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ABSTRACT
Computation-in-memory reverses the trend in von-Neumann pro-
cessors by bringing the computation closer to the data, to even
within the memory array, as opposed to introducing new memory
hierarchies to keep (frequently used) data closer to a central process-
ing unit (CPU). In recent years, new non-volatile memory (NVM)
technologies, e.g., memristor, PCM, etc., have proven that they can
function as memories and perform computations on the stored data
as well. In particular, when they are combined with a modest set of
(digital) peripheral modules, a wider range of operations can be sup-
ported, e.g., vector matrix multiply and Boolean logic. In this paper,
we are introducing the CIM-SIM, an open source simulator written
in SystemC, which is capable of simulating the functional behaviour
of such architectures. The architecture includes the definition of a
set of technology-agnostic nano-instructions.

CCS CONCEPTS
• Hardware → Application specific instruction set proces-
sors; Emerging architectures; Memory and dense storage; • Com-
puting methodologies → Simulation tools.
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1 INTRODUCTION
The nearing end of Moore’s law urges researchers to devise brand
new processors. It could be achieved making substantial changes
at different levels ranging from devices to architectures [14, 15].
One promising new paradigm encompassed the use of NVMs [4, 8–
10] to perform both compute and storage of data at the same site.
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The current state-of-art mainly focuses on the design of memory
cells/arrays and its directly related peripheral circuitry while the
technology is still being developed. This approach is also catego-
rized as CIM-P (Compute-In-Memory with Periphery) [1]. High-
level applications kernels are envisioned to execute on such CIM-P
tiles without a clear method to control and schedule the operations
within the memory array and periphery. In this paper, we propose
our first version of an instruction set architecture (ISA) to fill this
gap by achieving this goal. In addition, we introduce a simulator,
called CIM-SIM, that is capable of executing nano-instructions of
the ISA. The proposed nano-instructions are technology-agnostic
and modular by design, i.e., capable of supporting different sets of
peripheral modules. CIM-SIM offers researchers an opportunity to
investigate not only different architecture designs for NVM-based
computation platforms, but corresponding high level tools (e.g. com-
pilers) as well. Additionally, its modular design makes it easy for
circuit and device level researches to modify the connections, and
to add or remove components based on their own designs. Being an
Instruction Set Archiecture (ISA), CIM-SIM fetches a sequence of
nano-instructions which are derived from breaking down a kernel.
In Section 4, all the nano-instructions are defined, and, using an
example, it is explained how one can break a kernel into a sequence
of nano-instructions.
The remainder of this paper is organized as follows: in Section 2
related work on NVM computation platforms is introduced. From
Section 3 till Section 5 it is illustrated how the CIM-SIM is developed,
what the instructions are and how one can initialize the simulator.
In Section 6 a couple of potential kernels and applications that can
be mapped to such an architecture are presented. Lastly, the paper
concludes in Section 7.

Figure 1: Non-Volatile Memory Crossbar



2 NON-VOLATILE MEMORY BASED
COMPUTATION PLATFORMS

After the first memristor was built in 2008, quite a few research
groups have tried to exploit it for different purposes in various
manners. The most attractive, and the most popular approach, nev-
ertheless, is to organize them in a crossbar, with a memristor (in
series with an access transistor) at every cross-point (Fig. 1.) Be-
ing surrounded by some analog circuitries, a crossbar could be
enabled to serve both as memory unit, and as processing element
at the same physical position, which makes them favourable for
non-Von Neumann architectures [4, 8–10]. Although the platform
itself has been investigated quite extensively, the ways that it could
be adopted by existing architectures (e.g. as an accelerator) or how
it could be exploited as a stand-alone processor is not comprehen-
sively explored. In [6, 12, 13], different approaches have been taken
to utilize memristor-based platforms in an architecture that is only
suitable for Neural Networks (NNs). In [6], authors have proposed
to process in ReRAM-based main memory to accelerate NN compu-
tation, bringing the memory unit and processor elements physically
closer to each other. Shafiee, et al. [13] have proposed a tiled archi-
tecture, again for accelerating NN, where every tile comprises an
eDRAM Buffer, memristor crossbars, analog circuitries, input and
output registers, and several units with special functionalities. [11]
proposes an architecture which uses NVM based main memory to
perform bulk bit-wise operations. Finally, [17] proposes a simulator,
called MNSIM, for memristor-based neuromorphic systems. All the
proposed architectures, nonetheless, just make use of some of mem-
ristor potentials, and none proposes a comprehensive architecture
which could exploit them to their full potential. CIM-SIM, on the
other hand, not only supports different kernels, but it can easily be
modified to meet the requirements of potential kernels that may
be mapped to an NVM-crossbar in future, as well. As an example,
for some kernels the WLs in the crossbar must be vertical. The
new arrangement can be supported by the simulator, modifying
connections between blocks.

