
Reviewing Inference Performance of
State-of-the-Art Deep Learning Frameworks

Berk Ulker1, Sander Stuijk1, Henk Corporaal1, Rob Wijnhoven2
{b.ulker,s.stuijk,h.corporaal}@tue.nl,rob.wijnhoven@vinotion.nl

1Eindhoven University of Technology, 2ViNotion
Eindhoven, The Netherlands

ABSTRACT
Deep learning models have replaced conventional methods for
machine learning tasks. Efficient inference on edge devices with
limited resources is key for broader deployment. In this work, we
focus on the tool selection challenge for inference deployment.
We present an extensive evaluation of the inference performance
of deep learning software tools using state-of-the-art CNN archi-
tectures for multiple hardware platforms. We benchmark these
hardware-software pairs for a broad range of network architec-
tures, inference batch sizes, and floating-point precision, focusing
on latency and throughput. Our results reveal interesting combina-
tions for optimal tool selection, resulting in different optima when
considering minimum latency and maximum throughput.
ACM Reference Format:
Berk Ulker1, Sander Stuijk1, Henk Corporaal1, Rob Wijnhoven2. 2020. Re-
viewing Inference Performance of State-of-the-Art Deep Learning Frame-
works. In 23rd International Workshop on Software and Compilers for Em-
bedded Systems (SCOPES ’20), May 25–26, 2020, Sankt Goar, Germany. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3378678.3391882

1 INTRODUCTION
Deep learning (DL) is applied successfully in several domains, such
as computer vision [18], speech [15], text and natural language pro-
cessing. While the capabilities and accuracy of these methods keep
improving, the networks are becoming computationally complex
with significant resource requirements. Due to resource limitations
and stringent performance requirements on inference, deployment
of Deep Neural Network (DNN)-based solutions on edge devices
poses a challenging design problem. The selection of appropriate
tools is becoming a more critical step in the design process, as the
variety of such tools and target platforms continues to increase.
In this work, we focus on the tool selection problem for the infer-
ence of DNNs. Deployment of DL-based solutions on edge devices
requires specific hardware and software package combinations,
in addition to algorithmic design. Based on different technical re-
quirements and budget considerations, several different approaches
are adopted. FPGA- and ASIC-based platforms have been used in

This work is funded by the NWO Perspectief program ZERO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7131-5/20/05. . . $15.00
https://doi.org/10.1145/3378678.3391882

 a
le

xn
et

 re
sn

et
18

 re
sn

et
34

 re
sn

et
50

 re
sn

et
10

1

 re
sn

et
15

2

 in
ce

pt
io

nv
1

 in
ce

pt
io

nv
2

 in
ce

pt
io

nv
3

 in
ce

pt
io

nv
4

 v
gg

16

 v
gg

19

 m
ob

ile
ne

tv
1

 m
ob

ile
ne

tv
2

 sq
ue

ez
en

et
v1

.0

 sq
ue

ez
en

et
v1

.1

 sh
uf

fle
ne

tv
1

 sh
uf

fle
ne

tv
2

1050 Ti 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
1080 Ti 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
GTX Titan 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2

4 TensorRT 2 PyTorch 1 Caffe2 3 TensorFlow 5 OpenVINO 0 N/A

RTX Titan 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1
Jetson TX2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
Jetson Xavier 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
Jetson Nano 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
NCS 2 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Edge TPU 0 0 0 0 0 0 3 3 0 3 0 0 3 3 3 0 0 0

Figure 1: Software tools delivering minimum execution
time for each platform-network configuration. Runner-up
is shown on the lower right triangle in each cell, if available.

industrial application deployments, which enable configurations
of hardware and software specifically designed for an application.
Although superior resource efficiency can be achieved through
such solutions [28], custom implementation effort and hardware-
specific knowledge [19] are often required. Resulting cost increase
and limited reuse potential for implementation limit the feasibility
of this approach. The most widely-adopted approach is the use
of parallel processors, particularly GPUs [7], with software frame-
works designed to provide an implementation of DNN functionality
on these platforms. These tools provide implementations of vari-
ous network architectures by their software packages combined
with third-party primitive function libraries such as cuDNN [8],
cuBLAS [4], MKL [3] and Eigen [12]. By providing abstraction and
flexibility, software frameworks rapidly become popular as they
help accelerating design, prototyping and testing tasks in industry
and research domains.

