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ABSTRACT

In this paper we address the makespan optimization of industrial-

sized manufacturing systems. We introduce a framework which

speci�es functional system requirements in a compositional way

and automatically computes makespan optimal solutions respecting

these requirements. We show the optimization problem to be NP-

Hard. To scale towards systems of industrial complexity, we propose

a novel approach based on a subclass of compositional requirements

which we call constraints. We prove that these constraints always

prune the worst-case optimization-space thereby increasing the

odds of �nding an optimal solution (with respect to the additional

constraints). We demonstrate the applicability of the framework on

an industrial-sized manufacturing system.

CCS CONCEPTS

•Theory of computation→ Formalisms; •Computingmethod-

ologies → Model development and analysis; • Software and

its engineering→ Systemmodeling languages; Speci�cation

languages; Design languages; • Computer systems organiza-

tion → Embedded and cyber-physical systems;
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1 INTRODUCTION

Manufacturing systems are Cyber-Physical Systems which perform

operations on batches of products. Production and transport units

(the physical part) carry out operations, while a controller (the cy-

ber part) coordinates the order and timing of execution. Examples

of these systems include lithography machines or industrial produc-

tion printers. During their design, functional requirements (such

as keeping the order of products in a batch or avoiding collisions)

must be satis�ed while at the same time demanding performance

requirements must be met, for instance regarding productivity.

In [2, 14] a framework is proposed for the speci�cation of both

functional and timing requirements for such manufacturing sys-

tems. Compared to other frameworks, its novelty lies in the separa-

tion of concerns between speci�cation and optimization, together

with its compositional support for requirements speci�cation. How-

ever, no complexity study is provided with respect to the optimiza-

tion problem. In this paper we restrict this framework of [14] to

batch-oriented manufacturing systems and prove that their opti-

mization is NP-Hard. As a consequence, optimal solutions might

take prohibitively long depending on the size of the optimization-

space induced by the optimization problem.

When considering real industrial applications, the size of the

optimization-space cannot be disregarded [15]. To still support op-

timization, heuristic approaches can be applied, however, often at

the cost of sub-optimal solutions and uncertainty regarding their

quality. In this work we propose a novel approach where we further

exploit the modularity of the framework as an alternative to heuris-

tic solutions. We introduce classes of compositional requirements,

which we call constraints, and show that they e�ectively prune the

(worst-case) optimization-space. Furthermore, this approach still

guarantees that optimal solutions can be found when the additional

constraints are taken into account.

The approach is inspired by common practices in an industrial

setting, where manufacturing systems are typically over-speci�ed

https://doi.org/10.1145/3207719.3207728
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[11] and in which over-speci�cation is used implicitly and uncon-

sciously to deal with complexity. Examples of over-speci�cation

that we have encountered in industrial cases are for instance: disal-

lowing multiple mapping possibilities for an operation or enforcing

the static ordering of system operations.

Our approach allows system designers to deal consciously with

over-speci�cation by an explicit formalization in terms of con-

straints. This constraint-oriented approach provides control over

the worst-case size of the optimization-space of the system. Fur-

thermore, it is guaranteed that functionally correct controllers are

obtained.

Contribution: Our contributions are summarized below:

• We re�ne the framework of [14] to deal with batch-oriented

systems and exploit the concept of constraints as a formal

means to deal with optimization complexity and prove that

these constraints e�ectively prune the (worst-case) optimiza-

tion space.

• We show that the framework scales to an industrial-sized

manufacturing system.

Overview: The remainder of this paper is organized as follows.

Section 2 summarizes the framework which we re�ne. The batch

optimization problem is explained in Section 3 and proven to be

NP-Hard in Section 4. Section 5 elaborates on the modular speci�ca-

tion of batch-oriented logistics. Section 6 shows that constraining

e�ectively prunes the (worst-case) optimization-space. Section 7

exempli�es the approach with a real industrial case-study. Section

8 discusses related work and Section 9 concludes.

2 SPECIFICATION FRAMEWORK

In this paper, we assume as a starting point the framework of [14].

In this section, we summarize the building blocks of this framework

and its essential properties.

A manufacturing system is decomposed into a set of peripherals

(P), actions (A) and resources (R). Each peripheral can execute ac-

tions. An action describes an atomic behavior of the system, e.g. the

movement of a motor or the actuation of an on/o� peripheral such

as a clamp. The complete set of actions describes all behavior that

the system can exhibit. Peripherals are aggregated into resources,

which can be claimed and released. Figure 1 a) depicts a synthetic

example of a system decomposed into resources R1, R2 and R3, pe-

ripherals p1, p2, p3, p4 and p5 and actions x1, x2, x3, x4, x5, x6 ands

x7. Using peripheral actions, deterministic functional behaviors of

the system can be constructed as Activities. An activity is a Directed

Acyclic Graph (DAG), consisting of a set N of nodes and a set!

of dependencies between nodes. Nodes refer to either an action

executed by a peripheral (associated with a pair (x ,p) : x 2 A and

p 2 P), or a claim (cl) or release (rl) of a resource (associated with

a pair (r ,� ) : r 2 R and � 2 {cl , rl }). Figure 1 b) depicts two such

activities, a and b.

