i7 (3 GHz) with 4GB of RAM

running Linux.

The complexity of both our DVFS technique and the state-

space based technique from [5] is determined by the number

of scenarios. Scenarios of an application can be clustered

to form a less complex model. For instance, we clustered 9

scenarios in the MPEG4 decoder into a smaller model with 4

scenarios. Analyzing a smaller model can be done faster than

the original model; but, analysis of such a clustered model can

deteriorate the accuracy of the analysis, in the end leading to

suboptimal frequency settings. An approach to further limit

the number of states distinguished by the state-space based

technique from [5] is to quantize the execution time of the

actors; but, timing quantization can also affect the accuracy of

the model and as a result the outcome of the DVFS analysis.

Initially, we apply our technique and the technique from [5]

to the original models of the benchmark applications. Results

are shown in Tab. III. Besides analysis times, the number

of unique states identified for each of the benchmarks are

reported when applying the state-space based DVFS. As our

technique is a repetitive algorithm, the number of repetitions

is reported for our technique. For our technique, the maximum

number of parameters found in any of the critical cycles of the

SADF model is also reported (ρ); the small values for ρ in our

results show that the function resolveCycle can quickly find

a suitable parameter point for critical cycles to make them fit

within the throughput constraint while looking for an energy

efficient option. For the original model of the MPEG4 decoder

and the MP3 decoder, the state-space based DVFS does not

find solutions within a reasonable time (i.e., 3 days). The

number of states of an application can drastically increase;

hence, analyzing all states may not be a practical approach.

Our technique finds solutions in a fraction of a second.

To make the state-space based technique applicable to the

MPEG4 decoder, we perform scenario clustering; 9 scenarios

in the original model are clustered into 4 separate scenarios.

The results of applying our technique and the state-space based

technique on the clustered model of the MPEG4 decoder are

also shown in Tab. III. For the MP3 decoder, the execution

time of the actors are quantized to limit the state space. Our

technique can be applied on both the MPEG4 decoder and

MP3 decoder without any scenario clustering nor any timing

quantization; the state-based technique only works on the

coarser models. The results in Tab. III show that our technique

is also on the coarser models much faster than the state-space

based DVFS.

The memory required to store the DVFS controller devised

by our technique depends on the number of scenarios in the

SADF, while for the state-space based technique, the memory

size depends on the number of discovered states. The results in

Tab. III (the second column) show that more compact DVFS

controllers are achievable by using our technique.

We also estimate the energy consumption of an SADF run-

ning on a platform with multiple processing elements. A long

sequence of scenario iterations (i.e., 200k scenario iterations

in our experiments) is fed to the DVFS controller devised

by each of the two techniques. The energy consumption is

calculated per iteration. Each experiment is performed 10

times with a different seed for the scenario sequence generator;

the results reported in Tab. III, last column, are averages of

those 10 experiments. The results show that our technique

offers solutions with less energy consumption compared to

the technique from [5]. The reason why our technique offers

lower energy consumption is because our algorithm considers

critical cycles that may run across multiple iterations when

assigning clock frequencies. In this way timing slack of one

or several iterations can be effectively exploited through all

iterations of a critical cycle. As a result, operating frequencies

of processing elements can get lowered.

Fig. 11 gives some concrete energy results for the MPEG4

decoder. The figure confirms the energy savings obtained by

our technique for the model with 4 scenarios. It also shows,

however, that a more refined model with 9 scenarios allows a

further reduction in energy consumption. Our technique scales

better to finer-grained models than the state-based technique.

We also performed some experiments for processing ele-

ments with different numbers of the frequency points. By in-

creasing the number of frequency points, we provide frequen-

cies with higher resolutions. To assess the gain of dynamic

switching, our technique is also used to find a static solution

in which each processing element runs at a fixed frequency.

Applying our technique to a parametric SADF in which one

parameter (scale factor) is specified per processing element

across all scenarios determines a static solution. Fig. 12 depicts

the results when our technique, the static approach and the

technique from [5] are used to devise a DVFS controller for the

WLAN application. Increasing the number of frequency points

increases the number of states for the application which is why

the technique from [5] is not capable of finding any solutions

for the cases with more than two frequency points for the

WLAN application; the analysis times are shown in Fig. 12(a).

Energy consumption values are shown in Fig. 12(b); the values

are normalized using the largest value. Our technique assures

10% to 41% lower energy consumption compared to the state-

space based technique when the number of frequency points

increases from 2 to 10. Increasing the number of frequency

points provides more refined frequencies to save more energy.

Fig. 12(b) also shows that both DVFS techniques provide

less energy consumption compared to the static technique.