Available DL tools target various stages of deployment and have
different sets of capabilities. Although a set of common libraries
implementing primitives is shared, frameworks have diverged with
differences in implementation, representation of network architec-
tures and the level of hardware support. Combined with limitations
of inference environments and application requirements, diver-
gence in tools makes tool selection a key challenge. In our work, we
aim to address this challenge by providing a comparative analysis
of the inference performance of DL frameworks on different plat-
forms with various network models, batch sizes and floating-point
precision levels. We measure latency and throughput under varia-
tions over the benchmark dimensions to survey tool performance.
Our discussions are extended through application scenarios with

https://doi.org/10.1145/3378678.3391882
https://doi.org/10.1145/3378678.3391882

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Berk Ulker1 , Sander Stuijk1 , Henk Corporaal1 , Rob Wijnhoven2

TensorFlow PyTorch Caffe2 TensorRT OpenVINO
GTX 1050 Ti ✓ ✓ ✓ ✓
GTX 1080 Ti ✓ ✓ ✓ ✓
GTX Titan ✓ ✓ ✓ ✓
RTX Titan ✓ ✓ ✓ ✓
Jetson TX2 ✓ ✓ ✓
Jetson Nano ✓ ✓ ✓
Jetson Xavier ✓ ✓ ✓
Intel NCS2 ✓
Edge TPU ✓

Library Version 1.14.0 1.2.0 1.2.0 5.1.6.1 2.0.1
cuDNN 7.5.0.66 7.5.0.66 7.5.0.66 7.5.0.66 -
CUDA 10.0 10.0 10.0 10.0 -

Table 1: Hardware-software tool pairs used for evaluation.

Frameworks TensorFlow [5], PyTorch [22], Caffe2, TensorRT, Open-
VINO

Hardware 1050Ti, 1080Ti, GTX Titan, RTX Titan,
Jetson TX2, Jetson Nano, Jetson Xavier,
Neural Compute Stick 2, Edge TPU (dev. board)

Models AlexNet, VGG-16/19, ResNet-18,34,50,101,152,
Inception-v1,v2,v3,v4, MobileNet-v1,v2,
ShuffleNet-v1,v2, Squeezenet-v1.0,v1.1

FP Precision Single, Half
Batch Size 1-512

Table 2: Experimental grid.

minimum execution time and maximum throughput requirements,
which reflect the most typical deployment requirements.

Our contribution in this paper is twofold. First, we provide a
broad benchmark with most commonly used CNN architectures,
popular and active DL software tools, hardware covering several
edge devices and server type GPUs. Second, an in-depth analysis
of benchmark results for the most popular software frameworks
allows to quantify and compare relative inference performance. To
the best of our knowledge, this work provides the most extensive
and up to date comparison of the inference performance of DL
software tools, running on a broad range of recent target platforms.

The rest of the paper is structured as follows. Section 2 provides
an overview of existing works. In Section 3, our approach and
motivation in the design of experiments are explained. Results of
our benchmark, key cross-sections and discussions are provided in
Sections 4 and 5. Finally, the paper is concluded in Section 6.

2 RELATEDWORK
Increasing popularity of DL-based methods triggered development
of various software tools to facilitate their implementation. Several
works have tried to classify and evaluate the capabilities of DL soft-
ware frameworks. However, comparing all such tools on common
ground is challenging, as many of them are developed for specific
and different use cases, target platforms and user bases.

Druzhkov [10], Erickson [11] and Pandey [21] present surveys of
software frameworks by exploring software package properties and
available DL functionality. These works provide insights on tool be-
havior and target platforms, but they lack performance evaluations
based on any experiments or measurements. Hanhirova et al. [13]
study latency and throughput characteristics for mobile devices. Al-
though they study multiple inference run-time characteristics, their
focus is on performance evaluation of different network architec-
tures concentrated on TensorRT and TensorFlow [5]. With limited
selection of software frameworks, this work does not address the
selection problem completely.

