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Abstract: Aiming at continuous unobtrusive respiration monitoring, motion robustness is paramount.1

However, some types of motion can completely hide the respiration information and the detection of2

these events is required to avoid incorrect rate estimations. Therefore, this work proposes a motion3

detector optimized to specifically detect severe motion of infants combined with a respiration rate4

detection strategy based on automatic pixels selection which proved to be robust to motion of the5

infants involving head and limbs. A dataset including both thermal and RGB videos was used6

amounting to a total of 43 hours acquired on 17 infants. The method was successfully applied to both7

RGB and thermal videos and compared to the chest impedance signal. The Mean Absolute Error8

(MAE) in segments where some motion is present was 1.16 and 1.97 breaths/min higher than the MAE9

in the ideal moments where the infants were still for testing and validation set, respectively. Overall,10

the average MAE on the testing and validation set are 3.31 breaths/min and 5.36 breaths/min, using11

64.00% and 69.65% of the included video segments (segments containing events such as interventions12

were excluded based on a manual annotation), respectively. Moreover, we highlight challenges13

that need to be overcome for continuous camera-based respiration monitoring. The method can be14

applied to different camera modalities, does not require skin visibility, and is robust to some motion15

of the infants.16

Keywords: thermal camera; respiration; infants; unobtrusive; vital signs; camera; thermography;17

infrared; NICU; non-nutritive sucking)18

1. Introduction19

Vital signs need to be monitored in specific hospital environments. Infants, in particular, may20

need continuous monitoring when admitted to neonatal wards like Neonatal Intensive Care Units21

(NICUs). Commonly monitored vital signs include heart rate, Respiration Rate (RR), blood oxygen22

saturation, and skin temperature. Respiratory instability in infants is one of the main reasons for23

admission. Therefore, respiration is monitored in neonatal wards to detect critical situations, i. e.24

apneas (sudden cessations of breathing). If leading to hypoxia, these events can result in long-term or25

permanent impairment [1], and therefore the detection of apneas is crucial.26

The monitoring of respiration, but in general of most vital signals, requires attaching electrodes and27

sensors to the infants’ skin, which can be uncomfortable for the infants or even cause skin damage [2].28

Moreover, impedance pneumography or Chest Impedance (CI) which is commonly used in neonatal29

wards for respiration monitoring, is not very reliable in apnea detection [3].30
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For these reasons, unobtrusive solutions are being investigated for both hospital environments and31

home-care. Respiration motion can be detected using RGB (Red Green Blue) or Near-Infrared (NIR)32

cameras [4–6], radars [7–9], or pressure-sensitive mats [10–12]. Solutions using thermal cameras as33

in Mid-Wave Infrared (MWIR) or Long-Wave Infrared (LWIR) have also been investigated [13–15].34

Thermal cameras can detect both respiration motion and respiratory flow, which can be useful in the35

detection and identification of apnea episodes in infants since obstructive apneas and mixed apneas36

still present respiratory effort, i. e. motion, but no flow [16].37

Motion artifacts are a major problem for both the current monitoring technologies, e. g. CI, and most38

of the non-contact solutions [17,18]. Motion robustness is, therefore, paramount when aiming at a39

continuous RR detection in infants. Moreover, since lethargy (hypotonia and diminished motion)40

and seizures (epileptic insult, repetitive motion activity) are associated with serious illnesses of the41

newborn [19,20], motion is an important vital sign, that has also been linked to the prediction of apnea42

and neonatal sepsis [21,22].43

Multiple works proposed solutions to tackle the motion artifacts or random body movement problem44

in camera-based respiration detection [23,24]. However, not all random body movements hide the45

respiration information and by excluding all the segments containing motion from the respiration46

monitoring step, potentially usable segments are also excluded. In a recent study published by47

Villarroel et al. [25] motion robustness was achieved by combining an indicator of the quality of the48

reference signal with an indicator of the agreement between the RRs obtained using different sources.49

However, the detection of the respiration signals is dependent on skin visibility. Infants who are cared50

for in open beds in neonatal wards or in home-care environments are usually covered with blankets51

and wear clothing. A solution based on skin visibility, particularly of the chest/torso area, would,52

therefore, be impractical for these cases.53

Therefore, extending our previous work [26], which estimated the RR in static moments extracted from54

infants’ thermal videos, in this paper, we analyze the performance of our algorithm in challenging55

conditions containing various types of motion, also semi-periodic ones such as Non-Nutritive Sucking56

(NNS). We aim at achieving motion robustness by ensuring that the RR can be accurately estimated57

also in the presence of some motion, e. g. head and limbs movements. We achieve this using a motion58

detector optimized to detect specifically the kind of motion hiding the respiratory information, which59

often cause impaired CI reference signal as well. This algorithm was trained and tested on thermal and60

RGB videos, both video types were acquired on different infants, i. e. the babies in the thermal videos61

are different from the babies in the RGB videos. In total, the thermal dataset includes around 42 hours62

of videos recorded on fifteen infants in a neonatal ward. The RGB dataset is smaller and includes 5063

minutes of video recorded on two infants. We, therefore, prove that both our motion detector and our64

RR estimation algorithm with improved motion robustness can be used for both visible and thermal65

modalities, without the need of skin visibility. To our knowledge, this is the first work showing results66

on such a large dataset of neonatal thermal recordings for respiration monitoring.67

