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ABSTRACT
Image-Based control systems extract information by a cam-
era and an image processing algorithm. The challenge of
such controllers is that the sensing latency deteriorates the
control performance. Multi-core technology can be used
to implement the sensing algorithm in a pipelined fashion.
More processing resources potentially lead to better settling
time. This results in a trade-off between resources and per-
formance. We present a method to analyse this trade-off.

CCS Concepts
•Computer systems organization → Multicore ar-
chitectures; Embedded hardware; Embedded software;
•Hardware → Yield and cost optimization;
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1. MOTIVATION
Image-Based Control (IBC) is a common control strategy in
fields such as Advanced Driver Assistance Systems (ADAS)
[5] or visual servo control [2]. The main challenge in de-
signing an IBC is to cope with the latency induced by the
execution time of the image processing algorithm. To ad-
dress this challenge, platforms with parallel processing ca-
pabilities can be used to implement the sensing algorithm
in a pipelined fashion. For example, consider a second order
under-damped system being controlled by an IBC with a
sensing latency of 0.084 s. Using a non-pipelined (sequen-
tial) configuration of Fig. 1a and a pipelined sensing config-
uration of Fig. 1b, the settling is reduced by 30% as shown
in Fig. 2.

The use of more pipes results in a shorter sampling period
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Figure 1: Example resource configuration of image-based
control. a) Sequential configuration. b) Pipelined configu-
ration with two sensing cores.

and potentially improves settling time. However, using more
pipes implies more processing resources. This work focuses
on the trade-off analysis between the number of pipes used
and the settling time.

To analyse such a trade-off, a Linear Quadratic Regulator
(LQR) controller has to be tuned for each resource configu-
ration (i.e., number of pipes) such that the settling time is
minimized. Tuning an LQR requires that its tuning matri-
ces Q and R remain positive semi-definite. Classical tuning
strategies for LQR, for reasons of simplicity, focus on find-
ing the diagonal of such matrices. We use Particle Swarm
Optimization (PSO) to find not only the diagonal of such
matrices but also the off-diagonal elements to achieve better
performance.

2. PROPOSED LQR TUNING
Pipelined sensing modelling. Linear time-invariant con-
trol applications of the following form are considered:

ẋ(t) = Ax(t) +Bu(t− δ) (1)

y(t) = Cx(t)

where A ∈ Rn×n is the state matrix, B ∈ Rn×i the input
matrix, C ∈ Ro×n the output matrix, u(t−δ) ∈ Ri the input
vector, x(t) ∈ Rn the state vector, y(t) ∈ Ro the output
vector, i the number of inputs, o the number of outputs,
n the number of states, and δ the sensor-to-actuator delay
which is the total of the sensing, control computation, and
actuating latencies. The control application shown in Eq. 1
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Figure 2: Controller response of motivational example with
and without pipeline. The round markers denote multiples
of the sampling period.

has an equivalent discrete-time pipelined model of the form:

z(K + 1) = Φz(K) + Γu(K) (2)

where z(K) ∈ Rn+l is the augmented state vector, Φ ∈
R(n+l)×(n+l) and Γ ∈ R(n+l)×i are the augmented discrete
state and augmented input matrix respectively. l corre-
sponds to the difference between the states of the discrete-
time pipelined model and the continuous time model. l is
found according to l = iγ with γ the number of sensing pipes
[7]. The controller sampling period is defined by:

h =
δ

γ
(3)

Note that a larger number of pipes leads to a smaller sam-
pling period in Eq. 3.

LQR controller. An LQR controller uses the control law:

u(K) = −Kz(K)

with K the feedback gain. K is found minimizing the cost
function:

J = min

∞∑
K=0

zT (K)Qz(K) + uT (K)Ru(K) (4)

with Q ∈ R(n+l)×(n+l) and R ∈ Ri×i, the state and input
weight matrices of the LQR which are symmetric positive
semi-definite and symmetric positive definite matrices re-
spectively, i.e. Q = QT � 0 and R = RT � 0 [6].

3. METHOD
Algorithm 1 PSO algorithm

1: Initialize random population X with m particles
2: while stopping criterion is not met do
3: for each particle Xj do
4: Compute fitness f
5: end for
6: for each particle Xj do
7: Compute speed v
8: Update swarm X
9: end for

10: end while

PSO is used to tune an LQR with minimum settling time.
Such an algorithm uses a population X of m individuals
to explore in parallel the design space of a problem. The
PSO algorithm evolves in an iterative manner. In each iter-
ation, a fitness f is first computed to determine the quality
of the solution found by each particle and then the popula-
tion evolves according to a speed v. The process is repeated
until a stop criterion is met. An example PSO algorithm is
shown in Algorithm 1. PSO has been used to tune the LQR
controller in several applications (e.g. [4]). In such appli-
cations, PSO minimizes a performance metric while tuning
the diagonal elements of Q and R. These approaches restrict
themselves to tuning the diagonal, because it is challenging
to tune all matrix elements while keeping the matrices pos-
itive (semi-)definite.

