
Low Precision Processing for High Order Stencil
Computations

Gagandeep Singh1,2�, Dionysios Diamantopoulos2�, Sander Stuijk1,
Christoph Hagleitner2, and Henk Corporaal1

1 Eindhoven University of Technology, Eindhoven, Netherlands
{g.singh,s.stuijk,h.corporaal}@tue.nl

2 IBM Research-Zurich, Rüschlikon, Switzerland
{sin,did,hle}@zurich.ibm.com

Abstract. Modern scientific workloads have demonstrated the ineffi-
ciency of using high precision formats. Moving to a lower bit format
or even to a different number system can provide tremendous gains in
terms of performance and energy efficiency. In this article, we explore
the applicability of different number formats and exhaustively search for
the appropriate bit width for 3D complex stencil kernels, which is one
of the most widely used scientific kernels. Further, we demonstrate the
achievable performance of these kernels on the state-of-the-art hardware
that includes CPU and FPGA, which is the only hardware supporting
arbitrary fixed-point precision. Thus, this work fills the gap between cur-
rent hardware capabilities and future systems for stencil-based scientific
applications.

1 Introduction

Stencils are essential for numerical simulations of finite difference methods and
are applied in iterative solvers of linear equation systems. Stencils are used in a
wide range of applications, including computational fluid dynamics, atmospheric
modelling [6], etc. A stencil operation [10] defines a computation pattern where
each point in a multidimensional grid is updated with weighted contributions
from a subset of its neighbors in both time and space – thereby representing the
coefficients of the linear equation for that data element.

Stencil calculations perform global sweeps through data structures that are
typically much larger than the capacity of the available data caches [4]. Besides,
the amount of data reuse within a sweep is limited to the number of points in
a stencil. Due to the cache unfriendly complex data access patterns and low
operational intensity [19], stencil compute kernels do not perform very well on
classical CPU or even GPU systems.

High-performance implementations of stencils on modern processors operate
using the IEEE single precision or double precision floating-point data types,
which is the most widely supported datatype by our current hardware devices.
These datatypes in the context of real-world stencil applications, which make use
of large grid size, put huge stress on the memory subsystem. Storing the data

2 G. Singh et al.

in memory using a smaller number of bits reduces the pressure on the memory
when retrieving the problem data. Industry trends show a clear shift away from
using floating-point data types for some applications, e.g., deep learning inference
workloads are using 8 bits fixed-point format or lower precision where possible [8].
Hence, in this paper, we look into the precision tolerance of 3D stencil kernels.

To summarize, the major contributions of this paper are:

– We perform a systematic precision exploration of 3D stencil kernels for future
mixed-precision systems using a wide range of number systems including
fixed-point, floating-point, and posit.

– Based on an exhaustive exploration of a broad range of number systems –
fixed-point, floating-point, and posit; we provide optimum precision and the
corresponding accuracy deviation.

– We tune these kernels on current state-of-the-art IBM POWER9 CPU and
further evaluate them on an FPGA supporting arbitrary precision, which
is coherently attached to the host memory. Thus, this work fills the gap
between the current hardware capabilities and future hardware design.

The remainder of this article is structured as follows. Section 2 provides de-
tails on the kernel and the datatype used to represent it. In, Section 3 we describe
the methodology and different number systems explored. Section 4 mentions the
system setup and provides the results of our experiments, including a case study
of implementing and optimizing these kernels on current state-of-the-art hard-
ware devices. We list related work in Section 5 and Section 6 concludes the paper
with future directions.

2 Background

In this section, we provide details on the 3D stencil kernels used and discuss the
relevance of the precision analysis.

