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ABSTRACT
Coarse-grained reconfigurable architectures and other exposed
datapath architectures such as transport-triggered architectures
come with a high energy efficiency promise for accelerating data
oriented workloads. Their main drawback results from the push
of complexity from the architecture to the programmer; compiler
techniques that allow starting from a higher-level programming
language and generate code efficiently to such architectures ro-
bustly is still an open research area. In this article we survey the
known main sources of challenges and outline a generic processor
architecture template that covers the most common architecture
variations along with a proposal for a common code generation
framework for such challenging architectures.

CCS CONCEPTS
• Software and its engineering → Retargetable compilers; • Com-
puter systems organization → Reconfigurable computing.
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1 INTRODUCTION
A conventional way of improving the computational capabilities of
programmable processors is by increasing the number of functional
units (FUs) that can execute independent operations in parallel.
Although this method can be very efficient in practice (eg. VLIW
or superscalar), its scalability is limited due to RF scaling issues [3]
and energy-efficiency challenges [4].

Exposed datapath architectures address the scalability and en-
ergy efficiency issues by exposing more of the datapath to the
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programmer. Fine-grained control over the datapath allows pro-
gram controlled bypassing of data between FUs at compile-time
(software bypassing), and eliminates the need for data-routing and
dependency checking circuitry in hardware. More importantly, it
slackens the design requirements of the RF and bypass network as
the data-bandwidth to RF need not satisfy the worst-case require-
ments. The combined effect of these two capabilities along with
application specific instruction sets can result in energy-efficient
programmable-processors capable of reaching near fixed function
accelerator performance. Various CGRAs, TTAs, Silicon-Hive’s
DSPs, Mill, and Explicit-SIMD are examples of architectures that
belong to this category [6].

CGRA [12] and TTA [3] style architectures are a favourable can-
didate for programmable accelerators as they satisfy the modularity,
flexibility, scalability, and programmability requirements. Although
CGRAs and TTAs have a potential of reaching very high energy-
efficiency [13], their true benefits rely solely on the compiler when
programmability with a high-level language (HLL) is desired. The
complexity in designing a compiler for these architectures is in-
creased due to the additional compile-time responsibilities such
as operation-to-FU-binding, data routing on partially connected
interconnection networks, partitioned RFs, etc. Previously, these
issues have been typically solved by exposed datapath architecture-
specific compilers which lack retargetability and do not benefit
from engineering effort sharing.

In this paper, we outline some of the known shared challenges
in code generation for CGRA and TTA architectures, and propose
a means of unifying the engineering effort on a generic code gener-
ation framework. We suggest a means to achieve this by defining
a common processor template that can support the most interest-
ing explicit datapath architectures with the same or similar code-
generation techniques, and by extending the existing available
toolsets to support it.

The remainder of the paper is organized as follows, in Sec-
tion 2 we model the compiler view of the architectures in focus
and propose a generic architecture template as a target-model for
the generic compiler. The known challenges in code generation
for the selected architectures along with research opportunities
and required toolchain support is discussed in Section 3. Section 4
concludes the paper by summarizing our findings and proposes
research directions.

2 CGRA AND TTA ARCHITECTURES
The class of TTA processors is well-defined in the literature and has
been consistent over their generations [2, 3, 5, 9]. However, there
exist many informal and conflicting definitions for CGRAs in the
literature. Formal guidelines for classifying CGRAs are proposed
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Figure 1: Blocks CGRA and ReMove architecture

in [12], and in this paper we use the term CGRA for architectures
that have spatial granularity at the FU level and temporal reconfig-
uration granularity at the region/loop-nest level or above as most
CGRAs belong to this category and their programming view is sim-
ilar to of TTAs. The Blocks CGRA [11] fits well into this category
and hence we picked it as a primary target and listed the differences
to the other related architectures in comparison to it.