Bahrampour et al. [6] provides a comparative study of DL soft-
ware frameworks including community involvement and frame-
work properties. Their work compares forward and backward run-
times of different networks on single- and multi-CPU and GPU plat-
formswith different levels of primitive library support. Shi et al. [24]
compare frameworks for training and inference performance on
different hardware and analyse GPU utilization and relative perfor-
mance against CPU execution. pCAMP by Zhang et al. [30] evalu-
ates inference performance on edge devices. Power consumption,
memory footprint and latency of several frameworks are studied
with the Alexnet and Squeezenet models on different edge devices.
The impact of initialization is also discussed. However, our analysis
of inference includes experiments on additional hardware, uses
different floating-point precision levels and batch sizes to analyze
throughput latency characteristics.

In summary, existing works do not present a comprehensive and
up to date analysis on inference performance of state-of-the-art DL
software frameworks. We aim to resolve this gap, by comparing
benchmark statistics of DL frameworks on an experimental grid
constructed by different frameworks, platforms, network models,
floating-point precision levels and batch sizes listed in Table 2.

3 BENCHMARK APPROACH
We designed our experiments to explore software tool behaviour
in different dimensions. The most common approach in literature
is to measure processing time of inference as a performance metric.
Execution time alone does not reflect application requirements
where processing is done on multiple objects or images in a single
time frame. For such applications, throughput is key given that
latency is within requirements. We therefore extended processing
time measurements to larger batch sizes. Thus, we use forward
processing latency and throughput as metrics to evaluate inference
performance for each software tool.

Our benchmark includes a set of popular software frameworks,
evaluated on hardware ranging from embedded accelerators, to
high-end graphics cards (see Table 1). For each configuration, frame-
work and support library versions are aligned to present a fair
comparison. Framework and GPU accelerator library versions are
shown in Table 1. CuDNN and CUDA library versions are aligned
on the latest versions supported on the Jetson SOM platform.

Being the core of DL-based computer vision applications, CNN
models are employed for many tasks, including classification. These
models are also the backbone of more complex applications such
as object detection, semantic segmentation, and flow estimation,
which require additional layers implemented on top of the backbone
network architecture. However, the computational cost of backbone
networks is significantly higher compared to these additional layers.
Thus, for our evaluation, we used backbone network architectures
to represent computation loads.

The following widely utilized CNN network architectures are
included in the benchmark: AlexNet [18], VGG [25], ResNet [14], In-
ception [26], MobileNet [16] [23], ShuffleNet [29] [20] and Squeeze-
net [17]. The models we use in our evaluation are model zoo imple-
mentations or third party implementations closest to the original
work. We did not benchmark TensorRT with ShuffleNet-v2, Py-
Torch with Inception v1 and Inception v2, due to lack of these
implementations.

Reviewing Inference Performance of
State-of-the-Art Deep Learning Frameworks SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

The use of half-precision floating-point numbers is widely sup-
ported by software frameworks to reduce computational load. We
performed our evaluationwith both single and half-precision floating-
point numbers. Note that the availability and performance of half-
precision floating-point numbers are dependent on both the target
platform and DL framework. Because we focus on exploring frame-
work inference performance, we ignored algorithmic classification
accuracy. This enabled us to use randomly initialized network pa-
rameters and avoid restrictions on our test space to models with
pre-trained weights. Random images from the ImageNet dataset [9]
were used as inputs for our experiments.

To explore the throughput-latency trade-off, we included dif-
ferent input batch sizes in our experiments. The limiting factor of
the batch size is the available memory. Therefore, the maximum
batch size can be different for each hardware/framework/floating-
point-precision/network model combination. For our experiments,
we measured inference latency for batch sizes ranging from 1 to
512. For TensorRT, the inference engine is generated independently
for each batch size as different types of kernels may be used. For
PyTorch, TensorFlow, and Caffe2, such decision is made at run-time,
without hardware probing. For OpenVINO (Intel NCS2), the infer-
ence engine is also generated for each configuration, as the number
of parallel workers may change based on the input batch size.

In our experiments, we measured the end-to-end execution time
of the forward inference cycle in all combinations of our experi-
mental grid. This timing does not include any data retrieval, ini-
tialization and pre-processing of input. Data transfers from host to
accelerator are included in our measurements. In order to conduct
an accurate benchmark, we used warm-up rounds and we ran our
tests under the same power management modes. The complete
experimental grid is shown in Table 2. It must be noted that we did
not manage to evaluate certain configurations, which are discussed
in the following sections with underlying reasons.