2.1 Stencil Benchmark

A stencil computation has several different patterns across various applications.
Performance of a stencil kernel on our current system depends heavily on the
neighborhood elements of the grid. For instance, suppose a 3D grid in (row,
column, depth). When the grid is stored by row, reading elements in the other
dimensions typically results in cache eviction because for real-world application
the problem size is too large to fit in the processor cache. In this paper, we focus
on 3D elementary 7-point, 25-point stencil, and a compound horizontal diffusion
stencil shown in Figure 1. The 3D 7-point and 25-point (ref. Figure 1a) stencils
commonly arise from the finite difference method for solving PDEs [19]. The
7-point stencil performs eight FLOPS per grid point, while the 25-point stencil
performs twenty-seven FLOPS per point (without any common subexpression
elimination). Thus, the arithmetic intensity, the ratio of FLOPS performed for
each byte of memory traffic, is much higher for the 25-point stencil than the
7-point stencil.

Low Precision Processing for High Order Stencil Computations 3

x

y

z

(a)

Laplace

Flux

Output

(b)

Fig. 1: (a) 7-point stencil and 25-point elementary stencil (b) Compound hori-
zontal diffusion stencil that is used in weather forecasting

Unlike stencils found in the literature [16,18,3,7], real-world atmospheric sten-
cils consist of a collection of stencils that perform a sequence of element-wise
computations. Horizontal diffusion (hdiff) kernel is an example of one such ker-
nel that executes each stencil using a separate loop nest. It iterates over a 3D grid
that performs laplacian and flux, as depicted in Figure 1b, as well as calculations
for different grid points. Such compound kernels have complex memory access
patterns because it applies a series of elementary stencil operations. Although
such an implementation may be straightforward to write, it is not efficient in
terms of data locality, memory usage, or parallelism.

2.2 Precision

IEEE-754 floating point representation has become the universal standard in
modern computing systems. Floating-point numbers have a mantissa and expo-
nent with an additional bit to represent the sign of a number. However, floating-
point arithmetic requires complex circuitry leading to high latency and power
consumption.

The use of low-precision arithmetic has been proposed as a promising al-
ternative to the commonly used 64/32-bit floating point arithmetic to enhance
emerging workloads, e.g. neural networks (NNs), in terms of performance and
energy efficiency. From the system perspective, there two main benefits of mov-
ing to a lower precision. Firstly, the hardware resources for a given silicon area
may enable higher operations per second (OPS) at lower precision as these op-
erations require less space and power. Note, this also necessitates for efficient
memory traffic management. And secondly, many operations are memory band-
width bound [17] and reducing precision would allow for better usage of cache
and reduction of bandwidth bottlenecks. Thus, data can be moved faster through
the memory hierarchy to maximize compute resources.

3 Methodology

The following section provides detail on our methodology to explore precision
for different number systems, which is depicted in Figure 2. In the first phase

4 G. Singh et al.

(1), we analyze and instrument a part of an application for which the precision
exploration needs to be performed. In the next phase (2), exhaustive search
is done to find the appropriate precision based on the number system used. In
this work, we make use of fixed-point, floating-point, and posit number systems.
During the exhaustive design space exploration, continuous error tracking (3)
is performed to measure the extent of accuracy deviation compared to IEEE
floating-point arithmetic format.

Emulation
Fixed

Float

Posit

Precision Tuning
Exhaustive search

Designer Input
Code instrumentaton

Error metric

Error Tracking
Online 2-norm matrix

based tracking

1 2 3

Fig. 2: Overview of application precision exploration. The designer inputs the
code with an appropriate precision template. Exhaustive precision exploration
is performed for different number systems that include fixed-point arithmetic,
floating-point arithmetic, and posit arithmetic. While exploring error tracking
is performed using the 2-norm matrix approach.

Accuracy: In our experiments, on precision tuning we have considered the in-
duced 2-norm of a matrix [1] as our measure of the accuracy. The induced 2-norm
of an m×n matrix A is the supermum of the ratio between the 2-norm of a vec-
tor Ax and the 2-norm of x, where x is an n-dimensional vector. We calculate
the relative norm or mean relative error (MRE) εi to indicate how close the pre-
dicted value A′i is to the actual value Ai. MRE provides an unbiased estimate of
the error variance between two matrices.