Proposed approach. Our PSO algorithm finds not only
the diagonal of Q and R but also all the elements of such
matrices that minimize the settling time. To do so, each par-
ticle Xj in the population X is defined as the concatenation
of all values of two random matrices αj and βj :

Xj = [αjβj ]

where αj ∈ R(n+l)×(n+l) and βj ∈ Ri×i are matrices of
rank(αj) ≤ n + l and rank(βj) = i respectively. The Q
of each particle (Qj) is defined according to Theorem 1. R
is defined in an analogue manner.

Theorem 1. For a symmetric positive semi-definite ma-
trix Qj, there exists a square matrix αj of rank(αj) ≤ n+ l,
such that Qj = αT

j αj.

Proof. [3, Proposition 6.62].

The definition of the population through αj and βj , allows
the PSO algorithm to explore all values of Q and R in the
range of all the real numbers, while guaranteeing Q = QT �
0 and R = RT � 0. This definition requires that after
updating each particle Xj , the ranks of αj and βj follow
Theorem 1. In case they do not, the particle is not updated
and the speed of the particle Xj is set to zero. In practice,
it rarely occurs that the rank condition is not satisfied.

The fitness metric is determined according to Eq. 5.

f = −St (5)

where St is the closed loop settling time. The negation is
to take into consideration the objective of minimizing set-
tling time. The PSO algorithm evolves according to the well
known equation Eq. 6.

X = X + v (6)

where v is the PSO speed given by:

v = wvold + Cprnd1(X −Xpb)+

Cgrnd2(X −Xgb)
(7)

where rnd1 and rnd2 are random uniformly distributed
numbers in the range [0, 1], v and vold are the current and
previous speeds respectively, Xpb and Xgb, the personal and
global best fitness achieved by each particle respectively.
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Figure 3: Tuning of LQR with different approaches.

The other variables are tuning parameters of the speed equa-
tion: Cp and Cg the personal and global confidences respec-
tively, and w the inertia.

Our algorithm follows the structure of Algorithm 1: during
an initialization phase, the tuning parameters of the PSO
Cp, Cg, m, and w are set and the population X is ran-
domly initialized. During the iterations phase, for each par-
ticle in the population Q and R are extracted. The fitness
is evaluated according to Eq. 5. The global best Xgb and
the personal best of each particle Xpb are updated in case
they improve their previously stored value. The particles
are then updated according to Eqs. 6 and 7. The iterations
are stopped when the global best remains unchanged during
ten iterations or a maximum of 200 iterations is reached.

With this method, the settling time is minimized for a fixed
number of pipes tuning all the elements of the full Q and R.

Example. An example of different tuning strategies of an
LQR in the second order under-damped pipelined sensing
described in Section 1 is shown in Fig. 3. Three techniques
are considered: the well-known analytic tuning strategy pro-
posed by Bryson [1], the classical PSO for tuning only the
diagonal of Q and R of [4], and our approach based on PSO
for tuning all the elements of Q and R.

The method of Bryson improves settling time up to three
pipes. However, further increasing the number of pipes has
no effect on the settling time because the design space is too
large, leading to controllers incorrectly tuned.

Tuning the diagonal of Q and R using PSO outperforms
the settling time found by the method of Bryson because of
the more exhaustive search in the design space. A trade-off
analysis with this method suggests that the performance of
the controller is improved with every new pipe, except when
adding 5 and 6 pipes.

Tuning the whole matrix performs as least as good as tuning
only the diagonal. The result of a trade-off analysis with this
method differs from the previous cases. The settling time
of the controller is always improved with each newly added
pipe. However, after a certain point adding more pipes only
generates a minimal improvement in the settling time at
a cost of extra sensing hardware. This example illustrates
that our method is therefore more suitable to analyse the
trade-offs of a pipelined IBC than existing approaches.
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Figure 4: Trade-off between settling time and processing
resources with fixed delay δ = 0.084.

4. TRADE-OFF ANALYSIS
This section presents the trade-off between processing re-
sources and settling time. The analysis is obtained after sim-
ulations on the second order under-damped dynamic model
presented in Section 1. We show that the amount of sensing
delay is a critical factor in such a trade-off.

Settling time vs number of pipes. Fig. 2 shows that
having more sensing pipes allows to shorten the settling
time. To this end, an initial resource configuration of one
pipe is considered. Our method is used to tune an LQR
with minimum settling time. The processing resources are
increased and the process is repeated until the improvement
on settling time is negligible. The result is shown in Fig. 4.
The vertical bars on each point denotes the standard devi-
ation which is obtained after running the same simulation
10 times. Note that this deviation is virtually zero in all
the experiments except in the case of three pipes, where the
PSO algorithm showed slightly different results.

Fig. 4 shows that the settling time gets shorter with each
added pipe. However, the improvement does not grow pro-
portionally with the number of pipes. For example, after
four pipes the settling time improvement is reduced to an
order of milliseconds: therefore there is little effect from the
extra processing resources. Clearly, for the system under
consideration and the given sensing delay, a higher number
of pipes is (practically) beneficial until four pipes. In gen-
eral, such region of interest depends on the system dynamics
and should be considered in the design phase of a pipelined
controller.