Multiple activities can be sequenced to form a new activity. Re-

source sharing and concurrency betweenmultiple activities is taken

into account by the correct claiming and releasing of resources

between activities. Figure 1 c) depicts the result of sequencing ac-

tivities a and b. This can be formally achieved by applying the

semi-colon (;) operator [14], yielding a;b. Intuitively, the releasing

and claiming of shared resources must be correctly matched and

Logistics Automaton Lex                             MaxPlus(Lex)

a

b

a

b

γr = [0,0,0]

γr’ = [4.5,4.0,6.0]

γr’ =[5.5,4.0,3.0]
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p2
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Figure 1: Overview of the speci�cation framework [14].

replaced by a new dependency such that the resulting DAG is itself

an activity.

Besides functional speci�cation, the framework requires a tem-

poral speci�cation for performance optimization. A function T :

A ! R�0 maps each action to its �xed execution time. Conse-

quently, given an activity, the execution times can be lifted to the

level of nodes, where the execution times of claim and releases

nodes are assumed to be 0. In Figures 1 b) and c) the timing infor-

mation is annotated within the nodes (except for the release and

claim nodes). Since actions are executed on resources, a resource

time stamp vector �R : R ! R�1 represents the system state in

terms of resource availability. For each r 2 R, �R (r ) 2 R
�1 is the

availability time of resource r . We use 0R to denote the resource

time-stamp with all zero-value entries.

Starting from resource vector �R the execution of an activity a

leaves the system in a new state � 0
R
. This new state is determined by

computing the completion times of each node in the activity, taken

into account the dependencies and execution times of its nodes. For

this purpose, (max ,+) algebra [1] is used. In [14] it is shown that

�
0
R
= Ma ⌦ �R , where Ma is the (max ,+) matrix of activity a and

where ⌦ is the (max,+) matrix multiplication operator. The new

system state � 0
R
determines the makespan of the activity execution,

represented bymks (a,�R ). The makespan is given by the largest

value in � 0
R
which is by de�nition the (max ,+) norm k � 0

R
k. Notice

that the makespan of the execution of a sequence a1a2 · · ·an of

activities (starting from �R ) is given byM(a1;a2;· · · ;an ) ⌦ �R (where ;

denotes the activity sequencing operator). In [14] it is shown that

this expression is equivalent toMa1 ⌦ Ma2 ⌦ · · · ⌦ Man ⌦ �R .
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3 BATCH MAKESPAN OPTIMIZATION

Having described the basic framework for the speci�cation of man-

ufacturing systems, we now introduce the batch optimization prob-

lem. For this purpose, we start by de�ning the necessary concepts

for the speci�cation of the logistics of batch-oriented manufac-

turing systems. A sequence of activities can model the complete

manufacturing of a product, or batch of products, where a single

activity models one manufacturing operation. The collection of all

allowed activity sequences of a system de�nes the logistics behavior.

Such a collection is encoded in a logistics automaton.

De�nition 3.1 (Logistics automaton). A logistics automaton is a

tuple hS,Act ,
.

�!,S0i, where S is a �nite (possibly empty) set of

states, Act is a �nite (possibly empty) set of activities,
.

�!✓ S ⇥

Act ⇥S is a transition relation, and S0 ✓ S is a set of initial states,

where S0 = ; if S = ; and S0 = {s0} otherwise. Let s
a
�! s 0 be

a shorthand for (s,a, s 0) 2
.

�!. The following additional properties

must hold:

• Acyclicity: there exists no s 2 S such that s
.

�!
+

s , where
.

�!
+

is the transitive closure of
.

�!, and where s
.

�! t denotes

that s
a
�! t for some a 2 Act ;

• Reachability: if S , ; then for all s 2 S, s0
.

�!
⇤
s , where

.

�!
⇤

is the re�exive transitive closure of
.

�!.

De�nition 3.2 (Language of a logistics automaton). Let L = hS,

Act ,
.

�!,S0i be a logistics automaton. The language L (L) of L is

de�ned by

L (L) =

8>>>>><>>>>>:

;, if S0 = ;

{a 2 Act⇤ | s0
a

�! s for some s 2 S

and 6
.

�!}, if S0 = {s0}

HereAct⇤ denotes the collection of all sequences of activities inAct .

Each a 2 Act⇤ is of the form a1...an , where ai 2 Act (1  i  n).

For n = 0, a is the empty activity sequence denoted by � . For states

s, s 0 2 S and a = a1, ...,an 2 Act⇤ we let s
a

�! s 0 denote the

existence of s1, · · · , sn 2 S such that s0
a1
��! s1

a2
��! · · ·

an
��! sn = s

0.

Further s
a

�! denotes that s
a

�! s 0 for some s 0 2 S, s
.

�! denotes

that s
a
�! s 0 for some a 2 Act and s 0 2 S and s 6

.

�! denotes that

s
.

�! does not hold. Note that L (L) = ; if S = ; and L (L) = {� } if

S = {s0}. Notice also that any sequence in the language should “run

to completion”, i.e. �nish in a state with no outgoing transitions.

As a consequence languages of logistics automata are not pre�x

closed (except when the language equals {� }).

Figure 1 d) depicts an example logistics automaton Lex. Two activi-

ties, a and b are used to specify di�erent allowed activity sequences.