εi =
||A′i −Ai||2
||Ai||2

(1)

3.1 Evaluated Arbitrary Precision

As an alternative to currently used IEEE single and double precision floating
point number, we explore precision of 3D stencil kernels using following arbitrary
number formats that are also shown in Figure 3:

1) Fixed-Point Arithmetic: A fixed-point consists of an integer and a fraction
part where total width could be any multiple of 2, which is based on the bit width
of the data path. Compared to the floating-point format, fixed-point numbers
simplifies the logic by fixing the radix point.

In an FPGA, the fixed-point format offers a more resource efficient alter-
native to the floating-point implementation. This efficiency is because floating-
point support often uses more than 100× as many gates compared to fixed-point
support.

Low Precision Processing for High Order Stencil Computations 5

2) Floating-Point Arithmetic: By lowering the precision of a floating-point
format, we could retain the advantages of floating point arithmetic (e.g. higher
dynamic range) with a lower bit-width. Dynamic floating-point arithmetic uses
an arbitrary number of bits for the exponent and significand (or mantissa) parts
of a floating-point number. We determine the precision bit-width through bit
accurate simulations for different bit-width configurations. To determine the
mantissa bits, a user can set different bit-widths and observe the dynamic trend
of the relative error.

3) Posit Arithmetic: Posit[9] borrows most of the components from the IEEE
754 floating-point scheme, such as the exponent and fraction (or mantissa) fields.
However, posit have an additional regime bit that is introduced to create a
tapered accuracy, which lets small exponents have more accuracy. One could
choose to either represent a large number by assigning more bits to the exponent
field or opt for more decimal precision by having more fraction bits.

Figure 3 shows different datatypes explored in this paper. While analyzing
these types, there are several things to take into account. Firstly, compared to the
other number systems, posit can provide the highest dynamic range, and fixed-
point offers the lowest [2]. Additionally, floating-point numbers are susceptible
to round errors and could lead to an overflow or underflow [9].

 fractioninteger

exponent mantissa

+/-

+/-

regime exponent fraction

w

1 bit r1...rn bits e1,e2...es bits mantissa, if any

Fixed-point

Dynamic
Floating-point

Posit

exponent mantissa IEEE Floating-point
1 bit 8 bits 23 bits

i bits (w-i) bits

e bits m bits
Arbitrary
Formats

1 bit

+/-

Fig. 3: Arithmetic types used with field widths indicated above each field. IEEE
single precision floating-point number is 32 bits where a positive sign bit is
represented by a 0 and a negative by 1. Fixed-point has fixed integer and fraction
bits where w (total bits) could be any multiple of 2, based on the bit-width of
the data path. Dynamic floating-point arithmetic uses arbitrary exponent and
mantissa bits. A posit number [9] is similar to floating-point with additional bits
for the regime part. It has es exponent bits depending upon the data this could
be omitted (same is valid for mantissa bits).

4 Evaluation

We used IBM R© POWER9 as the host system that has 16 cores, each of which
supports four-thread simultaneous multi-threading. Table 1 provides complete
details of our system parameters. To provide a full-scale analysis of stencil opti-
mization techniques, we set the grid size of all stencil kernels as 1280×1080×960,
which is much larger than the on-chip cache capacity of POWER9, with input

6 G. Singh et al.

data distribution as a Gaussian function. The problem size dictates whether in-
put dataset would reside in the cache, hence is an important parameter while
measuring the system performance.

For precision tuning of the fixed-point number system, we made use of Xilinx
fixed point library from Vivado 2018.2 tool. We used C++ template based floatx
library 3 to explore arbitrary precision for floating point-arithmetic. Software-
based posit implementation is available as a part of the ongoing efforts for creat-
ing emulation for universal number system4. All three libraries are provided in
C++ header format, which allows us to replace the datatypes in the source code
of the application and study the effect of low precision using the same software
toolchain as that of the application itself. To make a performance comparison
between floating-point and fixed-point number systems, we developed highly op-
timized FPGA accelerator for all the kernels. The accelerator was implemented
on an Alpha-Data ADM-PCIE-9V3 card featuring the Xilinx Virtex Ultrascale+
XCVU3P-FFVC1517-2-i device.