The remaining of this paper is organized as follows Section 2 describes the method developed and68

explains the setup used and the dataset. Section 3 and Section 4 present respectively the results69

obtained and the discussion. Section 5 contains the conclusions of this work.70

2. Materials and Methods71

2.1. Materials72

2.1.1. Experimental setup73

Two different setups were used to collect the RGB videos and thermal videos used in this work.74

The thermal videos were collected using three thermal cameras positioned around the infants’ bed.75

The cameras used are FLIR Lepton 2.5, they are sensitive in the LWIR range, the resolution is 60× 8076

pixels, the thermal sensitivity is 50 mK, and the average frame rate is 8.7 Hz. The acquisition was77
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performed using MATLAB (MATLAB 2018b, The MathWorks Inc., Natick, MA, USA). Due to the78

acquisition strategy, the 3 hours of recording are split in 9 videos of 20 minutes each, gaps of up to 479

seconds can be present between the videos. For further information on the setup refer to [26].80

The visible images were obtained in a separate data collection with a single RGB camera (UI-2220SE,81

IDS), that was positioned on a tripod to visualize the baby in the open bed. Some videos were collected82

from the side and others from the top. The frame rate and resolution are, respectively, 20 Hz and83

576× 768 pixels. In both cases, the reference CI signal sampled at 62.5 Hz was collected using the84

patient monitor (Philips MX800). To solve the synchronization problem, an artifact (simultaneously85

disconnecting the CI leads and covering the view of one of the cameras) was generated at the start of86

each recording to synchronize CI and videos.87

2.1.2. Dataset88

The dataset was split in two sets, one called the training & testing set which is used to optimize89

and test the motion detection step, and adjust our respiration monitoring algorithm. The other one90

called the validation set will be used to obtain unbiased results for both the motion detection step and91

the RR detection step. Table 1 contains the infants’ data and the duration of the recordings for the92

training & testing set, and the validation set. The infants were assigned to the two sets based on the93

availability of the data. The thermal videos amount to a total of around 42 hours acquired on fifteen94

infants, all the infants were monitored for around 3 hours except for infant 7 which has a total video95

duration of around 1 hour, due to setup problems.96

The RGB videos of infant 8 and 9 amount to a total video duration of around 52 minutes.97

Both thermal and RGB datasets were collected in the Medium Care Unit of the neonatal ward in the98

Maxima Medical Center (MMC) in Veldhoven, The Netherlands. Both studies received a waiver from99

the ethical committee of MMC (the thermal dataset with ID N19.074 and the RGB dataset with ID100

N12.072), and informed consent was obtained from the infants’ parents prior to the study.101

2.1.3. Manual Annotation102

One of the authors annotated the videos contents, including motion occurrences, and it was then103

used as ground truth for the motion detection step. A MATLAB built-in application called Video Labeler104

was used to annotate the videos. A set of labels was defined to describe the possible visible events, the105

Table 1. Infants’ data for the training & testing set (indicated with T&T) and the validation set (indicated
with V).

Infant Video Type Gestational Age
(weeks+days)

Postnatal age
(days)

Sleeping
position

Duration
(hours) Set

1 Thermal 26w 4d 59 Supine 2.98 T&T
2 Thermal 38w 5d 3 Supine 2.74 T&T
3 Thermal 34w 1d 16 Supine 2.93 T&T
4 Thermal 26w 3d 59 Prone 3.16 T&T
5 Thermal 39w 2 Lateral 3.05 T&T
6 Thermal 40w 1d 6 Supine 2.95 T&T
7 Thermal 40w 2d 1 Lateral 0.92 T&T
8 RGB 36w 47 Supine 0.30 T&T
9 RGB 30w 34 Supine and Lateral 0.57 T&T
10 Thermal 26w 4d 77 Supine 2.94 V
11 Thermal 26w 4d 77 Supine 2.97 V
12 Thermal 33w 4d 5 Supine 2.97 V
13 Thermal 34w 2d 9 Supine 2.87 V
14 Thermal 32w 2d 11 Supine 2.96 V
15 Thermal 35w 1d 8 Supine 2.94 V
16 Thermal 38w 1d 2 Supine 3.00 V
17 Thermal 27w 5d 16 Supine 2.96 V
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Table 2. Labels used for the manual annotation.

Annotation Labels Subcategories and Details

Included i) Infant activity
• Still
• Type 1 motion (motion including chest/torso area)
• Type 2 motion (motion involving limbs or head)

ii) NNS -

Excluded
iii) Interventions includes both parents and caregivers interventions

iv) Other

• Someone in the background
• Baby out of bed
• Camera motion
• Unsuitable view

labels are not exclusive, meaning that multiple labels can be true at the same time. We defined two106

classes of motion type 1 and type 2 motion. The labels are presented in Table 2.107

The main difference between the two types of motion, i. e. 1 and 2, is the involvement of the108

chest in the motion event. Type 1 is a motion that involves the chest/torso area, where the respiration109

motion can be usually seen. In our classification this is, therefore, considered as the kind of motion110

which results in hiding the respiration information, which can cause artifacts also in the CI reference111

signal. Type 2, instead, does not involve chest or torso movements but affects other parts as, head,112

hands, arms, fingers, or even facial expressions.113

The segments of videos including events labeled as categories iii and iv in Table 2 were excluded114

in this work, since they would require different detectors, e. g. interventions detection or infant115

presence detection [25]. In particular, the included and excluded percentages in the entire dataset are,116

respectively, 73.86% and 26.14%. The majority of the excluded moments are caused by the babies117

being out of bed and by interventions, 46.4% and 31.8%, respectively. The breakdown of the included118

moments are shown in Figure 1 split between the training & testing and the validation set. The119

segments containing type 1 motion events are considered unusable for the estimation of the RR,120

whereas, the ones containing type 2 motion, still, and NNS are considered usable. The cumulative121

percentages of type 2 motion, still, and NNS constitute 70.03% and 68.85% of the included moments for122

the training & testing and the validation set respectively. The remaining part contains the fragments123

annotated with type 1 motion. The occurrence of type 1 motion is, therefore, very similar between the124

two sets.125
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Figure 1. Results of the manual annotation: the breakdown of the included class into the subcategories
for the training & testing and the validation set.
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Figure 2. Main blocks of the processing chain and an example of the results.