While measurement of forward execution is straightforward,
getting layer-wisemetrics of inference requires built-in and external
profiler tools. Extent, output, and reliability of these tools show
significant differences. Caffe2 profiler has support for per-layer
measurements. TensorFlow’s profiler Tfprof also has similar per
layer profiling capabilities with a breakdown of layer execution
times into CPU and accelerator. PyTorch provides similar timings,
but results are not directly comparable. GPU operations in PyTorch
are asynchronously executed: layer execution times result from
both operator implementation efficiency and execution schedule.
Kernel execution times are separately measured for GPU/CPU time
for operations in each layer [2]. As a result of these differences, we
do not present results based on the output of the profilers, such as
per operation timings. We used the profiler tools only to identify
and analyze run-time issues and measurements that stand out.

4 RESULTS
We present benchmark results in four subsections: inference execu-
tion times, inference throughput, throughput latency trade-off and
half-precision floating-point performance. The total set of bench-
mark measurements and the source code for experiments are pro-
vided in our repository[1]. For additional cross-sections of our
experiments, refer to Figures 8-17 in [27].

4.1 Inference execution times
Minimum forward execution time is often targeted for time-critical
applications, where having minimal latency has more priority than
having higher throughput. For such deployments, the batch size is
often set to minimum, and lower floating-point precision is used.
Figure 1 shows the software tools that achieve minimum execution
time for each hardware and network architecture.

Our results in Figure 1 show that TensorRT delivers minimum av-
erage execution time for the network models that can be translated
into TensorRT engines. This result is in line with our expectations,
as TensorRT is a specialized proprietary inference tool for NVIDIA
hardware with hardware probing and optimization capabilities be-
yond open-source DL tools. We failed to successfully translate or
parse any official Shufflenet V2 model into a TensorRT engine.

When ignoring the closed-source TensorRT results, the clear
runner-up is PyTorch for most networks and TensorFlow for the
Inception architectures. Open source tools share more third party
functionality and libraries, and the performance gap between them
is smaller.

Figure 2 show inference execution times for each framework and
hardware-software configuration, using unity batch size. We show
results only for RTX Titan and Jetson Xavier as representations for
server and edge hardware platforms, respectively. The performance
gap between TensorRT and other tools are noticeable. PyTorch,
TensorFlow and Caffe2 have comparable execution times, while on
average PyTorch is the fastest. Caffe2 and PyTorch show similar
scaling characteristics with network size, which can be explained
by sharing codebase. TensorFlow has the highest overall execution
time, but it shows a better scaling with increasing network size as
is visible in the deeper ResNet and Inception variants.

Caffe2 has performance issues in networks with group convolu-
tions and depth-wise convolutions. Figure 2 shows that MobileNet-
v2 and ShuffleNet variants have significantly higher execution times
in Caffe2, with the only exception when being run on the RTX Titan.

TensorFlow execution times of Alexnet, VGG-16, and VGG-19
are significantly higher than other software frameworks, and also
stand out when compared to other network timings. This can be
explained by different implementations of fully connected layers of
these network models. These models use the convolution operator,
instead of using kernels designed for the fully connected operator.
This affects the execution performance of Alexnet, VGG-16, and
VGG-19 negatively for TensorFlow implementations.

4.2 Inference throughput
Inference throughput is key for applications which involve multiple
inference operations in a single time frame. Applications without
strict latency limitations can benefit from increased throughput, by
increasing the inference batch size, at the cost of an increased la-
tency. An overview of the best tools for each network and hardware
combination is shown in Figure 3. Comparing these results to the
latency evaluation in Figure 1, TensorRT again obtains overall best
results. Runners up are PyTorch and TensorFlow, where TensorFlow
now obtains second-best results on several ResNet variants.