Table 1: System configuration for IBM POWER9
Architecture Physical Cores Frequency On-chip Memory (Per Core) Off-chip Memory

IBM Power 9 (ppc64le) 16-cores/socket; (SMT4) Min: 2.3GHz L1-cache: 32KiB DDR4:
Max: 3.8GHz L2-cache: 256KiB 32GiB RDIMM

L3-cache: 10MiB 2666MHz

4.1 Emulated Precision Tuning

The tuning process analyzes multiple configurations for each of the arithmetic
types considered. The tuner re-executes the program for each configuration and
computes the error on its output values to provide a measure of the resultant
accuracy. Figure 4 shows the precision results for the considered benchmarks for
all different number systems. The accuracy is compared to the most ubiquitously
used IEEE single precision floating number system.

For all the kernels we were able to achieve full accuracy with much lower
bits. Moreover, as the error tolerance increases, we can make use of a lesser
number of total bits. Based on this, we make several observations. First, in the
case of a 7 and 25-point stencil, we can reduce more than 50% of bits for all the
datatypes with a precision loss of 1%. Second, elementary 3D stencil kernels (7
and 25-points) were not able to exploit the high dynamic range offered by posit,
and thus with lower bit width floating-point arithmetic, we can achieve bet-
ter results. Third, atmospheric compound kernel comparatively needs a higher
dynamic range therefore with 0.1% tolerance in the accuracy we could cut the
number of bits to half compared to IEEE floating point and move to a posit of
(16,2).

3 https://github.com/oprecomp/FloatX
4 https://github.com/stillwater-sc/universal

Low Precision Processing for High Order Stencil Computations 7

100 99.99 99.9 99 95 90
(a)

4
8

12
16
20
24
28
32

To
ta

l B
its

20
,4

18
,4

15
,4

12
,4

9_
4

8,
4

3,
14

3,
12

3,
9

3,
6

3_
4

3,
3

18
,0

16
,0

13
,0

10
,1

8_
1

7,
0

fixed(w,i)
floatx(e,m)
posit(n,es)

100 99.99 99.9 99 95 90
(b)

22
,7

21
,7

17
,7

14
,7

12
_7

11
,7

4,
14

4,
12

4,
9

4,
6

4_
4

4,
3

19
,1

17
,1

13
,1

11
,1

9_
2

8,
1

fixed(w,i)
floatx(e,m)
posit(n,es)

100 99.99 99.9 99 95 90
(c)

21
,5

19
,5

18
,5

16
,5

10
,5

10
,5

3,
18

3,
17

3,
14

3,
13

3,
8

3,
4

20
,2

19
,2

16
,2

16
,1

7_
1

5,
1

fixed(w,i)
floatx(e,m)
posit(n,es)

Fig. 4: Totals bits vs accuracy (percentage) for (a) 7-point, (b) 25-point, and (c)
horizontal diffusion compared to single precision IEEE floating-point. Notation
fixed(w,i) defines a fixed number with total w bits including i integer bits. With
floatx, e refers to the exponent bits and m defines the mantissa. In case of posit
number system, n is the total number of bits with es bits for the exponent part.

4.2 Case Study for Current Multi-Core Systems and Arbitrary
Precision Supported Hardware

We perform a case study for the 3D stencil kernels to measure the capabilities of
current hardware systems. We tune these kernels for POWER9 CPU and further
evaluate these benchmarks on an FPGA supporting arbitrary precisions, which
are coherently attached to our host CPU. For the FPGA and the POWER9
node, we used the AMESTER5 tool to measure the active power.6

Current FPGA systems only support floating-point and arbitrary fixed-point
arithmetic. Therefore, we compare hardware implementations across the stencil
benchmarks for floating-point single and half precision with fixed-point datatype
for the bit width that gives similar accuracy as in the case of floating-point. Note,
as current state-of-the-art hardware devices do not support posit datatype, we
do not include it in our hardware comparison because the emulation of posit
datatype will be expensive in FPGA and thus will lead to unfair comparisons
with other datatypes.