2.2. Method127

The algorithm proposed in this work can be split in two main parts, i e. motion detection and RR128

estimation. The first was designed to detect type 1 motion, since segments containing type 2 motion129

are considered usable for the RR detection and it is, therefore, not necessary to detect their occurrence.130

Therefore, if type 1 motion was detected the RR could not be accurately estimated and an indication131

that the baby was moving was provided. Otherwise, the video segment did not contain type 1 motion132

and it was classified as usable and the RR was estimated using the second part of our algorithm. These133

steps are shown in Figure 2. The algorithm was implemented using MATLAB.134

2.2.1. Preprocessing135

The thermal videos were linearly interpolated to compensate for the acquisition strategy which136

resulted in a non-uniform sampling rate, because external triggering was not used. A 1D interpolation137

was applied to each pixel’s time domain signal, using the MATLAB function interp1, the result was138

three videos sampled at 9 Hz, close to the average frame rate, with a resolution of 60× 80 pixels. The139

RGB data was converted to grayscale (using the MATLAB function rgb2gray) and downscaled, to allow140

faster processing, with a downscale factor of 3 resulting in a final video resolution of 192× 256. The141

grayscale videos were also temporally downsampled to reach the same sampling rate as the thermal142

videos, i. e. 9 Hz, from an initial sampling frequency of 20 Hz, for faster processing. The frame sizes143

will be indicated as M̃× L̃ which will correspond to 60× 80 in the thermal case and 192× 256 in the144

visible case.145

A sliding window approach was used for both the motion detection and the RR estimation steps.146

Considering a trade-off between latency and frequency resolution and the fact that longer windows147

means more sliding windows may contain motion events, a relatively short window size of 8 seconds148

was chosen with a slide of 1 second.149

150

2.2.2. Motion Detection151

• Gross Motion Detector: let X(nTs) be the frames in the jth window, with n = 0 + (j− 1)/Ts, 1 +152

(j − 1)/Ts, ..., N + (j − 1)/Ts, and N = 72 samples, corresponding to the samples in the jth153

window with a sampling period Ts = 0.111 s. The gross motion detector was based on the154

absolute value of the Difference of Frames (DOFs) in the jth window. More formally:155

D(uTs) = |
∂X(nTs)

∂n
|, (1)

the ∂
∂n operator represents the partial derivative with respect to the time dimension. D(uTs)

contains the frames resulting from the absolute value of the difference of frames operation at
each time sample, with u = 0+ (j− 1)/Ts, 1+ (j− 1)/Ts, ..., (N− 1) + (j− 1)/Ts. At this point,
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a first threshold value was introduced which turns D into binary images identifying what we
considered to be moving pixels:

MP(uTs) =

{
1 if D(uTs) > thr1

0 otherwise.
(2)

thr1 is a threshold that was introduced to differentiate the source of the change between noise
and motion, it is defined as:

thr1 =
Range(X)

f1
, (3)

the numerator represents the range of X, i. e. the difference between the maximum value and
the minimum value considering all the pixels of all the frames in X, and f1 is a value which was
optimized. The ratio of moving pixels was then calculated as:

s(uTs) =
∑M̃

m̃=1 ∑L̃
l̃=1 mpm̃,l̃(uTs)

M̃ · L̃
. (4)

Here, mpm̃,l̃(uTs) is an element of MP(uTs) at the position m̃ and l̃.156

• Motion Classification: the ratio of moving pixels s(uTs) was used to perform the classification
between usable and unusable segments for RR detection. In particular, we aim at detecting the
unusable moments, i. e. the ones containing type 1 motion. The main assumption is that type 1 is
part of a more complex kind of motion, typical of infants’ crying motion. Therefore, the simplest
way to detect it is to assume that type 1 motion will result in more moving pixels compared to
any of the usable segments.
To perform a classification between the two, a second threshold thr2 was introduced, which was
applied to the ratio of moving pixels s(uTs). The final classification was, therefore, performed
on a window-based fashion, i. e. each window was classified as containing type 1 motion,
corresponding to 1, or usable, corresponding to 0.
Since we used 3 cameras in the thermal setup, we applied this algorithm 3 times. For the RGB
dataset this was not necessary, as there was only a single camera used. In the visible case the
classification will be:

Motionvis(j) =

{
1 if ∃ u : s(uTs) ≥ thr2

0 otherwise.
(5)

For the thermal case instead:

Motionth(j) =


1 if ∃ u : (s1(uTs) ≥ thr2 OR

s2(uTs) ≥ thr2 OR

s3(uTs) ≥ thr2)

0 otherwise.