3 OUR NANO-ARCHITECTURE
Our simulator, which is written in SystemC, mimics the functional
behaviour of a possible NVM-based platform, which could process
different kernels such as Vector Matrix Multiply (VMM), and bitwise
Boolean logic. A general organization of a CIM-P tile is depicted in
Fig. 2. The calculator represents the analog circuitry of the NVM
crossbar (X-bar) (Fig. 1.) In addition, the calculator contains DIMs
(Digital Input Modulator), and A/Ds (Analog/Digital converter) to
interface with the digital (nano-)controller and associated registers.
Moreover, the sample-and-hold (S&H) circuitry allows for the sepa-
ration of calculations within the X-bar and the readout circuitry,
i.e., the A/D blocks. In the digital periphery (outside the calculator),
several registers are being used to control the calculator. They are:
• WD (Write Data) register is used to temporary store the data

that is to be loaded into the crossbar.
• WDS (Write Data Select) register serves as a mask to protect

devices which are not intended to be modified from being
overwritten. This accelerates writing process, decreases en-
ergy consumption, and alleviates low endurance of NVMs,
avoiding unnecessary writes.

Figure 2: Nano-architecture Block Diagram

• RS (Row Select) register is used to select which row or rows
should be activated. E.g., only one row needs to be activated
when writing data, but several rows needs to be activated
for other operations. Additionally, it holds the input values
to be processed on the crossbar.
• CS (Column Select) register is used to select which columns

from the crossbar should be read and converted to digital
data. In this manner, non-relevant columns can be skipped or
interleaving of data stored in the crossbar can be supported.
Moreover, when multiple columns need to share a single
A/D-block, the CS register can be used to control this.
• Output register is being used to temporarily store the digital

data before it is sent to external devices, e.g., a host CPU,
other memories, or other CIM-P tiles.

The nano-controller can send specific control signals to the calcula-
tor to drive specific actions within the calculator. For example, the
sense amplifiers (within the A/D blocks) can be controlled perform
different Boolean operations. These control signals are collectively
referred to as FS (Function Select) signals.

4 (NANO-)INSTRUCTION SET
Before defining the instructions for our nano-architecture, we ob-
serve that the control of the CIM-P tile can be divided into several
distinct phases. We envision that in the future these phases can

Table 1: Parameters

Symbol Definition
x Data Bus Width (Byte)

Sr eд Size of RS or WD register (Byte)
SWDS Size of WDS register (Byte)
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Algorithm 1: Load Class
Input: Startaddress
Output: Null
*reg is RSr eд orWDr eд ;

1 for (i = 0; i < Sr eд ; i = i + x) do
2 reд[i] ← $(Startaddress + i) ;

be overlapped to allow for pipelining purposes. The phases (with
corresponding instructions) are:
• Load: Instructions in this phase fetch data from a higher

level memory and includes the following two instructions:
WD (Write Data), and RS (Row Select). Instructions get the
starting address of the data in higher level memory as input
and fill the respective register accordingly (Algorithm 1.)
• Configuration: Instructions in this phase are used to con-

figure specific parts of nano-architecture which can operate
in different fashions depending on the operation. The WDS
instruction sets the pattern of the columns to be selected in
the WDS register. In our implementation, based on our use
case, we assume the pattern isvalue1 number of consecutive
columns starting from value0. In a similar fashion, CS deter-
mines the column to be selected among the columns which
share one A/D controlling select line of the analog multi-
plexers (value0). The operation to be performed is decided
by the FS instruction Tag (value0) (Algorithm 2.)
• Compute: In this phase, we specify a single instruction: DoA

(Do Array). DoA triggers the DIMs to steer the data for the
operation specified by FS. Data is written, or processed by
the array and if any result is produced, it will be held in S&H.
• Read: In this phase, we specify a single instruction: DoR (Do

Read). Columns selected by CS are read, and converted to
corresponding digital values by the A/Ds.