The Blocks CGRA consists of FUs that are arranged in a matrix
form with switch box networks for connectivity as shown in Fig. 1a.
The FUs can be either compute-storage units (ALU, multiplier, RF,
branch, etc.) or memory access units (load-store units). The switch
boxes in the design implements a network for operand and result
forwarding, and the instructions issued to FUs defines the datapath
at the cycle-level. Based on the application requirement, a group
of FUs and their connectivity can be selected from the template
to form a processor instance that mimics the spatial layout of the
application. A sample instance of Blocks CGRA with two ALUs and
an RF is shown in Fig. 1b.

Multi-issue TTA is a class of VLIW architectures. Unlike tradi-
tional operation-triggered architectures, in TTAs, the instructions
represent the data transport and operations are executed as a side
effect to the data transports [3]. Similar to CGRAs, a TTA instance
can be formed by selecting a group of FUs and defining connectivity
between them. Depending on the design of FU and the interconnect
network, there exist a few variants of TTA architecture; Move [3],
ReMove [9], MovePro [5], and TCE TTA [8] are few examples. Re-
Move is a reduced connectivity TTA with connections only to the
neighbouring FUs which makes them an interesting target for the
compiler and hence we selected them as a primary TTA subclass
in this paper. A sample instance of a ReMove processor with two
ALU and an RF is presented in Fig. 1c.

2.1 Programmer View
Executing an operation in an exposed datapath architecture in-
volves binding of an operation to an FU and routing data (operand
and result) through the interconnection network in such a way
that it satisfies the timing requirements of the operation without
resource and dependency conflicts. From the compiler point of view,
this breaks down to describing target machine in the backend of a
retargetable compiler and designing an instruction scheduler which
can map computation on target by obeying a set of constraints
imposed by the machine model and the set performance goals.

Supporting new architecture variants in a compiler requires
extensions to the target machine model and the scheduler in the
framework. By extending the target machine model, it is possible
to reuse the associated toolset for newly supported architectures
either with a generic enough scheduler or by inclusion of custom
schedulers if the framework is flexible enough.

The first two of the following subsections model the programmer
view of the exposed datapath architecture and defines a generic
processor template. The defined template outlines the requirements
of the target-machine model to support the considered architectures,
assuming that the compiler and associated toolset has maximum
flexibility. The flexibility requirement of the toolset is discussed in
Section 3.2.

2.2 Machine Model
A processor instance of the selected architecture consists of a set
of FUs and an interconnection network (ICN) for communication.

The connectivity of the ICN of the processor instance can be
modelled as a flow network with capacitated vertexes termed Con-
nectivity Graph (CG) and FUs can be modelled as an Architecture
Graph (AG) as follows:

Connectivity Graph,CG = (S,C,D,E) (1)

Where S = {S0, S1, .., Sn } is set of FU result ports which produce
data on the ICN, C = {C0,C1, ..,Cn } is set of communication re-
sources in the ICN, D = {D0,D1, ..,Dn } is the set of sink nodes in
the ICN (FU input operand ports), and E is a set of directed links
between the vertexes. The capacity of the vertexes models the shar-
ing property of the ICN. The CGs of the presented sample Blocks
CGRA and ReMove instances are depicted in Fig. 2a and Fig. 2b
respectively.

Architecture Graph,AG = (Binput ,Boutput , I ,OBconstrain ) (2)

Where Binput and Boutput models the input and output interface of
FU with their associated buffers. For designs with shared operand
and result ports, the effective buffer can be constrained to B =
Binput ∪Boutput in Scheduler . I = {Ins : (Idata , InternalState) →
(Odata , InternalState)} is set of supported instructions. The Operand
Binding constraints (OBconstraints ) define the constraints on Idata
and Odata with respect to Binput and Boutput . The AG for the
sample processor instances are illustrated alongside their block-
diagrams in Fig. 1a and Fig. 1d.
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2.3 Generic Machine Model
The AG models the computation logic and interface of the FUs, CG
models the connectivity between FUs, and together they describe a
processor instance. The CG and AG for the selected TTAs, CGRAs,
and their generic model is given in Table 1. The VILW is included
in the table as a reference for comparison. The hardware bypasses
in the processor are not modeled as they are not visible to the
programmer.