(6)

s1(uTs), s2(uTs), and s3(uTs) are the ratios of moving pixels obtained from the three thermal157

views.158

• Ground Truth: The ground truth used to evaluate the performance of our motion detector was159

obtained based on the manual annotations presented in Section 2.1.3. In particular, the ground160

truth was built using the sliding window approach. Each window was classified as excluded,161

as type 1 motion, or as usable. The condition used was the presence of at least a frame in the162

window which results in being true for one of those categories. The excluded class had the163

priority, if this was true for at least a frame in the window, the entire window was classified as164

excluded. If the latter was false then type 1 motion was taken into consideration in the same165

manner, and lastly if the two above were both false we classified the window as usable.166
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• Parameters Optimization: the factor f1, for the moving pixels detection, and the threshold thr2,167

for the motion classification, were optimized. A leave-one-subject-out cross-validation was168

used to optimize the two parameters. The approach was chosen considering that environment169

changes, e. g. environment temperature, blankets type, and position, can influence the170

parameters values and therefore, the between-baby variability is more important than the171

within-baby variability. The set of parameters which resulted in the highest balanced accuracy172

for each fold was considered as a candidate set. The final chosen set was the most selected173

candidate set. This metric was preferred compared to the classic accuracy due to the imbalance174

in our two classes (usable was more frequent than type 1 motion). The optimization was175

performed on the training & testing set, presented in Table 1. This set includes 9 babies176

and therefore 9 folds were performed in the cross-validation. Two sets of parameters were177

empirically chosen for the training and correspond to f1 = [4; 5; 6; 7; 8; 9; 10; 11; 12] and178

thr2 = [0.004; 0.005; 0.006; 0.007; 0.008; 0.09; 0.010; 0.011; 0.012]. The most chosen set, used179

in the next steps, was f1 = 8 and thr2 = 0.005, more information on the results can be found in180

Section 3.181

2.2.3. Respiration Rate Estimation182

Respiratory signal and rate were both estimated in the windows in which the motion detection183

step results in the usable category using an adjustment of our previous method [26]. Briefly, first184

the images of the thermal videos were merged together in a single image plane, resulting in a single185

video with resolution 180× 80, whereas the grayscale videos were processed with the single view186

available, i. e. videos with resolution 192× 256. These two possible frames dimensions will be referred187

to as M × L. Our method is based on the automatic detection of the pixels containing respiration188

information. This is performed using the three features presented in [26], improvements were applied189

to tackle new challenges highlighted by the extension of our dataset and of the acceptable motion.190

The changes involve an adaptation of the second feature, Respiration Rate clusters, adapted to191

overcome the presence of the respiration’s first harmonic and NNS pattern in some of the extended192

dataset. The third feature (Gradient) was also adapted for the use on visible images, now added to the193

dataset, and finally the correlation value that indicates which pixels contain the respiration information194

was increased. More in detail, each pixels’ time domain signal is indicated as xm,l(nTs), with (m, l)195

indicating the pixel. Three features were used to find a core-pixel, in each ĵth window, which was then196

employed to find (using a correlation metric) all the helpful pixels that can be combined to compute197

the respiratory signal, with ĵ = j : Motion(j) = 0.198

• Pseudo-Periodicity: this first feature is based on the assumption that respiration can be
considered a periodic signal. This feature was not changed compared to [26]. A differential filter
was used to attenuate low-frequencies resulting in filtered time domain signals called x′m,l(nTs).
The signals were zeropadded, reaching a length equal to Nz = 120 · N, and multiplied for an
Hanning window. Afterwards, a 1D Discrete Fourier Transform (DFT) was used to estimate the
spectrum called y′m,l( fk) with k = 0, 1, ..., Nz

2 − 1 and fk =
k

Nz ·Ts
Hz. This feature consists in the

calculation of the height of the normalized spectrum’s peak. More formally:

qm,l =

max
0≤ fk≤

(Nz/2−1)
Nz ·Ts

(| y′m,l( fk) |)√√√√ (Nz/2−1)
Nz ·Ts
∑

fk=0
| y′m,l( fk) |2

. (7)

Each qm,l represent the height of the peak of the spectrum of the pixel in position (m, l), qm,l are199

elements of the first feature Q.200

This feature is sensitive to the presence of type 2 motion. Regions moving due to this type201

of motion can generate a big variation in the pixels’ values (depending on the contrast). This202
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Figure 3. Example of features obtained during a type 2 motion, i. e. arm motion. In (a) and (d) the
merged thermal images are presented, the circle indicates the position of the baby’s arm where the
type 2 motion is happening. The images in (b),(c), and (e) show the three features. While in this case
Pseudo-Periodicity and Gradient are sensitive to the presence of type 2 motion, RR Clusters is not, this
is due to the R̂R matrix shown in (f) where the arm area can have frequencies equal to zero.

variation can, therefore, produce a strong DC component which will result in a high qm,l . The203

combination with the other features allows to obtain motion robustness, Figure 3 presents an204

example during a type 2 motion and the Pseudo-Periodicity feature is visible in Figure 3b.205