Figure 4 shows maximum achieved throughput on different hard-
ware, by varying batch size and precision. In maximum through-
put calculation, all available batch sizes and both half and single-
precision floating-point levels are considered. This means that the

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Berk Ulker1 , Sander Stuijk1 , Henk Corporaal1 , Rob Wijnhoven2

(a) RTX Titan

(b) Jetson Xavier

Figure 2: Inference execution times (batch size one, single-
precision floating-point).

maximum throughput operating point of a framework-network-
hardware combination can have a different batch size and floating-
point precision, as compared to other combinations. This point
is at a similar batch size for every network-framework pair with
small variations only, and the point of optimum performance is
often reached before all available memory is allocated. In general,
TensorRT attains the highest throughput. As in the previous latency
evaluation, the performance gap increases on hardware with more
processing units.

 a
le

xn
et

 re
sn

et
18

 re
sn

et
34

 re
sn

et
50

 re
sn

et
10

1

 re
sn

et
15

2

 in
ce

pt
io

nv
1

 in
ce

pt
io

nv
2

 in
ce

pt
io

nv
3

 in
ce

pt
io

nv
4

 v
gg

16

 v
gg

19

 m
ob

ile
ne

tv
1

 m
ob

ile
ne

tv
2

 sq
ue

ez
en

et
v1

.0

 sq
ue

ez
en

et
v1

.1

 sh
uf

fle
ne

tv
1

 sh
uf

fle
ne

tv
2

1050 Ti 2 4 4 4 4 4 4 4 1 4 4 3 4 4 4 4 4 2
1080 Ti 2 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 2
GTX Titan 2 4 4 4 4 4 4 4 1 4 4 2 4 4 4 4 4 2
RTX Titan 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1
Jetson TX2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
Jetson Xavier 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
Jetson Nano 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2
NCS 2 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Edge TPU 0 0 0 0 0 0 3 3 0 3 0 0 3 3 3 0 0 0

4 TensorRT 2 PyTorch 1 Caffe2 3 TensorFlow 5 OpenVINO 0 N/A

Figure 3: Software tools delivering maximum throughput
for each platform-network configuration. Runner-up is
shown on the lower right triangle in each cell, if available.

(a) RTX Titan

(b) Jetson Xavier

Figure 4: Maximum achieved throughput.

Caffe2 networks are executed only in single-precision floating-
point. Figure 4 shows the effect of this limitation. Caffe2 has the
lowest overall throughput, with an increasing gap for deeper net-
works. TensorFlow reduces the performance gap observed in the
previous section, i.e. it benefits more from increased batch size as
compared to the other frameworks.

4.3 Throughput-Latency Trade off
We now compare throughput to the corresponding latency. We used
batch sizes of powers of two, ranging from 1 to 512. Figure 5 shows
a subset of the resulting throughput/latency curves, measured on
both server and embedded hardware. Increasing the batch size
increases throughput significantly until performance converges at
a certain batch size, typically between 16 and 32. A further increase
provides a limited gain in throughput with increased latency. This
occurs when further parallelization inside the GPU is not possible.

4.4 Half-precision floating-point performance
Half-precision floating-point computation is widely supported by
DL software frameworks. If a limited reduction in accuracy can be
accepted, then precision can often be brought to single-precision
floating-point levels. Although all software frameworks included
in this benchmark have half-precision floating-point support, we
encountered several issues, especially with Caffe2. Because support
for conversion of a model defined with single- to half-precision
floating-point is not present in Caffe2, these measurements lack in
our results.

Reviewing Inference Performance of
State-of-the-Art Deep Learning Frameworks SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany

Figure 5: Throughput vs. latency curves for ResNet-101 and Inception-v4 networks, obtained by increasing batch size.

(a) GTX Titan

(b) RTX Titan

(c) Jetson Xavier

Figure 6: Speedup by switching to half-precision floating-
point precision.

The performance gain from half-precision floating-point is de-
pendent on both hardware and software tool support. Among
the platforms used in the benchmark, hardware support for half-
precision floating-point computation is available in RTX Titan,
Jetson Nano, Jetson TX2, and Jetson Xavier. Figure 6 shows the
speedup achieved by switching from single- to half-precision floating-
point for each applicable software framework. Results show an
overall increase in performance, with some notable exceptions. For
GPUs without half-precision support, performance is almost similar
in TensorRT on GPUs (a unity speedup). This is a result of not using
type constraints, which allows TensorRT to select single-precision

kernels. When strict type constraints are applied in TensorRT and
only half-precision kernels are executed, negative performance in-
fluences can be observed for GTX Titan and 1080Ti. For PyTorch
and TensorFlow, execution in half-precision floating-point is not
enforced, yielding speedups slightly larger than unity in most cases.
Layers with efficient half-precision implementation are executed
in half-precision, all other combinations use single-precision im-
plementations. Required data type conversion introduces overhead
for conversion between single- and half-precision values. However,
with hardware support for half-precision, much larger speedup
factors are achieved by TensorRT. To investigate the unexpected
performance decrease for MobileNet v1, MobileNet v2, and Shuf-
fleNet V1, the internal profiler of TensorRT is used. We found that
the reason are grouped convolutions which are used when the
model is executed in half floating-point precision, which appar-
ently cannot be mapped efficiently by TensorRT.