Figure 5a shows a high-level overview of our integrated system. The FPGA
is connected to a server system, based on the IBM R© POWER9 processor, us-
ing IBM R© coherent accelerator processor interface 2.0 (CAPI 2.0). The FPGA
implementation consists of accelerator function units (AFU) that interact with
the power service layer (PSL), which is the CAPI endpoint on the FPGA. The
co-designed execution flow is shown in Figure 5b. We provide the experimen-
tal results of tuning stencil kernels for current CPU and FPGA based systems.
Figure 6 shows the roofline of all the kernels used in this study. By mapping
both, arithmetic intensity of all examined stencils (7-point, 25-point and hdiff)

5 https://github.com/open-power/amester
6 Active power denotes the difference between the total power of a complete node

(including CPU, memory, fans, I/O, etc.) when an application is running compared
to when it is idle.

8 G. Singh et al.

LU LU

PE PE

LU LU

P9 Core P9 Core

CAPI

....

Processor Bus

CAPI 2.0

IBM
Power9

Memory ControllerPSL

BRAM

Host DRAM FPGA DRAM

BRAM

MC

PCIe
Gen4

AFU AFU

(a)

Host Data
Preparation

FPGA
execution

Host Data
Storage

CPU-FPGA co-design execution flow
98% stencil

execution timeCAPI2.0

CAPI2.0

(b)

Fig. 5: (a) CAPI 2.0 based accelerator platform with IBM R© POWER9 (b) FPGA
is acting as a peer to the CPU by accessing the main memory through a high-
performance cache-coherent CAPI2.0 link, enabled by PSL. Data flow sequence
from the Host DRAM to the onboard FPGA memory. A software-defined API
handles offloading jobs to accelerators with an interrupt-based queuing mecha-
nism that allows minimal CPU usage (thus power) during FPGA use.

and peak attainable GFLOPs/sec (GOP/sec for fixed-point), on the roofline of
our heterogeneous system (CPU + CAPI based FPGA), we conclude to several
remarks.

Firstly, we observe that compiler and tiling optimizations [19] lead to 125.2×
119.4× and 90.4× speedup compared to baseline CPU implementations for 7-
point, 25-point, and hdiff respectively. The performance of primitive stencils
(7-point, 25-point) is constrained by the memory bandwidth, since the stencil
points can be located far away in the memory, leading to limited cache locality.
We note that although hdiff has higher arithmetic intensity, its access patterns
are more complex because it applies a series of elementary stencil operations.
Secondly, we observe that the floating-point FPGA implementations increase
the additional speedup to 2.5×, 3.3× and 4.1× compared to CPU-optimized
implementation, for 7-point, 25-point and hdiff respectively. By allowing the
accelerators to use the FPGA on-chip memory, the implementations are not
constrained by the DRAM memory bandwidth. However, the CAPI2/PCIe4 link
is offering an order of magnitude less bandwidth to that of DRAM. Since our
platform offers memory-coherent access of FPGA to the system memory, we
build a pipelined execution, where communication time for transferring data
from host to FPGA memory is masked with the actual FPGA processing [5].
This technique allows us to exploit FPGA processing capabilities completely.