• Respiration Rate Clusters (RR Clusters): this feature is based on the observation that respiration
pixels are not isolated but grouped in clusters. To automatically identify the pixels of interest
more accurately, modifications were introduced to this feature to improve the robustness to the
presence of NNS, typical when the infant has the soother, and to cope with the presence of the
respiration’s first harmonic. The frequencies corresponding to the local maxima of the spectrum
y′m,l( fk) were found and the properties of the harmonic were checked:

hm,l = arg localmax
lim1< fk<lim2

(| y′m,l( fk) |), (8)

hm,l is a vector, obtained for the pixel in position (m, l), containing the frequencies of the local
maxima in the band of interest, which is identified by lim1 and lim2 respectively 0.5 and 1.83 Hz.
The length of the vector is, therefore, variable and dependent on the spectrum content of each
pixel (m, l), this operation was performed using the MATLAB function findpeaks. The harmonic
properties were checked:

rrm,l =



hm,l(1) if ∃ ẑ > 1 :| hm,l(ẑ)− 2 · hm,l(1) |< 1
N·Ts

AND

(ym,l(hm,l(ẑ)) < ym,l(hm,l(1)) AND

y′m,l(hm,l(ẑ)) ≥ y′m,l(hm,l(1)))

arg max
fk

(
| y′m,l( fk) |

)
otherwise,

(9)

ym,l( fk) is the spectrum of the pixels’ time domain signal calculated as y′m,l( fk) but without
applying the differential filter and hm,l is an element of hm,l .
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We have, therefore, estimated the main frequency component for each pixel. To avoid erroneous
RR estimation caused by higher frequencies components, e. g. caused by NNS, the rrm,l that
were higher than lim2 were put to zero. Therefore:

r̂rm,l =

{
rrm,l if rrm,l < lim2

0 otherwise.
(10)

The r̂rm,l are elements of R̂R, an example is shown in Figure 3f. The non-linear filter introduced
in [26] was applied:

wm,l =
1
9

3

∑
r=1

3

∑
o=1

(
1

exp(κ1· | r̂rm,l − r̂rr,o | /r̂rm,l)

)
, (11)

where r and o identify the kernel cell, whereas m and l indicate the pixel. κ1 is a constant206

empirically chosen and equal to 70 as indicated in our previous work [26]. The resulting frame207

W will map the pixels having similar frequencies around them.208

It should be noted that the r̂rm,l on which we imposed the value 0 in Equation 10, will not result209

in a high wm,l , even if there are clusters of zeros in R̂R. This is due to the equation of the filter210

that with r̂rm,l = 0 will produce NaNs (Not a Number). The same will happen for regions with211

type 2 motion, where the main frequency component is the DC. This property allowed to avoid212

type 2 motion regions in the pixel selection phase achieving motion robustness, an example is213

visible in Figure 3e.214

• Gradient: this last feature is based on the assumption that respiration motion can be only
visualized at edges. This feature has been modified to make it independent of the setup used:

gm,l =


1 if

√(
∂ām,l

∂m

)2
+

(
∂ām,l

∂l

)2
> Range(A)

κ2
,

0 otherwise,

(12)

where ∂
∂m and ∂

∂l represent the partial derivatives in the two spatial dimensions, κ2 is an empirical215

threshold equal to 16 which resulted in identifying the edges of both thermal and grayscale216

images and A is the series of frames in the ĵth window. Ā is an average image representative of217

the current window ĵ evaluated as the average of all the images in A, with elements ām,l . The218

resulting matrix will be the third feature G. The use of Ā to evaluate the gradient can also ensure219

robustness to some type 2 motion, whose regions will not be visible in the average image if the220

motion is transient enough. In the example in Figure 3c the pixels involved in the type 2 motion221

are still selected in the gradient feature, but RR Clusters ensures the correct pixels are chosen.222

The features, Q, W, and G, were then combined together, after being normalized between 0 and 1, by
multiplying them and obtaining V. This feature combination was used to identify the core-pixel as:

(mpr , lpr ) = arg max
(m,l)

(vm,l) , (13)

where vm,l identifies an element of V. The pixels containing respiration information were then found
from this core-pixel based on the Pearson’s correlation coefficient, estimated using a bandpass filtered
version of the pixels’ time domain signal. The filter used is a Butterworth bandpass between lim1

and lim2. In our previous work [26] pixels having a correlation higher than 0.7 with the core-pixel
were considered to contain respiration information, this threshold on the correlation value has been
increased in the current work considering the reduction in window size and the fact that the accuracy
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of the correlation estimation depends on the length of the signal. Therefore, the threshold has been set
to 0.9 and indicated with κ3. In particular:

p = (m, l) : | cm,l |> κ3, (14)

where cm,l is the correlation between the core-pixel (mpr , lpr ) and the signal of the pixel in position223

(m, l), calculated using the MATLAB function corrcoef. p will, therefore, be a vector indicating the pixels224

containing the respiration signal and can have variable dimension depending on the window ĵ. To225

calculate the RR and the respiration signal, all the band-pass filtered time domain signals of the pixels226

in p were combined using an average operation. The RR was calculated from the spectrum of this227

signal after using an Hanning window, and the RR was estimated as the frequency corresponding to228

the spectrum’s peak for each window. The same was applied to the CI signal to estimate the reference229

RR from the waveform. These spectra were then arranged into a Short Time Fourier Transform (STFT).230

2.3. Evaluation Metrics231

Accuracy, balanced accuracy, sensitivity, and specificity were calculated for the test step of the232

cross-validation and for the validation dataset to obtain unbiased performance results. The RR was233

compared to the one obtained using the CI. Mean Absolute Error (MAE), Root Mean Square Error234

(RMSE), Percentage of correct estimation (PR) [26], considering an accuracy of 3.75 Breaths Per Minute235

(BPM) caused by the window size, were calculated. We estimated the Percentage of Time used (PT)236

by calculating the percentage of windows classified as usable by the motion classification step on the237

number of windows in the included data (which includes also type 1 motion occurrences).238