The ICN in a generic TTA supports bus connections where each
communication resource can have more than one source and imple-
ments a resource sharing protocol for communication. Depending
on the protocol, the bus may also support multicast and broadcast.
On the other hand, the Blocks CGRAs implements ICN with point-
to-point connections with a dedicated communication resource for
each source node. Formally, this property can be inferred from the
CG as in-degree and out-degree of the capacitated communication
resource Cn . The CG of point-to-point based ICN is a subset of
the bus based connectivity in terms of in-degree, out-degree, and
capacity model. Therefore supporting bus connectivity will enable
the support for modeling the ICN of the all the listed architectures.
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Figure 2: Connectivity Graphs of the Blocks CGRA and Re-
Move instance given in Fig. 1b and 1c. Blocks-CGRA ICN is based
on Point-to-point connectivity and hence the source S has one-to-one map-
ping to communication resource C . ReMove uses bus connectivity in ICN
and therefore the communication resource C is shared by more than one
source. The capacity of the C and D nodes enforces the resource sharing in
the model.

.The FU interface (Binput and Boutput ) and operation-binding
constraints (OBconstrain ) are architecture specific. In the consid-
ered TTAs, the operand ports are associated with single shadow
buffer and results are buffered by an arbitrary size output buffer.
The CGRAs support unbuffered and as well as buffered operand and
result port with arbitrary size buffer. By targetting machine-model
of the compiler to be a superset, all the considered architectures
can be modeled in the compiler for codegeneration. The superset
model of the considered architectures will be a model with buffered
operand and result ports with arbitrary buffer size and support for
bypassing the buffers (unbuffered operand and result ports).

3 COMPILER FRAMEWORK
The programmable datapath in combination with the static schedul-
ing nature of exposed datapath architectures allows energy efficient
mapping of applications in theory. However, in practice, how much
this can be benefited from depends on how well the compiler can
exploit the programmability. When programmability with an HLL
is desired, a good quality compiler is essential for exploiting maxi-
mum possible instruction-level parallelism in the user application
and utilizing target specific optimizations to achieve high energy
efficiency.

Each design choice in the compiler influence the quality of the
generated code. In addition to the traditional compiler design chal-
lenges, the ability to control the datapath data transfers introduces
new challenges and further increases the complexity of the com-
piler. In the following, we outline the most important identified
challenges in code generation for exposed datapath architectures
in particular, to provide a glimpse of the complexity required by a
generic code generation toolset.

3.1 Challenges in Exposed Datapath Code
Generation

The main complexity shift comes from the additional instruction
scheduler options; whether to perform software bypassing, dead-
move elimination, operand and result sharing, and operand and
result data transport scheduling freedom [3, 9].

In case of exposed datapath architectures, the buffers associated
with the input and output ports of FUs are an additional level in the
data memory hierarchy since they provide a programmer controlled
storage. Efficient utilization of these buffers require extensions on
both the register allocation and the instruction scheduler.

Instruction scheduling for exposed datapath architectures is an
NP-hard problem [8] and most production compilers therefore use
heuristics for scheduling.

For example, the compiler of the TCE toolset [7] implements
a pre-pass register allocation followed by scheduling, since the
complexities of inserting spill code possibly creating a cyclic de-
pendency between register allocation and scheduling stages.

Operand binding and deadlock free scheduling problems are
apparent when generating code to the selected architectures.

3.1.1 Operation Binding. Mapping of program operations to FUs
is performed by means of the first fit algorithm with some sim-
ple heuristics in the current compilers [8]. The first free FU that
contains the given operation is selected, and if there are multiple
choices, the FU with fewer operations is selected to allow more
generic FUs to be used for other operations.

The more complex heuristics take into consideration of the ICN
connectivity and program patterns [1]. However, the operation
binding can be carried out either before or during the scheduling
process, and the effect of this design choice is not yet explored. As
the schedule quality can be greatly influenced by this approach
due to bad bindings resulting in unnecessary data copies across
the network and reduced instruction level parallelism, more focus
should be put to the operation binding techniques.