Finally, it is expected that the digital peripheral circuits can be
clocked faster than a single operation on the (analog) crossbar.
This means that several clock ticks can occur while an operation
is performed in the calculator. This is another motivation for the
proposed phases and instructions, as it allows us to schedule them in

Algorithm 2: Configuration Class
Input: value0,value1, [...,valuen ]
Output: Null

1 if (Instruction = WDS) then
2 for (i = 0; i < SWDS ; i = i + 1) do
3 if (value0 =< i < value0 +value1) then
4 WDSr eд[i] ← 1 ;
5 else
6 WDSr eд[i] ← 0 ;

7 else if (Instruction = CS) then
8 CSr eд ← value0;
9 else if (Instruction = FS) then

10 FSsiдnal ← value0;

Algorithm 3: Programming Crossbar
1 RS $address1;
2 WD $address2;
3 WDS value0,value1;
4 FS WR;
5 DoA;

a flexible manner, i.e., configure the periphery for the next operation
before actually issuing the DoA instruction.

5 CROSSBAR INITIALIZATION
To utilize a NVM crossbar, first of all, it should be programmed.
Basically, to program a NVM to a certain state (conductance), a volt-
age higher than the threshold voltage should be applied across the
device. There are serious challenges to program a device whether
it is in a crossbar or not, though, which are out of the scope of this
paper [2, 16]. Here we will just explain the sequence of instructions
that should be issued to set up the analog and digital peripheries for
writing memristors in a crossbar. Since a voltage should be applied
across a memristor to program it, both the WD register and the
RS register should be filled with correct values. Additionally, the
WDS register needs to be set in a way that certain columns which
are not intended to be modified are disconnected. Then, the nano-
architecture should be configured via FS instruction. Having them
all set, and when the nano controller receives the DoA instruction,
it could issue the corresponding signal and certain parts of the
crossbar selected by registers are programmed (Algorithm 3.)

6 POTENTIAL KERNELS
In this section two popular kernels which we already have run on
the nano-architecture are explained. We have chosen these kernels
since, they are the most promising kernels that could be mapped
on NVM-crossbar based platforms. These , however, are just exam-
ples to clarify how CIM-SIM could be used; one, could modify the
simulator to be suitable to run other kernels.

6.1 Vector Matrix Multiply
As neural networks show promising results in various fields they
are attracting quite some attention. Consequently, quite intensive
efforts has been put to develop suitable platforms and algorithms
for implementation of the respective kernels, e.g. VMM [3, 5, 8, 13].
Considering that, one of the kernels that we have implemented in
our simulator is VMM. To do a VMM, depending on the size of the
vector, the rows which are not intended to take part in calculation
will not be activated at all. Thus, the respective RSr eдister will hold

Algorithm 4: Vector Matrix Multiplication
1 RS $address;
2 FS VMM ;
3 DoA;
4 CS value0;
5 DoR;
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Algorithm 5: Bulk Bit-wise Boolean Logic (AND)
1 RS $address;
2 FS AND;
3 DoA;
4 CS value0;
5 DoR;

zero, making WL low, which deactivates the whole row. Rows being
configured, FS instruction will determine the functionality, which
in this case is VMM. Issuing DoA, CS, and DoR data are processed
and sent out to the output register (Algorithm 4.)

6.2 Bulk Bit-wise Boolean Logic
Performing bit-wise Boolean logic is essential in various applica-
tions such as in queries [7]. Some NVM-crossbar based platforms
have been proposed to implement the kernel [18]. In this case all
the data to be processed is in the memristor crossbar itself. The
data desired to be processed is selected, applying a read voltage to
corresponding rows, according to [18], which is non-zero value for
the selected rows and zeros for others. This means the data to be
fetched via instruction RS $address only could have two non-zero
values. In this example we have decided to have an AND function,
so the FS tag is AND. (Algorithm 5.)

7 CONCLUSION
In this paper, we presented the CIM-SIM, a new functional accurate
simulator for NVM-crossbar-based computing platforms. It can be
used to analyze the functional behaviour of kernels like VMM or
bulk bit-wise Boolean logic using a sequence of nano-instructions.
Various extensions to the simulator are envisioned. First, we intend
to extend the simulator to incorporate various timings in both the
analog crossbar (defined by technology trends) and the digital con-
troller. This can be used to perform a trade-off analysis between
the digital and analog circuits. For example, matching the clock of
the digital circuit to the delay of the analog array will allow for
power/energy savings. Second, different NVM technologies will
provide and different applications will need different operations
within the CIM-P tile. Using our CIM-SIM, these (matching and
non-matching) provisions and requirements can be investigated.
Third, the defined instructions allow for an exploration in the auto-
matic code generation, e.g., building a new compiler, for current
and future NVM architectures as well as the rescheduling of the
same instructions to enhance performance. The code generation
and scheduling will greatly depend on many technology factors
and, again, our CIM-SIM can be used for this investigation. Finally,
we intend to complete our CIM-SIM with interface to other existing
simulators, e.g., GEM5. This will allow for a more in-depth inves-
tigation into hardware/software co-design techniques combining
traditional processors with NVM-based accelerators.