Figure 7: Speedup of TensorRT inference with strict type
constraints set for half-precision, for hardwarewithout half-
precision computation capability.

5 DISCUSSION
Due to different requirements and priorities, the use of a single
performance metric for all deployment scenarios is not feasible.

Overall, TensorRT delivers the highest throughput and smallest
latency, although there are cases where it is either not applica-
ble, or outperformed by others. Also, capabilities and flexibility of
TensorRT are limited compared to others, as it can only perform
inference on a limited set of platforms. Due to the lack of training
functionality, deployment has a dependence on additional train-
ing and translation tools. We experienced issues in the translation
of models and therefore used pre-trained networks in ONNX and
Caffe format, which can be directly parsed into TensorRT.

SCOPES ’20, May 25–26, 2020, Sankt Goar, Germany Berk Ulker1 , Sander Stuijk1 , Henk Corporaal1 , Rob Wijnhoven2

Our results show that PyTorch can deliver less latency and more
throughput on average, as compared to the Caffe2 and TensorFlow.
While Caffe2 and PyTorch share functionality and part of their
source code, overall Caffe2 performance is inferior compared to
PyTorch. Among open-source frameworks, TensorFlow shows the
best scaling with increased computational load. This effect is visible
in Figure 2 and 4, where an increase in batch size and network
complexity closes the gap with other frameworks.

NCS2 and Edge TPU can only be used with the respective frame-
works and limited configurations, therefore providing an exten-
sive comparison of frameworks on such hardware is not possible.
However, we decided to include these results for completeness of
absolute timing comparison of hardware-software pairs. Detailed
results are presented in [27] and [1].

In light of our results and observations, it is not possible to con-
clude that one of the evaluated software frameworks is superior
in all aspects. Latency and throughput characteristics provided in
Figure 4 and 5 show which framework has better performance for
certain operation points and network architectures. However, this
comparative data does not only depend on tool selection. Applica-
tion requirements may require specific functionality, which may
be supported in various levels with different frameworks. Further-
more, dependency on additional tools and ease of use also need
to be considered in the tool selection process. According to our
experience, this decision requires a clearly defined scenario, where
available hardware and resources, required capabilities, range of
expected throughput and latency are included.

Throughput and execution time characteristics given in Figure 4
and 5 show that based on latency/throughput metrics, TensorRT
delivers best performance. However, some use case-specific ap-
plication requirements can only be provided with more complete,
extendable and flexible tools. The open-source software frameworks
PyTorch and TensorFlow can address those requirements better
than TensorRT. Furthermore, when the latency limit is relaxed and
larger batch sizes are allowed, the gap between framework perfor-
mances decreases. For larger batch sizes, the throughput delivered
by TensorFlow is higher than for PyTorch for many cases. Network
composition can be a deciding factor since there are several edge
cases where framework performance stands out negatively due to
inefficient implementation of certain types of operators or network
architectures. Depending on application specifications, PyTorch,
TensorFlow or TensorRT can be the tool of choice. We do not rec-
ommend the use of Caffe2 due to inefficiencies in certain operator
implementations, less flexible model structure, and lower level of
active support while having similar performance as PyTorch.

6 CONCLUSIONS
This paper presents an extensive comparative inference perfor-
mance evaluation of a set of deep learning software frameworks on
a broad range of target hardware platforms. We focus on the local
computation of convolutional neural network inference on edge
devices. Based on our benchmark results, we discuss framework
performance in terms of latency and throughput characteristics.
We supplemented our interpretation with an investigation of short-
comings and standing-out behavior. Our discussions include tool

selection for common scenarios in deep learning inference deploy-
ment for computer vision tasks. Results show that TensorRT has
the best overall performance for inference on NVIDIA platforms.
PyTorch and TensorFlow are runners-up, depending on the batch
size, network depth and floating-point precision. For smaller batch
sizes and more compact networks, PyTorch delivers higher through-
put, while for most cases, TensorFlow delivers more throughput
when batch sizes increase. We conclude that none of the software
frameworks emerge as the best choice in all scenarios. However,
an analysis of the requirements and limitations of the targeted de-
ployment application can narrow the operating region, where our
results enable a more precise tool selection.