The activities are annotated on the edges. Each activity sequence is

determined by a path starting from the initial state (depicted with

an extra circumference and no incoming edges) and �nishing on

a �nal state (a state without outgoing edges). In this way the au-

tomaton encodes a set of activity sequences, where each sequence

represents one possible way to successfully manufacture a prod-

uct, or batch of products. Hence the logistics automaton encodes a

language of allowed activity sequences. For example, Lex encodes

activity sequences ab and ba and thus L (Lex) = {ab,ba}. Each ac-

tivity sequence can result in di�erent manufacturing completion

times when taking into account the temporal execution of its activ-

ities. For example, the completion times of sequences ab and ba are

6 and 5.5 respectively . These completion times are obtained as the

makespan of the corresponding activity sequences (mks (a;b, 0R )

andmks (b;a, 0R )). Thus the Batch Makespan Optimization (BMO)

involves determining the activity sequence in the language of the

logistics automaton with minimal makespan.

P������ 1 (B����M������� O�����������). Given a Logistics

automaton L determine a 2 L (L) such that

mks (a, 0R )  mks (a0, 0R )

for all a0 2 L (L). Here we letmks (a, 0R ) denotemks (a1; ...;an , 0R )

for brevity.

This problem can be solved in two steps. The �rst is to build a

timed expansion of logistics automaton L using the (max,+) char-

acterization of its activities as a new automaton which we call the

(max,+) automaton denoted by MaxPlus(L). It can be shown that

MaxPlus(L) satis�es De�nition 3.1 and is thus a logistics automaton

itself.

De�nition 3.3 ((max,+) automaton). Let L = hS,Act ,
.

�!,S0i be a

logistics automaton. First de�ne MaxPlusStates(L) as the smallest

set V satisfying inference rules (1) and (2):

S0 = {s0}

(s0, 0R ) 2 V
(1)

(s,�R ) 2 V s
a
�! s 0

(s 0,�R ⌦ Ma ) 2 V
(2)

Here �R denotes a resource time-stamp vector and 0R denotes the

resource time-stamp vector containing only 0 valued entries.Ma

denotes the (max ,+) matrix corresponding to activity a 2 Act and

s, s 0 2 S. Then we de�ne MaxPlus(L) as

(MaxPlusStates(L),Act ,
.

�!
0
,S00)

where �!0=
(
(s,�R ),a, (s

0,� 0
R
) 2 MaxPlusStates(L) ⇥ Act ⇥

MaxPlusStates(L) | s
a
�! s 0 and � 0

R
= �R ⌦ Ma

)
and S0

0
= ; if

S0 = ; and S
0
0
= {(s0, 0R )} otherwise.

As an example consider the (max,+) automaton of logistics au-

tomaton Lex, MaxPlus(Lex), depicted in Figure 1 d). The temporal

execution of activity sequence ab and ba leads to di�erent resource

time-stamp vectors and thus the �nal state of Lex is duplicated in

MaxPlus(Lex). Note that the state-space induced byMaxPlus(L) cor-

responds to the optimization-space of the BMO problem. Therefore,

the second step is to exploreMaxPlus(L) to �nda 2 L (MaxPlus(L))

for which the makespan is minimal. This is achieved by �nding a

�nal state for which the (max ,+) norm of the resource time-stamp

vector is minimal. An activity sequence a terminating in such a

state is a solution to the BMO problem.

4 COMPLEXITY ANALYSIS

To show that BMO is NP-Hard, we �rst show that its decision

version, the Batch Makespan Satisfaction (BMS) problem (whether

an activity sequence exists with makespan below a given bound), is

NP-Complete. It is well-known that the Weighted Set Partitioning

problem (WSP) problem [? ] is NP-Complete [6]. Here a set of n
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elements with integer valued sizes, for which the total size is equal

to S , can be partitioned into two subsets of equal size S/2. WSP

can be reduced to our BMS problem. We de�ne two resources R1
and R2 (each with one peripheral p1 and p2). For each combination

of element and resource we de�ned an activity, ar1xi : (R1, cl ) !

(xi ,p1) ! (R1, rl ) and a
r2
xi

: (R2, cl ) ! (xi ,p2) ! (R2, rl )), where

xi refers to element i (with 1  i  n) and where the execution

time of xi corresponds to the size of the ith element. We further

de�ne a logistics automaton with states S, labeled s0, ..., sn . The

transitions are de�ned as: si
a
r1
xi

���! si+1 and si
a
r2
xi

���! si+1 for 0  i 

n. Such that all combinations of possible partitions are included in

the automaton as activity sequences. Therefore, a partitioning is

possible i� an activity sequence exists with a makespan equal to S/2.

Thus, we have reduced a known NP-Complete problem to the BMS

problem. Further, it is not di�cult to see that a possible solution

can be veri�ed in polynomial time. Hence, the BMS problem is NP-

Complete. The BMO problem is NP-Hard, since the BMS problem

can be solved in polynomial time using a solution of the BMO

problem. For assume we have an optimal solution ao for the BMO

problem. Ifmks (ao , 0R ) is less than a given bound B, a solution with

a lower makespan than B exists and therefore the answer to BMS

problem is positive. Otherwise, no solution exists with makespan

lower than B, yielding a negative answer to the BMS problem. Thus,

BMO is NP-Hard.