Thirdly, by replacing floating-point data-types with lower precision data-
types, we have measured additional gains. Specifically, in the roofline of Figure 6,
we plot the performance of three stencils using half and fixed-point data-types.
The specific bit-width for integer and fractional part of the fixed point was
selected at 99% of accuracy, i.e., Q14.7 for 25-point, Q16.4 for 7-point and Q11.5
for hdiff. Arithmetic intensity is improved for both half and fixed data-types
since the bytes fetched from memory are half compared to the single precision
floating point (i.e., 2B instead of 4B). Since fixed-point implementations use
fewer resources on the FPGA, compared to float and half, we were able to add
more accelerators on the same FPGA device, allowing us to measure 468.1, 527.9

Low Precision Processing for High Order Stencil Computations 9

10-1 100 101 102

Arithmetic Intensity [flop:byte]

10-1

100

101

102

103

At
ta
in
ab

le
 P
er
fo
rm

an
ce

 [G
(F
L)
OP

/s
ec

]

0.84

100.3

327.7 342.0
527.9

0.72

90.2

228.4 319.5
468.1

0.94

85.01

350.25 421.80
659.1

 D

RAM
 110

GBp
s BW

 on S
TREA

M
L3-ca

che

CAPI
2/PC

Ie4

486.4 GFLOP/s/CPU socket

0.97 TOP/s/AD9V3-FPGA

hd
iff
 fl
oa

t

25
-p
oi
nt

flo
at

7-
po

in
t

flo
at

Roofline for POWER9(8335-GTH, 16-cores, SMT4) and AD9V3 FPGA

25point,CPUbaseline
25point,CPUoptimized
25point,FPGAfloat
25point,FPGAhalf
25point,FPGAfixedQ14 7
7point,CPUbaseline
7point,CPUoptimized
7point,FPGAfloat
7point,FPGAhalf
7point,FPGAfixedQ16 4
hdiff,CPUbaseline
hdiff,CPUoptimized
hdiff,FPGAfloat
hdiff,FPGAhalf
hdiff,FPGAfixedQ11 5

Fig. 6: Attainable performance for the examined stencils, in CPU and FPGA
testbeds, with different precision.

and 659.1 GOPs/sec for 7-point, 25-point, and hdiff respectively. These numbers
are very close to the theoretical peak performance of the FPGA device of 0.97
TOPs/s, when the device is configured with the stencil micro-architecture of
7-point, 25-point and hdiff7.

Table 2 shows the resource utilization for our examined stencil kernels on
FPGA using different precisions. In all the scenarios, going from single to half
precision increases the performance with a corresponding reduction in the num-
ber of resources. Further, moving to fixed-point arithmetic increases the per-
formance due to a decrease in the number of bytes loaded at the cost of LUT
utilization. However, the utilization of other FPGA resources is reduced. Fig-
ure 7 shows the achieved energy efficiency with different precisions. For all con-
sidered kernels, as the number of bits reduces, we see an increase in energy
efficiency. Designs implemented in fixed-point will always be more efficient than
their equivalent in floating-point because fixed-point implementations consume
fewer resources and less power (ref Table 2). As our stencil kernels do not require
high dynamic range achievable with floating-point, moving to fixed-point imple-
mentations could provide better energy efficiency. In the case of hdiff, on moving
to a lower precision, we see a huge increase in energy efficiency. This increase is

7 While the three stencils comprise different access patterns and acceleration kernels,
the primary operations, i.e., vectorized multiply-accumulate products, which define
the FPGA micro-architecture, remains the same. Using this approach and [15], we
have calculated 0.97 TOPs/s theoretical top performance for stencils, for our AD9V3
FPGA

10 G. Singh et al.

Table 2: FPGA resource utilization and performance for the examined stencil
kernels on FPGA testbeds, with different precisions