REFERENCES
[1] [n.d.]. https://git.ics.ele.tue.nl/Public0/inference-benchmark
[2] [n.d.]. Pytorch autograd. https://pytorch.org/docs/stable/autograd.html. Ac-

cessed: 2019.
[3] 2009. Intel Math Kernel Library. Reference Manual. Intel Corporation, Santa Clara,

USA. ISBN 630813-054US.
[4] 2018. cuBLAS. https://developer.nvidia.com/cublas
[5] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. https://www.tensorflow.org/
[6] Soheil Bahrampour et al. 2015. Comparative study of deep learning software

frameworks. arXiv:1511.06435 (2015).
[7] Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying parallel and distributed

deep learning: An in-depth concurrency analysis. arXiv:1802.09941 (2018).
[8] Chetlur et al. 2014. cudnn: Efficient primitives for deep learning. arXiv:1410.0759

(2014).
[9] Deng et al. 2009. Imagenet: A large-scale hierarchical image database. In CVPR.
[10] PN Druzhkov and VD Kustikova. 2016. A survey of deep learning methods and

software tools for image classification and object detection. Pattern Recognition
and Image Analysis 26, 1 (2016), 9–15.

[11] Erickson et al. 2017. Toolkits and libraries for deep learning. Journal of digital
imaging 30, 4 (2017), 400–405.

[12] Gaël Guennebaud et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[13] Hanhirova et al. 2018. Latency and throughput characterization of convolutional

neural networks for mobile computer vision. In MMSys. ACM.
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR.
[15] Hinton et al. 2012. Deep neural networks for acoustic modeling in speech

recognition. IEEE Signal processing magazine 29 (2012).
[16] Howard et al. 2017. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv:1704.04861 (2017).
[17] Iandola et al. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parame-

ters and< 0.5 MB model size. arXiv:1602.07360 (2016).
[18] Alex Krizhevsky et al. 2012. Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems.
[19] Griffin Lacey, Graham W Taylor, and Shawki Areibi. 2016. Deep learning on

fpgas: Past, present, and future. arXiv:1602.04283 (2016).
[20] Ma et al. 2018. Shufflenet v2: Practical guidelines for efficient cnn architecture

design. In ECCV.
[21] Hari Mohan Pandey and David Windridge. 2019. A comprehensive classification

of deep learning libraries. In ICICT. Springer.
[22] Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran
Associates, Inc., 8024–8035.

[23] Sandler et al. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
CVPR.

[24] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
state-of-the-art deep learning software tools. In CCBD. IEEE.

[25] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556 (2014).

[26] Szegedy et al. 2015. Going deeper with convolutions. In CVPR.
[27] B. Ulker, S. Stuijk, H. Corporaal, and R. Wijnhoven. 2020. Reviewing Inference

Performance of State-of-the-Art Deep Learning Frameworks. Technical Report. TU
Eindhoven. http://www.es.ele.tue.nl/esreports/esr-2020-02.pdf

[28] Wang et al. 2017. DLAU: A scalable deep learning accelerator unit on FPGA.
TCAD 36, 3 (2017), 513–517.

[29] Zhang et al. 2018. Shufflenet: An extremely efficient convolutional neural network
for mobile devices. In CVPR.

[30] Xingzhou Zhang et al. 2018. pcamp: Performance comparison of machine learning
packages on the edges. In {USENIX} Workshop on HotEdge 18.

https://git.ics.ele.tue.nl/Public0/inference-benchmark
https://pytorch.org/docs/stable/autograd.html
https://developer.nvidia.com/cublas
https://www.tensorflow.org/
http://www.es.ele.tue.nl/esreports/esr-2020-02.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Benchmark Approach
	4 Results
	4.1 Inference execution times
	4.2 Inference throughput
	4.3 Throughput-Latency Trade off
	4.4 Half-precision floating-point performance

	5 Discussion
	6 Conclusions
	References