5 MODULAR LOGISTICS SPECIFICATION

Even though a logistics automaton is able to encode the complete

manufacturing of a batch of products, for large batch sizes or com-

plex manufacturing jobs a monolithic automaton is not desired. A

modular and compositional methodology is more suitable to deal

with speci�cation complexity, maintainability and understandabil-

ity. Therefore, in this work we restrict our framework [14] towards

batch-oriented systems and take inspiration from the constraint-

oriented speci�cation style of the LOTOS framework [3] and the

compositional speci�cation of requirements in CIF [13] by de�ning

a composition operator on logistics automata. The operator allows

batches to be speci�ed individually (i.e. each product �ow can be

speci�ed by an individual automaton) and then composed to obtain

an automata that encodes all the logistics requirements for the

batch of products.

De�nition 5.1 (Composition of Logistics Automata). Let L1 =

hS1,Act1,
.

�!1, S01 i and L2 = hS2,Act2,
.

�!2, S02 i be logistics au-

tomata. Before we de�ne the composition automaton L1 � L2, we

�rst de�ne relation
.

�!✓ S1 ⇥ (Act1 [ Act2) ⇥ S2 as the smallest

set V satisfying the following inference rules:

s
a
�!1 s

0 a 2 Act1\Act2

(s, t )
a
�! (s 0, t )

(1)

s
a
�!1 s

0 t
a
�!2 t

0 a 2 Act1 \Act2

(s, t )
a
�! (s 0, t 0)

(2)

t
a
�!2 t

0 a 2 Act2\Act1

(s, t )
a
�! (s, t 0)

(3)

where s, s 0 2 S1 and t , t 0 2 S2. Now de�ne the set of states S of

the composition automaton as

S =

8>>>>>>>>>>><>>>>>>>>>>>:

;, if S1 = ; or S2 = ;

{(s, t ) 2 S1 ⇥ S2 | (s01 , s02 )
.

�!
⇤
(s, t )

and for some (s 0, t 0) 2 S1 ⇥ S2 with

s 0 6
.

�!1 and t
0 6

.

�!2, (s, t )
.

�!
⇤
(s 0, t 0)} if S01 = {s01 }

and S02 = {s02 }

Further de�ne
.

�!
0
= {((s, t ),a, (s 0, t 0)) ✓

.

�!| (s, t ), (s 0, t 0) 2 S} and

S0 =

8>><>>:

;, i f S = ;

{s01 , s02 } otherwise

Finally, the composition automaton L1 � L2 is de�ned as:

hS,Act1 [Act2,
.

�!
0
,S0i

As an example consider logistics automata L1 and L2 depicted in

Figure 2 a) and b). Each automata models the manufacturing life-

cycle of single product. We can compose them into a new logistics

automaton that re�ects a two-product system using the composition

operator �. The resulting composition L1 � L2 is shown in Figure 2

c). One complete activity sequence from the start state to a �nal state

in L1 � L2 represents the full execution of both product life-cycles.

In fact L1 � L2 captures all the allowed interleavings of activities

satisfying the life-cycles of both L1 and L2. In this fashion, batches of

products can be speci�ed, including batches with di�erent product

types and corresponding life-cycles (an important aspect of �exible

manufacturing systems [9]).

Using logistics automata we capture the activity �ow of a product

and ensure the completion of the manufacturing of this product.

In addition we can express constraints within the same product,

concerning for instance a safe handover between resources. For a

complete speci�cation of the manufacturing of a batch of products,

we also need to specify constraints across di�erent product �ows.

We will express such constraints in terms of constraint automata

and introduce a constraint operator to compose them with logistics

automata. Constraint automata capture constraints between di�er-

ent products such as ordering constraints (e.g. FIFO ordering for

a batch), safety constraints (e.g. access to exclusive safety areas),

resource capacity constraints (e.g. a resource must be empty be-

fore receiving a product) or other constraints that are expressed as

dependencies across di�erent product �ows.

De�nition 5.2 (Constraint automaton). A constraint automaton

is a tuple hS,Act ,
.

�!,S0i, where S is a �nite (possibly empty)

set of states, Act is a �nite (possibly empty) set of activities,
.

�!✓

S ⇥Act ⇥ S is a transition relation, and S0 ✓ S is a set of initial

states, where S0 = ; if S = ; and S0 = {s0} otherwise. The

following additional property must hold:

• Reachability: if S , ; then for all s 2 S, s0
.

�!
⇤
s .

A constraint automaton encodes a language, just as a logistics

automaton does.
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Figure 2: Example logistics automata L1 a) and L2 b); c) the resulting logistics automaton L1 � L2; example constraint automata

C1 d) andC2 e); f) the resulting logistics automaton (L1 � L2) � C1 and g) the resulting logistics automaton ((L1 � L2) � C1) � C2.

De�nition 5.3 (Language of a constraint automaton). Let C =

hS,Act ,
.

�!,S0i be a constraint automaton. The language L (C ) of

C is de�ned by

L (C ) =

8>><>>:

;, if S0 = ;

{a 2 Act⇤ | s0
a

�! s for some s 2 S}, if S0 = {s0}

Constraints can be applied to logistics automata through the con-

straint operator. A constraint automaton C = hS2,Act2,
.

�!2,S02 i

is called a constraint on logistics automaton L = hS1,Act1
.

�!1,S01 i

if Act2 ✓ Act1. Applying a constraint C to automaton L yields a

new logistics automaton which is denoted by L � C .

De�nition 5.4 (Constraint Operator). Let L = hS1,Act1,
.