The analysis time of our technique rises by increasing the

number of frequency points because this increases the number

of parameter points to be verified in our algorithm. However,

the analysis time of our technique is not too high to make the

analysis infeasible. The static approach based on our technique

is fast because the number of parameters in the parametric

SADF is limited to only the number of processing elements.

Our algorithm scales reasonably well because typically only

a limited number of parameters are involved in critical timing

cycles.

V. RELATED WORK

Related DVFS approaches can be viewed from three dif-

ferent angles: (1) design policy; (2) application model; (3)

solution granularity. The design policy determines whether the

DVFS choices are made at run-time [19], [20] or design-time
[21], [22]; the first type predicts the workload and adjusts the

supply voltage and the operating frequency of the underlying

processing elements at run-time. The second ones assume

that the workload of applications are known at design-time.

4 9

[5]
our

N
or
m
al
iz
ed
E
ne
rg
y

Number of scenarios

1.00

0.71
0.66

47.1927e+06 ms

16 ms
104 ms

Fig. 11. Impact of scenario clustering on energy consumption and analysis
time.

1

10

100

1000

10000

100000

1000000

2 3 4 6 8 10

An
al

ys
is

 ti
m

e
(m

s)

Frequency points

our [5] static

(a) Analysis time.

0.5

0.6

0.7

0.8

0.9

1

2 3 4 6 8 10

N
or

m
al

ize
d

en
er

gy

Frequency points

our [5] static

(b) Normalized energy.

Fig. 12. Results of WLAN for different number of frequency points.

Run-time approaches suffer from extra timing and energy

overheads. Design-time approaches can result in pessimistic

solutions if the behavior of the applications is not captured

properly. The application models to devise a DVFS controller

may be static or dynamic; in static models (e.g., SDF and

task graphs) [21], [22], actors (tasks) use the worst case as

their execution time (i.e., WCET). Dynamic models (e.g.,

SADF) [5], [23] capture execution time variation. Static mod-

els are simple and easy to analyze which make them suitable

for static applications. Dynamic models are favorable for more

dynamic applications (e.g., modern multimedia applications).

The solution granularity determines how often a voltage and

frequency switch can occur in a design. In a fine-grained
solution [21], [22], a DVFS may happen before executing

actors (tasks); in a coarse-grained solution [5], the DVFS may

happen before executing iterations (e.g., processing a video

frame). The overhead of DVFS, the size of the actors and the

size of the iteration determine which granularity is suitable for

a system.

Our technique analyzes SADFs to devise a coarse-grain

DVFS controller at design time for dynamic throughput-

constrained applications. SADFs are suitable to capture the

dynamic behavior of applications. We offer a coarse-grained

DVFS solution to avoid overhead because of the frequent

voltage and frequency switches in fine-grained solutions.

However, fine-grained solutions like [21] can be beneficial

when the overhead is negligible. Some run-time approaches

(e.g., [24]) use WCET information to perform better run-time

power management. Our technique can also be used to provide

initial information for such run-time techniques to further tune

the final solution and loosen the run-time overhead; we leave

further run-time refinement of our technique as future work.

Among the related work, [5] is the most similar to ours.

The technique of [5] suffers from state-space explosion and

it requires much time for the analysis; our technique finds

solutions for all of our benchmark applications in seconds to

minutes, depending on the number of scenarios and frequency

points. Moreover, using [5] results in pessimistic solutions be-

cause of the greedy approach used in its voltage and frequency

selection. Our technique considers all iterations involved in

the critical timing cycles to effectively utilize slack; in this

way, workloads are balanced across multiple iterations and

frequencies can be lowered. As a result, our technique assures

better solutions in terms of energy consumption. The DVFS

controller devised by our technique is more compact than the

DVFS controller of [5]; this can save considerable memory

space to store the controller.

The authors of [25] develop a game theory-based technique

to synthesize a controller for SADFs; they optimize throughput

by modifying the scheduling policy. The resulting controller

of [25] is optimized for a single design metric (i.e., only

throughput), while our technique reduces energy consumption

under a throughput constraint. Note that our technique is

a heuristic which provides sub-optimal solutions and the

technique of [25] finds optimal solutions. Extending the game

theory-based technique of [25] to consider two design metrics

is a relevant, but challenging problem which requires further

research. Ref. [23] presents a technique to detect application

scenarios at design-time; it also devises a pro-active voltage

scaling by predicting the scenario sequences. However, the

technique of [23] is not applicable to multiprocessor platforms.

VI. CONCLUSION

A technique is developed to synthesize a DVFS controller

for SADFs to reduce the energy consumption while meeting

a throughput requirement. The SADF model is extended to a

parametric model in order to capture the processor frequencies

of the platform to which the application is mapped. The

proposed technique uses a symbolic version of a Max-Plus

automaton graph analysis to identify the critical timing cycles.