3.1.2 Deadlock Free Scheduling. The considered architectures im-
plement reduced ICN connectivity for efficiency. As a consequence,
all the results that are alive, but cannot be written to the RF must
be, a) kept alive in the output register of the FU, b) transferred to a
different FU by a copy operation until it is consumed or stored in
the RF, or d) written back to memory.

Aggressively claiming FUs for operations may result in a dead-
lock, a state were a live value gets lost, as there is not enough free
FUs to copy the value. Most of the existing compilers use an op-
eration based list scheduling algorithm and it is easy to run into
deadlock issues with them [5, 9]. An example of a deadlock issue is
given in Fig. 3a. Current exposed datapath compilers address this
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Table 1: Comparison of the supported exposed datapath architecture classes.

ICN Connectivity FU Model (∀f u)
Architecture in-degree out-degree Binput Boutput OBconstrain

(Cn ) (Cn ) (∀in−por t ) (∀out−por t ) Idata Odata

ReMove N N 1 (except trigger port) 1 inPorts ∪ inPortsr eд outPortsr eд
Move-Pro N N 1 N inPorts ∪ inPortsr eд outPortsr eд

Blocks-CGRA 1 N 0 1 inPorts outPortsr eд
TRIPS [10] 1 N N 0 inPortsr eд outPorts ∪ inPortsr eд

VLIW 1 ≤ #(RF ) 0 0 inPorts outPorts
Generic N N N N inPorts ∪ inPortsr eд outPorts ∪ inPortsr eд

issue either by scheduling the selected operation on a later cycle or
by rescheduling the already scheduled instruction to have a solution
similar to the one given in Fig. 3b with a trade-off of engineering
cost for improved schedule. Constrained programming based sched-
uling does not have this problem but their scalability is limited. As
the scheduling on partially connected architectures is a NP-Hard
problem, finding (near)optimal schedule requires improvement to
existing algorithms or new approaches.
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Figure 3: Schedule deadlock example. Schedule example is pre-
sented in a space-time graph, $0-4 represents the operations and = cor-
responds to the copy operation. In (a), scheduling operation $0 on FU3
will results in a deadlock as the output of $0 will be overridden at cycle-3.
Potential solution would be rescheduling the operation $3 = $1 + $2 to an
earlier cycle as shown in (b) to maintain liveness of the output from $0.

3.2 Towards Generic Code Generation Tools
Generic exposed datapath code generation tools should be retar-
getable to the set of supported architecture variations using a
generic enough target machine template model. In addition to that,
the selected framework should be modular enough to provide flexi-
bility for research purposes and include supporting toolsets for the
simplified user interface.

Most existing compilers of these architectures have C/C++ or
an OpenCL C frontend with a target specific custom backend [12],
which is not easy to extend. To the best of our knowledge, the TCE
toolset [7] seems an ideal fit for this case as it is closely related
to our use-case and has a robust compiler (C, C++, and OpenCL)
accompanied with a rich set of supporting tools such as simulator,
debugger, and GUI based processor design tools. Extending TCE to
support the generic machine-model presented in Section 2.3 will
benefit the architectures listed in Table 1.

As a proof of concept, we mapped Blocks CGRA to the TTA pro-
cessor template of TCE. Our findings confirm that such extension
is possible with a reasonable framework, and the framework has

the flexibility and modularity needed for research and production
compiler purposes.

4 SUMMARY AND FUTURE WORK
Towards a vision of a generic toolset for exposed data path archi-
tectures which can benefit from closely related codegeneration
technique, we selected TTAs and subset of CGRA class architec-
tures and proposed a generic processor template for TCE toolset.
To support our claim, we mapped Blocks-CGRA on TCE and veri-
fied the functional correctness of the generated code. With minor
extensions to the TCE scheduler, we managed to reuse most of the
toolset including its cycle-accurate simulator.In our future work, we
aim to identify commonalities in the codegeneration of the selected
architectures and extend the generic compiler (TCE) to enhance
code generation quality.
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