�!1,S01 i

be a logistics automaton let C = hS2,Act2,
.

�!2,S02 i be a constraint

on L (so that Act2 ✓ Act1). Before we de�ne L � C we �rst de�ne

relation
.

�!✓ S1 ⇥ Actl ⇥ S2 as the smallest set V satisfying the

following inference rules:

s
a
�!1 s

0 a 2 Act1\Act2

(s, t )
a
�! (s 0, t )

(1)

s
a
�!1 s

0 t
a
�!2 t

0 a 2 Act1 \Act2

(s, t )
a
�! (s 0, t 0)

(2)

where s, s 0 2 Sl and t , t 0 2 Sc . Now de�ne the set of states S of

the constrained automaton as

S =

8>>>>>>>>>>><>>>>>>>>>>>:

;, if S1 = ; or S2 = ;

{(s, t ) 2 S1 ⇥ S2 | (s01 , s02 )
.

�!
⇤
(s, t )

and for some (s 0, t 0) 2 S1 ⇥ S2 with

s 0 6
.

�!1, (s, t )
.

�!
⇤
(s 0, t 0)} if S01 = {s01 }

and S02 = {s02 }

Further de�ne
.

�!
0
= {((s, t ),a, (s 0, t 0)) ✓

.

�!| (s, t ), (s 0, t 0) 2 S} and

S0 =

8>><>>:

;, if S = ;

{s01 , s02 } otherwise

Finally, the constrained automaton L � C is de�ned as:

hS,Act1,
.

�!
0
,S0i

As an example consider automata C1 and C2 in Figures 2 d) and

e). C1 models a constraint on the order of activities c and d of the

product modeled by L1, and C2 a constraint on the input order

of both products by ordering activities a and f of L1 and L2. The

result of the constraint operation is depicted in Figures 2 f) showing

(L1 � L2) � C1 and g) showing ((L1 � L2) � C1) � C2.

In logistics automaton (L � C ), C constraints the behavior of L

resulting in a subset of the original language. This is claimed by

the following Lemma:

L���� 5.5 (L������� ������������). Let L be a logistics au-

tomaton and let C be a constraint on L. Then L (L � C ) ✓ L (L).

Note that the constraint operator requires the logistics automaton

to run to completion, while this is not true for the constraint au-

tomaton. In other words constraint automata capture only safety

requirements (expressing that nothing bad should happen) while

logistics automata capture both safety requirements and liveness

requirements (expressing that something good happens eventually,

namely the completion of the di�erent products in the batch). On

the contrary, the composition operator requires that both logistics

automata run to completion. It was not strictly necessary to add

the concepts of constraint automata and constraint operator since

constraints can in principle be encoded as logistics automata (by

unfolding recursive loops su�ciently often). However, the automa-

ton obtained by composing would in many cases have a larger

state-space than the constrained automaton, which we try to pre-

vent. In addition logistics automata encoding constraints would be

incomprehensible because of their size and also less reusable. For

these reasons we decided to introduce new concepts in the form of

constraint automata and the constraint operator.

6 OPTIMIZATION-SPACE PRUNING

By observing Figure 2 one may conclude that constraining leads to

state-space reduction. Indeed the size of (L1 � L2) � C1 is smaller

than that of L1 � L2 and the size of ((L1 � L2) � C1) � C2 is smaller

than that of (L1 � L2) � C1. One can even show that the same holds

for the (max,+) optimization-spaces of these automata. This observa-

tion led to the main idea behind this work of exploiting constraints

to prune the optimization-space. However, even though constrain-

ing leads to a reduction of the encoded language (see Lemma 5.5) it
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a

b

c

d

a c

a

b

c

d

d

C3

L3 L3 � C3

Figure 3: L3 � C3 results in a larger state-space than L3.

does not necessarily imply a reduction of the state-space, neither of

the logistics automaton nor of the (max,+) optimization-space. For

instance, consider logistics automata L3 and constraint automata

C3 and the constrained logistics automaton L3 � C3 depicted in

Figure 3. Here the size of L3 � C3 is larger than that of L3.

In this sectionwe establish su�cient conditions for the constraint

operation to reduce the worst-case optimization-space (which is

one of the main contributions of this paper). To this end we in-

troduce a relation v on logistics automata which is stronger than

language inclusion (i.e. L1 v L2 implies L (L1) ✓ L (L2) and fur-

ther satis�es the property that L1 v L2 implies that the size of the

state-space of L1 never exceeds that of L2). We further de�ne the

worst-case optimization-space of logistics automaton L as a new

logistics automaton Tree(L) and prove that MaxPlus(L) v Tree(L)

and that indeed Tree(L � C ) v Tree(L) for any L and determinis-

tic constraint automata C . This implies that the constraining with

a deterministic constraint leads to a reduction of the worst-case

state-space.

De�nition 6.1 (Inclusion). Let L1 = hS1,Act1,
.

�!1,S01 i and L2 =

hS2,Act2,
.

�!2,S02 i be logistics automata. Then L1 is included in L2,

written L1 v L2, if and only if Act1 = Act2 and either i) S1 = ; or

ii) S01 = {s01 } and S02 = {s02 } and there exists an injective relation

R ✓ S1 ⇥ S2 satisfying:

(1) (s01 , s02 ) 2 R;

(2) For all (s1, s2) 2 R and a 2 Act1 if s1
a
�!1 s 0

1
(for some

s 0
1
2 S1) then s2

a
�!2 s

0
2
(for some s 0

2
2 S2) and (s 0

1
, s 0
2
) 2 R;

(3) For all (s1, s2) 2 R if s2
.