Kernel Data Size Precision Accuracy (%)
Utilization (%) Performance

(GLOP/s)
Energy
(mJ)BRAM DSP FF LUT

7-point 1280× 1080× 960 float 100 38 35 18 29 228.4 4617.2
7-point 1280× 1080× 960 half 99.95 25 24 15 28 319.5 2887.6
7-point 1280× 1080× 960 fixed (20,4) 100 16 12 49 95 467.6 1832.3
7-point 1280× 1080× 960 fixed (16,4) 99.96 12 12 47 92.5 468.1 1689.4
25-point 1280× 1080× 960 float 100 42 62 36 44 327.7 1608.7
25-point 1280× 1080× 960 half 99.06 32 43 32 43 342.1 1541.5
25-point 1280× 1080× 960 fixed (22,7) 100 29 21 56 95 527.9 1510.3
25-point 1280× 1080× 960 fixed (14,7) 99.05 19 21 55 91 528.9 1497.9
Hdiff 1280× 1080× 960 float 100 52 89 65 61 350.3 3010.5
Hdiff 1280× 1080× 960 half 98.02 44 84 35 57 421.8 2031.1
Hdiff 1280× 1080× 960 fixed (21,5) 100 24 45 77 76 653.9 1007.9
Hdiff 1280× 1080× 960 fixed (11,5) 97.92 14 35 69 71 659.1 997.9

because hdiff is a compound kernel; therefore, each elementary stencil’s energy
improvement with lower precision lead to much higher cumulative gains.

Precision Types10

20

30

40

50

60

70

80

En
er

gy
 E

ffi
cie

nc
y

(G
FL

OP
/s

ec
/W

at
t)

float
half

fixed(20,4) fixed(16,4)

float
half

fixed(22,7) fixed(14,7)

float

half

fixed(21,5) fixed(11,5)
7point
25point
HDIFF

Fig. 7: Evaluated design points for different stencil kernels. The plot shows en-
ergy efficiency (GFLOPS/Watt) with varying types of precision implemented on
an Alpha-Data ADM-PCIE-9V3 card featuring the Xilinx Virtex Ultrascale+
XCVU3P-FFVC1517

5 Related Work
Recently, in various domains, there has been a significant amount of research to
explore error resilience across the complete stack of computer architecture from
application to device physics. At the application level, research on using lower-
precision using fixed-point and floating-point has widely been studied [11]. With
the emergence of posit [9] number system research into lower precision with these
alternate number systems is regaining attention. Langroudi et al. [13] in the field
of neural-networks showed minimum accuracy degradation by using 7-bit posits.
In another study, Klöwer et al. [12] studied the applicability of posit in weather
modelling.

Low Precision Processing for High Order Stencil Computations 11

High-performance implementations of stencils on modern processors operate
usually make use of the IEEE single precision or double precision floating-point
data types, which is the most widely supported datatype by our current hard-
ware devices. There have been various efforts to improve these kernels for various
architectures using different techniques. Datta et al. [4] optimized the 2D and
3D stencil for multicore architectures using several hardware adherent optimiza-
tions. Similarly, Nguyen et al. [14] worked on algorithm optimization for CPU
and GPU based systems. Gysi et al. [10] provided guidelines for optimizing com-
plex kernels for CPU–GPU systems using analytic models. However, to the best
of our knowledge, this work is the first to study the precision tolerance for sci-
entific 3D stencil kernels for a wide range of number systems which includes
fixed-point arithmetic, floating-point arithmetic, and the most recently devel-
oped posit arithmetic.

6 Conclusion

Stencils are one of the most widely used kernels in various real-world applica-
tions. In this work, we analysed the precision tolerance for different 3D stencil
kernels using fixed-point, floating-point, and posit number system. We demon-
strated by exhaustive precision exploration that these kernels have a margin to
move to a lower bit width with minimal loss of accuracy.

Further, in a case study, we measured the performance of these kernels on
a state-of-the-art multi-core platform and designed lower bit-width based ac-
celerators for all considered 3D stencil kernels on an FPGA device. FPGA is
the only device which gives us the capability to implement arbitrary fixed-point
precision datatype. Hence, we leveraged this capability to show the advantages
of accelerating these kernels with lower precision compared to the ubiquitous
IEEE floating point format. In future, we will use this analysis technique in an
integrated design-flow to build efficient systems for stencil-based applications.
In addition, we aim at studying the effects of low precision processing not only
for streaming applications, e.g. stencil and convolution, where computation are
done locally, but also for iterative applications where error accumulates.