To prove the improved motion robustness of our algorithm, we used the annotations to identify the239

moments containing only type 2 motion and compared it with the ones containing only still. Moreover,240

the contribution of the NNS segments to the error was, also, analyzed. The average MAE was obtained241

in all these windows to analyze their contribution to the final error. In these cases, PT is calculated242

by considering also the information of the manual annotation on the occurrences of specific events.243

For example, PT for the segments containing only type 2 motion is calculated considering the number244

of windows that are classified as usable by our motion detection and that according to the manual245

annotation contain only type 2 motion, or PT in the usable segments excluding NNS is evaluated using246

the number of windows that are classified as usable and that do not contain NNS according to the247

manual annotation.248

3. Results249

The average Receiver Operating Characteristics (ROC) curve for all 9 folds obtained from the250

cross-validation applied on the training & testing set, is presented in Figure 4. The blue points251

represent the average sensitivity and specificity on all folds for that particular combination of f1 and252

thr2, whereas the cross is the average sensitivity and specificity on all folds corresponding to the253

most chosen parameter set. Table 3 shows the results of accuracy, balanced accuracy, sensitivity, and254

specificity using the final chosen set of parameters for the testing stage of the cross-validation and for255

the validation set that was not involved in the training.256

Table 3. Average performance of the motion detection step for all the babies of the training & testing,
and the validation set using the chosen parameters.

Accuracy Balanced Accuracy Sensitivity Specificity

Training & testing set 88.22% 84.94% 80.30% 89.58%

Validation Set 82.52% 77.89% 66.85% 88.93%
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Figure 4. ROC curve obtained with the 9 folds of the cross-validation by using all the parameters
combinations.

The results obtained in the RR detection step are shown in Table 4 and 5. The first one shows257

the MAE obtained in all moments considered usable by our own motion detection step (that includes258

segments containing NNS) and the error in the moments containing only NNS, whose windows were259

determined using the manual annotation. Moreover, a comparison between the respiration detection260

method introduced in our previous work [26], and the modified one introduced in this work is also261

presented. Table 5 contains the results obtained in all the usable segments excluding the NNS windows262

on the two sets. Moreover, using the manual annotation, we also show the errors in the windows263

containing only type 2 motion, and in the ideal moments in which the infants are still.264

Figures 5a and 5b present Bland-Altman and correlation plots for the training & testing set, and the265

validation set, respectively, using the RRs in all the usable windows excluding the NNS. The mean266

bias were −0.42 and −0.18 BPM and the correlation plot shows the agreements between the reference267

and our estimation with a ρ = 0.90 and ρ = 0.80 for the training & testing set, and the validation set.268

Example results are presented in Figure 6, Figure 7, and Figure 8.269

4. Discussion270

Our method for motion robust respiration detection can be used for both thermal and visible271

modalities, and it does not rely on skin visibility or facial landmark detection. Moreover, it is able272

to detect motion events that are problematic for respiration monitoring, ensuring a more accurate273

RR detection and delivering motion information. The manual annotation showed that the RR can be274

potentially estimated in around 70% of the included data, since the remaining 30% is annotated as type275

1 motion. The impossibility to accurately estimate a RR in these segments is a limitation present in all276

unobtrusive technologies but also in the current monitoring modalities, i. e. CI. An example of the RRs277

estimated using both camera and CI in the moments annotated and automatically classified as type 1278

Table 4. Average and standard deviation of MAE and percentage of used time (PT) on all babies of
the training & testing set for the previous version of method [26] and the current one presented in this
work, in the windows classified by the motion detector as usable. We further show the contribution of
the NNS to the overall error (these segments were obtained using the manual annotation).

Previous version of method [26] Current version of the method
Usable NNS Only Usable NNS Only

MAE (BPM) 4.54 ± 1.82 9.39 ± 3.68 3.55 ± 1.63 7.11 ± 4.15

PT 68.59% ± 13.29% 4.59% ± 6.93% 68.59% ± 13.29% 4.59%± 6.93%
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Table 5. Results of the two sets in the segments classified as usable by our motion detector excluding
the NNS windows, obtained thanks to the manual annotation. The errors in the windows containing
type 2 motion and moments where the infants were still are also included. MAE and RMSE are in BPM.

Infant Usable Excluding NNS Type 2 motion Only Still Only
MAE RMSE PR PT MAE PT MAE PT

Tr
ai

ni
ng

&
te

st
in

g

1 1.86 3.34 83.61% 70.38% 1.57 27.92% 1.51 34.61%
2 2.87 3.97 73.71% 40.60% 2.56 20.90% 2.64 13.02%
3 6.30 8.09 39.44% 67.83% 6.32 39.23% 6.28 24.38%
4 4.43 6.21 60.16% 72.75% 4.99 44.09% 2.49 20.39%
5 5.04 7.61 56.44% 40.22% 4.84 29.24% 2.24 5.35%
6 2.97 4.73 71.34% 66.74% 3.70 29.96% 1.94 31.69%
7 2.80 4.15 72.08% 46.16% 2.57 30.28% 0.70 4.61%
8 1.89 3.40 88.63% 89.71% 1.76 11.47% 1.91 77.84%
9 1.62 2.70 85.55% 81.60% 2.88 24.16% 1.08 56.76%

Average 3.31 4.91 70.11% 64.00% 3.47 28.58% 2.31 29.85%
± sd ± 1.61 ± 1.94 ± 15.84% ± 17.82% ± 1.62 ± 9.56% ± 1.62 ± 24.22%