�!2 then s1
.

�!1.

It is not hard to prove that if a logistics automaton is included

in another logistics automaton, the size of the state-space of the

former never exceeds that of the latter. As an example consider

the automata of Figure 2 c) and f) and note that (L1 � L2) � C1 v

(L1 �L2) and that the state-space of (L1 �L2) � C1 does not exceed

that of L1 � L2. Considering the automata of Figure 3, on the other

hand, we observe that in this case L3 � C3 6v L3 and that the size of

the state-space of L3 � C3 is larger than that of L3.

De�nition 6.2 (Tree automaton). Let L = hS,Act ,
.

�!,S0i be a

logistics automaton. We �rst de�ne Paths(L) as the smallest set V

satisfying:

S0 = {s0}

s0 2 V
(1)

q s 2 V s
a
�! s 0

q s a s 0 2 V
(2)

Here s, s 0 2 S and a 2 Act . Paths (L) contains sequences of ele-

ments in S andAct . Each sequence is of the form s0 a0 s1 a1 · · · sn
and encodes the path from starting state s0 to state sn (via tran-

sitions labeled with activities a0 · · ·an�1 and intermediate states

s1 · · · sn�1). In inference rule (2), q s refers to a path that ends in

state s . Note that q can refer to an empty sequence of elements.

Remark that Paths(L) = ; if S = ;. We now de�ne Tree(L) as

(Paths(L),Act ,
.

�!
0
,S00)

where
.

�!
0
= {(q s,a,q s a s 0) 2 Paths(L) ⇥Act ⇥ Paths(L) | s

a
�! s 0}

and S0
0
= ; if S0 = ; and S

0
0
= {s0} otherwise. Note that a Tree

automaton is a logistic automaton.

L���� 6.3. Let L = hS,Act ,
.

�!, S0i and T (L) be a logistic au-

tomaton. ThenMaxPlus (L) v Tree (L).

P����. The results follows directly in case S = ;. Otherwise

S0 = {s0} for which case we de�ne relation R ✓ MaxPlusStates(L)⇥

Paths(L) as the smallest set V satisfying the following inference

rules:

S0 = {s0}

((s0, 0R ), s0) 2 V
(1)

((s,�R ),q s ) 2 V s
a
�! s 0

((s 0,�R ⌦ Ma ),q s a s
0) 2 V

(2)

It is not hard to show that R satis�es conditions 1., 2. and 3. of

De�nition 6.1. To prove that R is injective we have to show that

any two pairs in R with equal right-hand elements also have equal

left-hand elements. We will do this by induction on the depth of the

derivation tree of one of the pairs. Notice that the pairs are either

both derived by inference rule (1) or both derived by inference

rule (2). In the �rst case their left-hand elements are obviously the

same. In the other case the pairs must be of the forms ((s 0,�R ⌦

Ma ),q s a s
0) and ((s 0,� 0

R
⌦Ma ),q s a s

0) and we further know that

((s,�R ),q s ) 2 R and ((s,� 0
R
),q s ) 2 R. By induction we then have

�R = �
0
R
. ⇤

Finally, we show that if C is a deterministic constraint automaton,

the constraining of a logistics automaton L with C never results in

a larger worst-case optimization-space.

L���� 6.4. Let L = hS1,Act1,
.

�!1, S01 i be a logistics automaton

and C = hS2,Act2,
.

�!2, S02 i a constraint on L. If C is deterministic,

then Tree(L � C ) v Tree(L).

P����. Let Tree(L) = hPaths(L),Act1,
.

�!Tree(L) , S0Tree(L) i and

Tree(L � C ) = hPaths(L � C ),Act1,
.

�!Tree(L�C ) , S0Tree(L�C )
i. No-

tice that these tree automata have the same alphabets. Now either i)

Paths(L � C ) = ; or ii) S0Tree(L�C )
= (s0, c0) and S0Tree(L) = s0 where

s0 2 S01 and c0 2 S02 . In case i) Tree(L � C ) v Tree(L) holds by

de�nition. Otherwise, we de�ne R ✓ Paths(L � C ) ⇥ Paths(L) as

the smallest set V satisfying the following inference rules:

S0Tree(L�C )
= {(s0, c0)}

((s0, c0), s0) 2 V
(1)

⇣

q (s, c ),p s
⌘

2 V (s, c )
a
�!L�C (s 0, c 0)

⇣

q (s, c ) a (s 0, c 0),p s a s 0
⌘

2 V
(2)
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a_1 a_2 a_n
…

o_1 o_2 o_n
…

First-In

First-Out

Capacity SUB Capacity UR

(a,y)_i

c_i

(c,j,n)_i

(d,o)_i

Capacity PA Capacity LRCapacity CH0 Capacity CH1

d_i

f_i

g_i

j_i

k_i

n_i

e_i

(g,k)_i

Swap

Over-Specification: Exchange

(h,i,l,m)_i (h,i,l,m)_i (p,q,r,s)_i

(p,q,r,s)_i

f_(i+2) (n,j)_i

(g,k)_(i+2)

p_i i_i

q_i m_i

Figure 4: Case study automata: logistics (Life-Cycle) and constraints (Capacity, First-In and First-Out, Swap and Assignment).