REFERENCES
[1] Muath Abu Lebdeh, Uljana Reinsalu, Hoang Anh Du Nguyen, Stephan Wong,

and Said Hamdioui. 2019. Memristive Device Based Circuits for Computation-
in-Memory Architectures. In 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), Accepted (Paper ID: 5782769).

[2] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High
precision tuning of state for memristive devices by adaptable variation-tolerant al-
gorithm. Nanotechnology 23, 7 (2012), 075201. https://doi.org/10.1088/0957-4484/
23/7/075201

[3] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Mah-
mudul Hasan, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. 2018.
The history began from alexnet: A comprehensive survey on deep learning
approaches. arXiv preprint arXiv:1803.01164 (2018).

[4] Irem Boybat, Manuel Le Gallo, SR Nandakumar, Timoleon Moraitis, Thomas
Parnell, Tomas Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, and
Evangelos Eleftheriou. 2018. Neuromorphic computing with multi-memristive
synapses. Nature communications 9, 1 (2018), 2514. https://doi.org/10.1038/
s41467-018-04933-y

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-47). IEEE Computer Soci-
ety, Washington, DC, USA, 609–622. https://doi.org/10.1109/MICRO.2014.58

[6] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main Memory. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA ’16). IEEE
Press, Piscataway, NJ, USA, 27–39. https://doi.org/10.1109/ISCA.2016.13

[7] Jerry Chou, Mark Howison, Brian Austin, Kesheng Wu, Ji Qiang, E. Wes Bethel,
Arie Shoshani, Oliver Rübel, Prabhat, and Rob D. Ryne. 2011. Parallel Index
and Query for Large Scale Data Analysis. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’11). ACM, New York, NY, USA, Article 30, 11 pages. https://doi.org/10.1145/
2063384.2063424

[8] Miao Hu, John Paul Strachan, Zhiyong Li, R Stanley, et al. 2016. Dot-product
engine as computing memory to accelerate machine learning algorithms. In 2016
17th International Symposium on Quality Electronic Design (ISQED). IEEE, 374–379.
https://doi.org/10.1109/ISQED.2016.7479230

[9] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers,
Tomas Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou.
2018. Mixed-precision in-memory computing. Nature Electronics 1, 4 (2018), 246.
https://doi.org/10.1038/s41928-018-0054-8

[10] Can Li, Miao Hu, Yunning Li, Hao Jiang, Ning Ge, Eric Montgomery, Jiaming
Zhang, Wenhao Song, Noraica Dávila, Catherine E Graves, et al. 2018. Analogue
signal and image processing with large memristor crossbars. Nature Electronics
1, 1 (2018), 52. https://doi.org/10.1038/s41928-017-0002-z

[11] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A Processing-in-memory Architecture for Bulk Bitwise Operations
in Emerging Non-volatile Memories. In Proceedings of the 53rd Annual Design
Automation Conference (DAC ’16). ACM, New York, NY, USA, Article 173, 6 pages.
https://doi.org/10.1145/2897937.2898064

[12] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji
Chen, and Tianshi Chen. 2016. Cambricon: An Instruction Set Architecture
for Neural Networks. In Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 393–405.
https://doi.org/10.1109/ISCA.2016.42

[13] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-situ Analog
Arithmetic in Crossbars. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 14–26.
https://doi.org/10.1109/ISCA.2016.12

[14] John M Shalf and Robert Leland. 2015. Computing beyond Moore’s Law. Computer
48, 12 (2015), 14–23. https://doi.org/10.1109/MC.2015.374

[15] R Stanley Williams. 2017. What’s Next? [The end of Moore’s law]. Computing in
Science Engineering 19, 2 (2017), 7–13. https://doi.org/10.1109/MCSE.2017.31

[16] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu
Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. 2012. Metal–oxide
RRAM. Proc. IEEE 100, 6 (2012), 1951–1970.

[17] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Pai-Yu Chen, Shimeng Yu, Yu Cao,
Yu Wang, Yuan Xie, and Huazhong Yang. 2018. MNSIM: Simulation Platform
for Memristor-Based Neuromorphic Computing System. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37, 5, 1009–1022. https:
//doi.org/10.1109/TCAD.2017.2729466

[18] Lei Xie, Hoang Anh Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil,
Mohammad AlFailakawi, and Said Hamdioui. 2017. Scouting logic: A novel
memristor-based logic design for resistive computing. In 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 176–181. https://doi.org/10.
1109/ISVLSI.2017.39

4