Acknowledgement

This work was performed in the framework of the Horizon 2020 program for the
project “Near-Memory Computing (NeMeCo)”. It is funded by the European
Commission under Marie Sklodowska-Curie Innovative Training Networks Eu-
ropean Industrial Doctorate (Project ID: 676240). We would also like to thank
Martino Dazzi for his valuable remarks.

References

1. Anderson, E., et al.: LAPACK Users’ guide, vol. 9. Siam (1999)

2. Carmichael, Z., et al.: Deep Positron: A deep neural network using the posit number
system. arXiv preprint arXiv:1812.01762 (2018)

12 G. Singh et al.

3. Chi, Y., Cong, J., Wei, P., Zhou, P.: Soda: stencil with optimized dataflow archi-
tecture. In: 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). pp. 1–8. IEEE (2018)

4. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. p. 4. IEEE Press (2008)

5. Diamantopoulos, D., Giefers, H., Hagleitner, C.: ecTALK: Energy efficient coher-
ent transprecision accelerators—the bidirectional long short-term memory neural
network case. In: 2018 IEEE Symposium in Low-Power and High-Speed Chips
(COOL CHIPS). pp. 1–3. IEEE (2018)

6. Doms, G., Schättler, U.: The nonhydrostatic limited-area model LM (lokal-model)
of the DWD. Part I: Scientific documentation. DWD, GB Forschung und Entwick-
lung (1999)

7. de Fine Licht, J., Blott, M., Hoefler, T.: Designing scalable FPGA architectures
using high-level synthesis. ACM SIGPLAN Notices 53(1), 403–404 (2018)

8. Finnerty, A., Ratigner, H.: Reduce power and cost by converting from floating
point to fixed point. In: WP491 (v1. 0) (2017)

9. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: Posit
arithmetic. Supercomputing Frontiers and Innovations 4(2), 71–86 (2017)

10. Gysi, T., Grosser, T., Hoefler, T.: Modesto: Data-centric analytic optimization of
complex stencil programs on heterogeneous architectures. In: Proceedings of the
29th ACM on International Conference on Supercomputing. pp. 177–186. ACM
(2015)

11. Iwata, A., et al.: An artificial neural network accelerator using general purpose
24 bits floating point digital signal processors. In: IJCNN-89. vol. 2, pp. l71–175
(1989)

12. Klöwer, M., Düben, P.D., Palmer, T.N.: Posits as an alternative to floats for
weather and climate models (2019)

13. Langroudi, S.H.F., Pandit, T., Kudithipudi, D.: Deep learning inference on em-
bedded devices: Fixed-point vs posit. In: 2018 1st Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications (EMC2).
pp. 19–23. IEEE (2018)

14. Nguyen, A., et al.: 3.5-D blocking optimization for stencil computations on modern
CPUs and GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 1–13.
IEEE Computer Society (2010)

15. Parker, M.: Understanding peak floating-point performance claims. Technical
White Paper WP-012220-1.0 (2014)

16. Sano, K., Hatsuda, Y., Yamamoto, S.: Multi-FPGA accelerator for scalable stencil
computation with constant memory bandwidth. IEEE Transactions on Parallel
and Distributed Systems 25(3), 695–705 (2014)

17. Singh, G., et al.: A review of near-memory computing architectures: Opportunities
and challenges. In: 2018 21st Euromicro Conference on Digital System Design
(DSD). pp. 608–617. IEEE (2018)

18. Waidyasooriya, H.M., et al.: OpenCL-Based FPGA-Platform for Stencil Compu-
tation and Its Optimization Methodology. IEEE Transactions on Parallel and Dis-
tributed Systems 28(5), 1390–1402 (May 2017)

19. Xu, J., et al.: Performance Tuning and Analysis for Stencil-Based Applications on
POWER8 Processor. ACM Transactions on Architecture and Code Optimization
(TACO) 15(4), 41 (2018)