V
al

id
at

io
n

10 4.46 6.62 61.41% 63.62% 5.52 34.40% 2.44 22.78%
11 3.79 5.54 64.96% 55.55% 4.01 34.62% 2.27 12.29%
12 6.23 7.98 38.98% 68.20% 5.98 33.70% 6.60 23.35%
13 6.29 8.51 44.00% 69.53% 6.30 51.04% 3.59 6.13%
14 6.89 9.56 47.37% 73.38% 7.35 44.73% 4.58 18.00%
15 4.75 6.65 54.11% 78.86% 4.83 42.08% 4.39 26.81%
16 4.09 5.73 60.97% 76.84% 4.39 28.92% 3.21 30.73%
17 6.40 8.78 47.79% 71.22% 7.64 40.14% 3.15 19.60%

Average 5.36 7.42 52.45% 69.65 % 5.75 38.71% 3.78 19.96%
± sd ± 1.21 ± 1.49 ± 9.35% ± 7.47% ± 1.32 ± 7.14% ± 1.40 ± 7.90%

motion is provided in Figure 6. The sudden noisiness in the spectrum clearly indicates the inaccuracy279

of the RRs estimation in these segments. Table 5 shows an average PT of around 64% and 70% for the280

two sets, however there is a considerable variability in the PT between the infants, especially in the281

training & testing set, as shown by the standard deviation. Infants that are more agitated will have an282

increased occurrence of type 1 motion reducing the amount of time usable for RR detection, which283

can be also lower than 50% (can be partially due to NNS occurrence as well). However, considering284

that CI is also unable to provide a RR in these cases, the information that the infant is agitated and285

moving frequently may be much more informative than an inaccurate estimation of RR. In addition, a286

patient who is moving for a longer period of time is not likely to be in danger due to a serious apnea287

and, therefore, the motion information itself is giving information about the patient, e. g. the motion288

could be also linked to the discomfort of the infants [27].289

Our motion classification reached an accuracy equal to 88.22% in the training & testing set. It should290

be noted that the accuracy results are underestimating the real accuracy. The manual annotation was291

performed by a single author and while the automatic classification is on a second by second basis (due292

to the sliding window’s slide), the manual annotation tends to overlook particularly short events. An293

example is visible in Figure 7, the detected label (the result of the automatic classification) can present294

fast oscillations, whereas the manual annotation is more stable and sometimes stretched compared295

to the detected label (anticipated starting point and/or postponed ending point). The validation set296

obtained a lower accuracy result, i. e. 82.52%, this is due to the reduced sensitivity of our motion297

classification on this dataset. These results could indicate that not enough data was included in our298

optimization step or that the training dataset is not representative enough. Differences were observed299

between the two sets in the blanket position which could end up hiding some of the moving pixels.300

Whether the infant’s sleeping position plays a role warrants further analysis. Moreover, the motion301

detection strategy, as it is implemented now, is limited by changes in distance (between camera and302

infant) or zoom, however, all infants in our study occupy a similar portion of the image, although303

small variations are present. The method may need to be optimized for different distances or features304
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Figure 5. Bland-Altman and correlation plot: (a) training & testing set, (b) validation set. RRCI and
RRVideo are in BPM.
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Figure 6. Example of the STFT obtained using the camera and the CI reference. The noisiness of the
reference’s spectrum during type 1 motion shows the sensitivity of the reference to this type of artifact.
The excluded segments are due to camera motion.

in the images could be used to make the method independent of the distance.305

Table 4 presents a comparison on the MAE obtained by our previously published method [26] and306

the adjusted one presented in this work, obtaining an improvement of around 1 BPM on the average307

MAE. The harmonic problem was particularly noticeable in one of the infants, i. e. infant 8, where308

the introduction of our adjustment drastically reduced the error (from 7.17 BPM to 1.89 BPM). The309

NNS is present in less than 5% of the included segments. This is mostly due to the study protocol310

since hours in which the parents were not in the wards were preferred, as the babies would then311

spend more time in the bed, but this was not always possible. The percentage of presence of NNS is,312

therefore, likely underestimated and not completely representative. This percentage could be higher313

if the parents are in the neonatal ward next to the infant or in home-care because the soother will be314

given to the baby more often in these cases. The MAE obtained during NNS is reduced in our new315

implementation, though still higher than the average MAE considering all usable segments. NNS316

frequencies have been reported to vary and can correspond to the ones of the normal RR or be higher317

up to 150 sucks per minute [28,29]. Therefore, if the frequencies of NNS are higher than the normal318

RR range, our algorithm can detect the respiration pixels and correctly estimate the RR. However, if319

the NNS frequency is inside the respiration band, our method can no longer discriminate between320

NNS and respiratory signals. This is a limitation present in all methods that automatically identify the321

region of interest or technologies that monitor the motion in an area, e. g. continuous-wave radars.322

This problem, particularly important for home-care and babies cared for in open beds, should be323

further analyzed.324

Furthermore, in Table 5 a comparison of the results between the training & testing set, and the validation325

set, in the usable moments excluding NNS, is provided. The errors are higher in the validation set326

compared to the training & testing one. We believe this is a consequence of the reduced sensitivity327

of the motion classification step for the validation set which leads to the inclusion of segments with328
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Figure 7. Example of results showing the RR estimated using our cameras and algorithm, and the
reference one. The difference in the manual annotation of type 1 motion and the detected one are
visible in the bottom plot. Examples of frames during the type 1 motion (infant crying) are also shown.
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Figure 8. Example of results with periodic breathing. The sudden changes in RR can be seen in the
STFTs close to the breathing pauses (indicated using the rectangular boxes with width of 8 seconds).