Recall that q (s, c ) and p s refer to a paths that end in states (s, c ) 2

SL�C and s 2 S1 respectively. We have to show that R is injec-

tive and satis�es condition 1., 2. and 3. of De�nition 6.1. Now

clearly ((s0, c0), s0) 2 R so condition 1. is satis�ed. For condi-

tion 2. let
⇣

q (s, c ),p s
⌘

2 R and assume q (s, c )
a
�!Tree(L�C ) q0

(for some a 2 Act1 and q0 2 Paths(L � C )). Then q0 must be

of the form q (s, c ) a (s 0, c 0) for some (s 0, c 0) 2 SL�C for which

(s, c )
a
�!L�C (s 0, c 0). But then s

a
�!1 s

0 and thusp s
a
�!Tree(L) p s a s

0.

Consequently
⇣

q (s, c ) a (s 0, c 0),p s a s 0
⌘

2 R, which follows from

inference rule (2). For condition 3. let
⇣

q (s, c ),p s
⌘

2 R and assume

p s
.

�!Tree(L) . Then s
.

�!1 and since (s, c ) 2 SL�C also (s, c )
.

�!L�C .

But then also q (s, c )
.

�!Tree (L � C ).

Finally to prove that R injective we have to show that any two pairs

in R with equal right-hand elements also have equal left-hand ele-

ments. Notice that such two pairs are either both produced by infer-

ence rule (1) or both by inference rule (2). In the �rst case obviously

both left-hand sides are equal. In the second case the pairs are of the

form
⇣

q1 (s, c1) a (s 0, c 0
1
),p s a s 0

⌘

and
⇣

q2 (s, c2) a (s 0, c 0
2
),p s a s 0

⌘

.

Then
⇣

q1 (s, c1),p s
⌘

2 R and
⇣

q2 (s, c2),p s
⌘

2 R. By induc-

tion we then have q1 = q2 and c1 = c2. We further know that

(s, c1)
a
�!L�C (s 0, c 0

1
) and (s, c1)

a
�!L�C (s 0, c 0

2
). Now since C is

deterministic, we also have that c 0
1
= c 0

2
. ⇤

In conclusion, the addition of any deterministic constraint results

in a reduced worst-case optimization space. In addition it results

in an upperbound of the optimal makespan corresponding to the

unconstrained speci�cation. Constraints therefore allows the con-

scious use of over-speci�cation (addition of constraints on top of

the original system speci�cation) to control the optimization-space

and e�ectively determine upperbounds on the optimal makespan.

We show an example of such a realistic case in the following section.

7 CASE STUDY: WAFER LOGISTICS

To demonstrate the applicability of the modular speci�cation ap-

proach we use the model of a lithography system from ASML [15].

Lithography systems are manufacturing systems which process in-

tegrated circuits (ICs) by exposing reticle images on silicon wafers.

Figure 5 depicts the wafer �ow, the 5 operational units (the Con-

ditioner (COND), the Discharge Unit (DU), the Pre-Aligner (PA)

DU

COND PA

CH0

CH1

LR

UR

expose stage

Figure 5: Routing and resources of the Wafer Logistics.

Table 1: Set of activities for our case study.

a:Track_2_COND e:PA_PreAlign k:LR_2_CH1

b:COND_Conditioning g:LR_2_CH0 l:CH1_Measure

c:COND_2_UR h:CH0_Measure m:CH1_Expose

d:UR_2_PA i:CH0_Expose n:CH1_2_UR

f:PA_2_LR j:CH0_2_UR o:UR_2_DU

p(q):CH0(1)_M_2_E r(s):CH0(1)_E_2_M

and two chucks (CH0 and CH01)) and 2 transport units (the Unload

and Load Robots (UR and LR)). The arrows in the �gure model the

possible �ows wafer can have in the system. We do not elaborate

on the modeling of the resources, peripherals and actions of the ex-

ample lithography machine and refer to [15] for the details thereof.

Instead our starting point is the set of Activities provided by the

system. This list is given in Table 1. To avoid clutter in the �gures

and text we will refer to these activities using bold-case letters as

indicated in Table 1 (e.g. activity Track_2_COND is refered to be

letter a). We denote the corresponding activity on a speci�c wafer

with an index i starting from 1 and ending withn, wheren is the size

of the batch (e.g. a_i refers to activity Track_2_COND performed

on behalf of wafer i).

For every product we de�ne its life-cycle, i.e. the operation �ow.

Figure 4 depicts the logistics automata Life-Cycle which captures

the operation �ow of a product. The life-cycle captures the in-

put (a), pre-processing (b,c,d,e and f), measure/exposure (g,h,i,j or

k,l,m,n) and output (o) of a wafer in the system. The pre-processing

activities are necessary to set a ideal wafer temperature for an ac-

curate exposure process and to align the wafer for a correct overlay

of multiple exposures. For performance gains the expose stage is

composed of two identical wafer chucks (CH0/CH1) with swap
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Table 2: Size of the logistics automaton and optimization-

space of a batch of 25 wafers.

