Virtual Execution Platforms for Mixed Time-Criticality Applications:
Demonstrating the CompSoC Platform and Design Flow

Benny Akesson?, Martijn Koedam?, Anca Molnos?, Ashkan Beyranvand Nejad?,
Andrew Nelson?, Sander Stuijk?, and Kees Goossens?

! CISTER-ISEP Research Unit, 2 Eindhoven University of Technology, * Delft University of Technology

Systems-on-Chip (SoC) complexity increases as a grow-
ing number of applications are integrated and executed on
sophisticated multi-processor systems that strike a balance
between performance, cost, power consumption and flexibil-
ity [4,6]. Complexity is further increased by an increasing
number of concurrently executing applications, which result
in a large number of possible use-cases. The applications
have mized time-criticality, which is a mix between firm,
soft, and no real-time requirements. Firm real-time require-
ments must always be satisfied to avoid unacceptable output
quality loss. Occasional failures to meet soft requirements
can be tolerated. Non-real-time applications do not have
well-defined timing requirements, but must be responsive.

Verification of real-time requirements is traditionally per-
formed using formal timing analysis, simulation, or a combi-
nation of the two. Firm real-time applications demand rig-
orous formal analysis, since their requirements must always
be met. In contrast, soft real-time applications are often
verified by simulation for a large set of inputs, as they are
often dynamic by nature and difficult to verify by formal
methods in a cost-effective manner. A key challenge with
verification is that platform resources, such as processors, in-
terconnect, and memories, are shared between applications
to reduce cost. This results in interference between appli-
cations, making their temporal behaviors inter-dependent.
This causes three problems with respect to integration and
verification. Firstly, accurate system-level simulation and
several approaches to timing analysis become infeasible, be-
cause of the state-space explosion resulting from the many
use-cases, application inputs, and resources states. Sec-
ondly, use-case verification becomes a circular process that
must be repeated if an application is added, removed, or
modified [3]. Thirdly, verification of a use-case cannot begin
until all applications it comprises are available. The verifi-
cation process hence depends on the availability of all ap-
plications, which may be developed by independent software
vendors. Together, these problems contribute to making the
integration and verification process a dominant part of SoC
development, both in terms of time and money [3].

The CompSoC platform [1,2] addresses these problems by
executing each application in an independent virtual plat-
form. Tt also uses the SDF? design flow [5] that automat-
ically analyzes firm real-time applications and maps them
to resources in a virtual platform, according to their re-
source and timing requirements. The CompSoC virtualiza-
tion technology relies on two complexity-reducing concepts:
predictability and composability, detailed as follows.

This work was partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by the EU ARTEMIS
JU funding, within the RECOMP project, ref. ARTEMIS/0202/2009, JU
grant nr. 100202.

All software and hardware components are designed to
make the virtual platforms predictable, which means that
all platform and application interference is bounded. This
makes the virtual platforms virtualized in terms of perfor-
mance bounds, such as upper bounds on latency or lower
bounds on throughput. This enables compositional verifica-
tion of firm real-time applications using formal performance
analysis frameworks, such as data-flow analysis [5].

Composable virtual platforms are completely isolated and
cannot affect each other’s temporal behaviors by even a sin-
gle clock cycle. They are hence wvirtualized in terms of ac-
tual performance, in particular actual execution time, and
actual energy and power usage. This is intuitively achieved
by using delays to enforce worst-case behavior of all software
and hardware components [1]. Each application is given a
fixed virtual execution platform consisting of multiple pro-
cessors, memories, and interconnect, as well as a virtual bat-
tery (energy/power) budget on the processor. This enables
applications to be designed, verified, and executed in isola-
tion. This alleviates the verification problem of simulation-
based approaches in three ways: 1) verification becomes a
non-circular process, 2) the verification process can be incre-
mental and start as soon as the first application is available,
3) the time required by simulations is reduced, since only a
single application in its virtual platform has to be simulated.

Predictability and composability are hence complemen-
tary concepts that both solve important parts of the design
and verification problem for mixed time-criticality systems,
and provide a complete solution when combined.

Our contribution consists of two demonstrators. First, we
demonstrate the SDF? design flow that maps an H.263 de-
coder to an FPGA instance of the CompSoC platform, while
meeting its firm real-time requirements. Second, on the
same instance of CompSoC, we demonstrate composable ex-
ecution for two distributed applications sharing processors,
interconnect, and memories, without interference in terms
of execution time or energy consumption. Measurements
on the FPGA implementation show that the applications in
both demonstrators meet their real-time requirements.

References

[1] B. Akesson et al. Composability and predictability for
independent application development, verification, and
execution. In Multiprocessor System-on-Chip — Hardware
Design and Tool Integration, chapter 2. Springer, 2010.

[2] A. Hansson et al. CoMPSoC: A template for composable and
predictable multi-processor system on chips. 14(1), 2009.

[3] H. Kopetz et al. The time-triggered architecture. 91(1), 2003.

[4] STMicroelectronics and CEA. Platform 2012: A Many-core
programmable accelerator for Ultra-Efficient Embedded
Computing in Nanometer Technology, 2010. White paper.

[5] S. Stuijk et al. SDF?: SDF For Free. In Proc. ACSD, 2006.

[6] C. van Berkel. Multi-core for Mobile Phones. In Proc. DATE,
2009.