type 1 motion in the moments used for the estimation of the RR. Other factors influence the average329

error, one is the presence of babies breathing with a Periodic Breathing (PB) pattern, a physiological330

breathing pattern in infants associated with the alternation of normal breathing and breathing pauses331

[30]. One of the babies in the training & testing set continuously breathes following a PB pattern (infant332

3), whereas another baby in the training & testing set (infant 4) and six babies in the validation set333

(infants 10, 11, 12, 13, 15 ,17) resulted in having segments with a PB pattern. PB pauses have been334

reported to last 6 to 9 seconds [31], in our dataset, we observe breathing pauses with a duration up335

to 10 seconds. It becomes evident that by using a window size of 8 seconds, we will detect a RR in336

windows that do not contain any respiration-related oscillations. This causes the estimation of the error337

to be higher than the real one because both our method and the CI will provide an incorrect estimation338

of the RR, an example is visible in Figure 8. Our method requires the selection of respiration pixels339

in every window, if there is no respiration information in the video segment, the selected pixels will340

contain noise. The results are, therefore, also dependent on the length of the breathing pauses which341

can be different for each baby. This problem needs to be further analyzed considering also apneas, and342

the number of pixels selected could be used as an indicator to detect the absence of respiration. The343

PB pattern is, anyway, clearly visible in the time signals, and in the future, methods for cessations of344
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breathing detection such as [32,33] could be used to identify the breathing pauses and remove these345

from the RR comparison. Moreover, some of the recordings in the validation set (belonging to infants346

13 and 14) contain segments in which the respiration motion is not visible due to the blanket position,347

directly influencing the error. This problem was highlighted also in our previous work [26].348

By comparing the errors in the ideal moments where the infants are still and in the moments where349

type 2 motion occurs, differences can be noted. On average, the MAE during type 2 motion segments350

is higher than the one during ideal moments, with an increase of 1.16 and 1.97 BPM for training &351

testing, and validation set, respectively. We believe the cases in which the errors are higher for the type352

2 motion may be related to the position of the pixels containing respiration. Our approach is based on353

the assumption that respiratory pixels are visible on the edge of the blanket and chest/neck area, and354

type 2 motion, like arm motion or head motion, will not affect our performance. However, this is not355

always true, like in cases where most of the respiration pixels come from the arm or the head itself,356

which is happening in some babies’ videos. This is again caused by the blanket covering the main357

source of respiration signal, i. e. the chest. We can expect this problem to be further reduced in infants358

in incubators that are not covered. The inclusion of the type 2 motion segments allows to drastically359

increase the amount of time used for respiration estimation at a cost of a higher error.360

The two videos of infants 8 and 9 collected using an RGB camera seem to perform better, yielding361

lower MAE compared to the other babies (except for infant 1 whose MAE is comparable). However,362

we believe that conclusions regarding which technology performs best cannot be drawn from this363

comparison, as such would require a dataset acquired simultaneously with both camera types.364

Moreover, the RGB videos were not included in the validation set, therefore, the performance of365

our algorithm on this type of videos should be further analyzed and more data should be included.366

Overall, our MAEs and Bland-Altman plots are comparable with studies performed in similar367

populations, e. g. the work of Villarroel et al. [25] showed a MAE of 4.5 and 3.5 BPM for their368

training and test set respectively, very similar compared to our 3.31 and 5.36 BPM. Our method,369

though, can be used on both thermal and RGB/NIR cameras, provides motion information, and does370

not rely on skin visibility but only on respiration motion being visible. The limits of agreement in371

Figure 5b are higher than the ones in the training & testing set and higher compared to the results372

obtained in [25], this is due to a combination of the problems previously described.373

Our study provides promising results and highlights possible challenges for neonatal respiration374

monitoring. In particular, in the cases of babies cared for in an open bed and babies in a home-care375

environment, the NNS presence and its effect on unobtrusive vital signs solutions should be376

investigated further, although the presence of the NNS motion itself could indicate the absence of377

critical situations. Moreover, one of the main limitations of our method, but in general of camera-based378

solutions, is the respiration motion being hidden by blankets covering the infants. While camera-based379

solutions provide contextual information undoubtedly usable for the detection of motion, they may380

also require the fusion with a different technology that would not be affected by this type of problem,381

such as radar or pressure-sensitive mats, or a clearer protocol for blanket positioning.382

5. Conclusion383

This work presents a combination of a method for motion detection, optimized to detect motion384

hiding the respiration, and a method for RR detection that, using three features, automatically selects385

the pixels of interest. The motion robustness, achieved thanks to our features, allows to increment the386

amount of time used for camera-based respiration detection, including segments that contain limbs or387

head movements. The test of the cross-validation obtained an accuracy of around 88% in the motion388

identification. A lower accuracy was obtained in our validation set, indicating that the optimization389

could be improved. The RR estimation was compared with the chest impedance reference and yielded390

an average MAE of 3.31 and 5.36 BPM for the training & testing set and validation set, respectively.391

The MAE during type 2 motion was higher than the one in the ideal moments of 1.16 and 1.97 BPM392

for the training & testing set and validation set, respectively. This proves the motion robustness393
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is improved, but more work is needed to achieve continuous unobtrusive respiration monitoring.394

Therefore, limitations on the use of camera-based solutions in a neonatal ward environment are395

highlighted in this study, i. e. the PB influence of the errors, the blanket covering respiration motion,396

and the NNS presence. This method can be used for different camera modalities and does not require397

skin visibility.398
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