Logistics Automaton Optimization-Space

Model N. States N. Trans. N. States N. Trans. Makespan (s)

Logistics DNF DNF DNF DNF -

+Capacity DNF DNF DNF DNF -

+FIFO 64876 206929 DNF DNF -

+Swap 10566 30421 128412 365711 337

+Exchange 9060 26099 58287 166983 337

activities (p,q,r and s) to alternate between the measure/expose

activities. Thus this measure/exposure operation is captured by

two possible sequences of activities (g,h,p,i,r,j or k,l,q,m,s,n) each

modeling the measure/exposure on a speci�c chuck (visible from

the branching in automaton Life-Cycle). For a batch of n products

we specify n instances of such automata and composed them using

the � operator. All wafers follow the same life-cycle in this case

study (but our approach is general enough to deal with di�erent

operational �ows for di�erent products).

Next to the Life-Cycle requirement we specify other system

requirements. These requirements are captured by the Capacity,

Swap, First-In (FI) and First-Out (FO) constraint depicted in Fig-

ure 4. Note that all these requirements are speci�ed as deterministic

constraint automata. Capacity constraints enforces that each re-

source has limited capacity (in this case all resource have unary

capacity). The Swap constraint ensures that between two consec-

utive measure or expose activities the chucks �rst have to swap.

The First-In and First-Out requirements enforce the order of pro-

cessing of the wafers in a batch. These automata de�ne the system

speci�cation as required for a correct manufacturing.

Table 2 shows the results in terms of the number of states (N. States)

and transitions (N. Trans.) of the resulting logistics and (max,+)

automaton state-spaces (Logistics Automaton and Optimization-

space) as well as the obtainedminimal makespan (Makespan). These

results are computed using 8 Intel i7 920@2.67Ghz CPUs with 8GB

of memory. The models and the composition and constraining op-

erators are implemented using the CIF (Compositional Interchange

Format) tooling [13]. The values shown in Table 2 correspond to a

batch of 25 wafers. DNF (Did Not Finish) denotes the case where

the construction of the logistics automaton (or its optimization-

space) failed to �nish. The �rst row (Logistics) represents the un-

constrained system (only the Life-cycle is speci�ed). Every row

adds an additional constraining on top of the previous ones (indi-

cated by the + symbol). Note that the incremental constraining of

the system with requirements Capacity, First-In and First-Out

(FIFO) and Swap systematically reduces the size of the worst-case

optimization-space (according to the results of Section 6). Note

that in this case the reduction occurs even on the state-spaces of

the logistics automata and on the actual optimization-space until

the point that the optimization-space can be built and explored

to �nd the minimal makespan of 337 seconds. We leave the study

to identify the conditions for which the actual optimization-space

reduces as part of future work.

To display the use of the approach as a formal means to con-

sciously use over-speci�cation to further prune the optimization-

space we use domain knowledge to generate one additional non-

essential constraint called Exchange (see Figure 4). The Exchange

constraint enforces an activity order between the load of wafer (i+2)

to a chuck and unload of wafer (i) from the same chuck. The results

are shown in Table 2. Notice that in this case an the optimal solution

could already be found without over-speci�cation, Because of this

we can compare quantitatively the impact of the additional con-

straint: it e�ectively reduces the optimization-space by more than

50%. In general a deterministic constraints results in an upperbound

of the optimal makespan (see Section 6); in this case the optimal

result is actually preserved.

8 RELATED WORK

To the best of our knowledge, this is the �rst paper inwhichmodular

formal requirements are proposed as an e�ective means to get

qualitative grip on state-spaces sizes.

This work combines the ingredients from themodular constraint-

oriented approach of the LOTOS framework [3, 7] and of Super-

visory Control Theory (SCT) [10] developed in [14] and applied

in [4, 5, 12]. We build upon the general concepts of SCT, but re-

�ne this framework by allowing only non-recursive requirements

and by explicitly distinguishing logistics automata from constraint

automata.

To get insight in the impact of automata composition on the

state-space sizes we took inspiration from the Calculus of Commu-

nication Systems (CCS) [8], in particular from Milner’s simulation

relation �. This relation captures behavior but abstracts from all

structural information of the automata. We strengthen this relation

by adding structural information (in the form of an injectivity re-

quirement) to allow qualitative reasoning about state-space sizes. In

addition it bene�ts from the e�ective proof technique of establish-

ing simulation relations. The strengthening of pre-order � makes v

into a partial-order. As far as we have been able to verify, this is the

�rst paper in which the inclusion relation v (to compare transitions

systems in a structural way) is established.

9 CONCLUSIONS

In this paper we introduced a framework for the speci�cation and

optimization of batch-oriented manufacturing systems and show

that their makespan optimization is NP-Hard. We introduce a com-

position operator for logistics automata to address the speci�cation

of complex manufacturing system in a modular fashion. We further

introduce the notion of constraint automata to capture requirements

across di�erent products �ows such as input orderings, capacity and

safety constraint. Using a constraint operator we are able to mod-

ularly compose deterministic constraints with logistics automata

and show that this operation e�ciently prunes the (worst-case)

optimization-space. Moreover, we show that our approach gives

explicit control over the worst-case size of the optimization-space.

We provide proof of these results by de�ning an inclusion relation

between logistics automata which relates qualitatively their state-

space sizes. Moreover, obtained solutions are i) makespan optimal

with respect to the added constraints and ii) upperbounds with re-

spect to the original optimization problem. As future work, we are
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interested in establishing the conditions for which the constraining

operation prunes the actual optimization-space.
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