Settling time vs delay. The trade-off between processing
resources and settling time depends not only on the model
dynamics but also on the sensing delay. We illustrate this
part of the trade-off simulating a variation of the sensing
delay in the example provided in Section 1. Fig. 5 shows
that the improvement in settling time depends on the sens-
ing delay. The shortest settling time is achieved with the
shortest delay, because the resulting sampling period is ca-
pable of sensing the fastest change in the model. A large
delay with insufficient pipelining results in a low sampling
frequency and an under-sampled model, which potentially
increases the settling time. Therefore, given a sensing delay
the number of sensing pipes should be chosen to make sure
that the sampling period is capable of sensing the fastest
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Figure 5: Impact of sensing delay on the settling time (with
delay subtracted for comparison purposes) using two sensing
cores as processing resources.

change in the system.

In Fig. 6 the settling times are shown when two different
delays are considered while the sampling period (i.e. pro-
cessing resources) is varied. The settling time gets longer
proportionally with the sampling period. Note that if differ-
ent delays have the same sampling period due to differences
in processing resources (e.g. in Eq. 3 δ = 0.084 s with γ = 2
produces h = 0.042 s and δ = 0.042 s with γ = 1 also
produces h = 0.042) the resulting settling time is the same.
Consequently, if a system has the possibility of a short and
a long sensing delay (e.g. by using different processors with
different speeds), the settling time achieved with the short
delay can also be achieved with the long delay, if sufficiently
many processing resources are added. Alternatively, if a cer-
tain settling time is needed, it can be achieved by increasing
processing resources irrespective of the sensing delay (as-
suming that a feasible solution exists).

The above analysis clearly demonstrates the trade-off be-
tween sensing delay, number of sensing pipes and settling
time. The fact that the effect of sensing delay can be miti-
gated with additional sensing pipes holds in a specific region
of operation of a system which further depends on the nature
of the system dynamics. For example, in Fig. 6, using more
than five sensing cores does not show significant improve-
ment for the system under consideration. The improvement
due to pipelined control is mainly visible with one to four
sensing cores. The analysis essentially identifies such a re-
gion which is of main design interest. Moreover, the effect of
a long sensing delay becomes more prominent in presence of
noise and disturbances which are usually present in real-life
systems. The influence of system dynamics on the trade-off
and the effect of disturbance/noise are part of our future
work.

5. CONCLUSIONS AND FUTURE WORK
We presented a method to analyse the trade-off between
processing resources and settling time in a pipelined Image-
Based Control (IBC). The method uses Particle Swarm Op-
timization for tuning a Linear Quadratic Regulator (LQR)
that minimizes the settling time. Our method shows that
finding all the values of the tuning matrices in the LQR po-
tentially improves the settling time compared to tuning only
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Figure 6: Impact of sampling period on settling time (with
sensing delay subtracted for comparison purposes).

the diagonal elements.

We analysed the resource usage-quality of control trade-off
in a second order under-damped system. Three factors need
to be considered in an IBC implemented in a pipelined fash-
ion: (i) sensing delay, (ii) number of sensing pipes, and (iii)
settling time (quality of control in general). Settling time
can potentially be shortened with extra resources, leading to
a shorter sampling period. The effect of a higher sensing de-
lay (e.g. resulting from a compute-intensive image process-
ing algorithm) can be mitigated by additional sensing pipes.
Experiments on other types of systems (e.g. over-damped,
third order, fourth order system dynamics, not reported in
this paper for space reasons) provide similar results.

Future work includes trade-off analysis over a wider range
of systems including the effect of model uncertainties and
experimental implementations.

6. ACKNOWLEDGMENT
This work was funded by the Dutch Technology Foundation
STW as part of the Robust Cyber-Physical Systems (rCPS)
program, project 12697.

7. REFERENCES
[1] A. E. Bryson. Applied optimal control: optimization,

estimation and control. CRC Press, 1975.

[2] F. Chaumette and S. Hutchinson. Visual servo control.
I. Basic approaches. IEEE Robotics and Automation
Magazine, 13:82–90, 2006.

[3] P. J. Dhrymes. Mathematics for econometrics. Springer,
1978.

[4] H. Duan and C. Sun. Pendulum-like oscillation
controller for micro aerial vehicle with ducted fan based
on LQR and PSO. Science China Technological
Sciences, 56:423–429, 2013.

[5] K. Jo et al. Development of autonomous car—part I:
Distributed system architecture and development
process. Industrial Electronics, IEEE Trans. on,
61:7131–7140, 2014.

[6] F. L. Lewis and V. L. Syrmos. Optimal control. John
Wiley & Sons, 1995.

[7] R. Medina, S. Stuijk, D. Goswami, and T. Basten.
Reconfigurable pipelined sensing for image-based
control. In Proc. SIES. IEEE, 2016.