Initially, the application is set to the lowest possible energy

mode. Then, the critical cycles that are violating the timing

requirement are repetitively resolved by refining the processor

frequencies. Our analysis is faster than the state of the art

technique for dataflow graphs; the experiments show that

our technique furthermore constructs more compact DVFS

controllers with lower energy consumption.

REFERENCES

[1] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk,
“A scenario-aware data flow model for combined long-run average and
worst-case performance analysis,” in MEMOCODE’06, pp. 185 –194.

[2] S. Bhattacharyya, P. Murthy, and E. Lee, “Synthesis of embedded
software from synchronous dataflow specifications,” J. VLSI Signal
Processing, vol. 21, pp. 151–166, 1999.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low power CMOS
digital design,” IEEE J. Solid State Circuits, vol. 27, pp. 473–484, 1995.

[4] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal,
“Modeling static-order schedules in synchronous dataflow graphs,” in
DATE’12, pp. 775–780.

[5] J. Zimmermann, O. Bringmann, and W. Rosenstiel, “Analysis of multi-
domain scenarios for optimized dynamic power management strategies,”
in DATE’12, pp. 862 –865.

[6] M. Geilen and S. Stuijk, “Worst-case performance analysis of syn-
chronous dataflow scenarios,” in CODES+ISSS’10, pp. 125–134.

[7] O. Moreira, “Temporal analysis and scheduling of hard real-time radios
running on a multi-processor,” Ph.D. dissertation, TU Eindhoven, 2012.

[8] D. Martı́n-Sacristán, J. F. Monserrat, J. Cabrejas-Peñuelas, D. Calabuig,
S. Garrigas, and N. Cardona, “On the way towards fourth-generation
mobile: 3GPP LTE and LTE-advanced,” EURASIP J. Wirel. Commun.
Netw., vol. 2009, pp. 4:1–4:10, Mar. 2009.

[9] S. Bhattacharyya, P. Murthy, and E. Lee, Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, 1996.

[10] E. Lee and D. Messerschmitt, “Synchronous data flow,” IEEE Proceed-
ings, vol. 75, no. 9, pp. 1235 –1245, 1987.

[11] F. Baccelli, G. Cohen, G. J. Olsder, and J. pierre Quadrat, Synchroniza-
tion and Linearity. John Wiley & Sons.

[12] M. Geilen, “Synchronous dataflow scenarios,” ACM Trans. Embed.
Comput. Syst., vol. 10, no. 2, pp. 16:1–16:31, Jan. 2011.

[13] M. Geilen, J. Falk, C. Haubelt, T. Basten, B. Theelen, and S. Stuijk,
“Performance analysis of weakly-consistent scenario-aware dataflow
graphs,” TU Eindhoven, Tech. Rep. ESR-2011-03, 2011.

[14] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, and H. Corporaal,
“Parametric throughput analysis of scenario-aware dataflow graphs,” in
ICCD’12, pp. 219 –226.

[15] T. Burd and R. Brodersen, “Energy efficient CMOS microprocessor
design,” in HICSS’95, p. 288.

[16] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage
scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, pp.
1571–1580, 2000.

[17] M. Meijer, J. de Gyvez, and R. Otten, “On-chip digital power supply
control for system-on-chip applications,” in ISLPED’05, pp. 311 – 314.

[18] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of
fast, per-core DVFS using on-chip switching regulators,” in HPCA’08,
pp. 123 –134.

[19] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini, “A
feedback-based approach to DVFS in data-flow applications,” TCAD,
vol. 28, no. 11, pp. 1691–1704, 2009.

[20] P. Choudhury, P. P. Chakrabarti, and R. Kumar, “Online dynamic voltage
scaling using task graph mapping analysis for multiprocessors,” in
VLSID’07, pp. 89–94.

[21] A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and
K. Goossens, “Power minimisation for real-time dataflow applications,”
in DSD’11, pp. 117–124.

[22] D. Shin and J. Kim, “Power-aware scheduling of conditional task graphs
in real-time multiprocessor systems,” in ISLPED’03, pp. 408–413.

[23] S. V. Gheorghita, T. Basten, and H. Corporaal, “Scenario selection and
prediction for DVS-aware scheduling of multimedia applications,” J.
Signal Process. Syst., vol. 50, no. 2, pp. 137–161, 2008.

[24] P. Vivet, E. Beigne, H. Lebreton, and N.-E. Zergainoh, “On line power
optimization of data flow multi-core architecture based on vdd-hopping
for local DVFS,” in PATMOS’10, 2011, pp. 94–104.

[25] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Playing
games with scenario- and resource-aware sdf graphs through policy
iteration,” in DATE’12, pp. 194–199.

