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Abstract—Image-based control systems are becoming com-
mon in domains such as robotics, healthcare and industrial
automation. Coping with a long sample period because of the
latency of the image processing algorithm is an open challenge.
Modern multi-core platforms allow to address this challenge by
pipelining the sensing algorithm. Often, such systems share the
resources with other tasks. We show that the performance of
an image-based controller can be improved by pipelining the
image processing algorithm on unallocated cores. It can be further
improved by dynamically allocating (i.e. reconfiguring) cores that
are temporarily not used by other tasks to the sensing pipeline.
We present a state-based modelling strategy for pipelined and
reconfigurable pipelined sensing. We introduce a control design
strategy for reconfigurable pipelined systems that assures stability
and shows improvement in the control performance.

Keywords—Image-based control, pipelined sensing control, re-
configurable pipelined control.

I. INTRODUCTION

An Image-Based Control (IBC) system uses a camera and
an image processing algorithm to obtain the sensing informa-
tion. Such controllers are becoming common in applications
such as ADAS (Advanced Driver Assistance Systems) [1], [2]
and visual servo control [3]. In IBC, the execution time of the
image processing algorithm introduces a sensing delay in the
control loop. In a classical implementation (See Fig. 1a), the
sensing, control computation, and actuating tasks are executed
sequentially, forcing the system to have a sample period larger
than the sensing delay. The control design becomes challenging
when the sample period is much larger than its recommended
value due to the sensing delay. A long sample period degrades
control performance or may even cause system instability [4].

Nowadays, it is common to use resources with parallel
processing capabilities (such as multi-core systems, GPUs,
and FPGAs) to execute the IBC together with other tasks in
the system. The sensing algorithm can then be parallelized,
pipelined (e.g. Fig. 1b) and/or dynamically reconfigured on
the available resources. Parallelizing the sensing algorithm
is not always straightforward and it could complicate the
resource allocation. Our work therefore explores the options
to pipeline and dynamically reconfigure the sensing algorithm.
These techniques can be applied relatively straightforwardly to
any sensing algorithm.

In a pipelined implementation, multiple instances of the
image processing algorithm run in parallel in a pipelined
fashion. The time between two consecutive completions of
sensor data is reduced compared to a sequential execution,
decreasing the sample period. It is known that pipelined
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Fig. 1: Examples of resources configurations. a) sequential b)
Pipelined with 3 cores. c) Reconfigured pipeline: the cores
(4 processing units) are dynamically assigned to the sensing
pipeline or to other tasks.

sensing control is capable of improving the controller per-
formance in visual servo-positioning systems [5]–[7]. The
increased usage of multi-core platforms makes it interesting
to explore this potential improvement. It is moreover common
that applications that use Image-Based Control share resources
with multiple sporadic tasks. For example, in ADAS other
tasks such as the air conditioning, the alarm system or the GPS
system may run on the same resources. These resources can
then be dynamically assigned (i.e. reconfigured) between the
image processing algorithm and sporadic tasks (e.g. Fig. 1c).
This reconfiguration potentially leads to a further improvement
in the quality of control.

Contributions: We present a state-based modelling strat-
egy for pipelined sensing controllers that is applicable to
reconfigurable pipelined sensing. This modelling strategy is
used to design reconfigurable controllers that outperform the
static pipelined implementation, while guaranteeing stability.

Organization: Section II starts with related work. Sec-
tion III presents the modelling strategy for control systems
with pipelined sensing and reconfigurable pipelined sensing.



Theoretical background and a control design strategy for
reconfigurable pipelined sensing are proposed in Section IV.
Section V introduces a case study where reconfigurability
improves the quality of control. Section VI presents the results
for validation of the proposed strategy. Conclusions and future
work are discussed in Section VII.

II. RELATED WORK

Strategies for coping with a long sample period are found
in the embedded domain and in the control domain. Examples
of control approaches can be found in [8]–[12]. Estimation
techniques based on Kalman filters are used in [8], [9].
Approaches in [10], [11] allow an actuation period shorter than
the total latency by using multi-rate strategies. In the embedded
domain, the approaches consist of reducing the image process-
ing latency by creating faster parallel implementations of the
algorithms in specialized hardware such as GPUs [13], [14] or
FPGAs [15], [16]. However, these strategies for coping with a
long sample period have some limitations. Control strategies
rely on the system model to estimate sensing information. Such
estimations are vulnerable to modelling errors, they are unable
to predict disturbances, and their prediction errors increase
with longer delays. Embedded strategies require a great effort
to speed up the image processing algorithm and the final
latency may not be shorter than the recommended sample
period of the controller.

An alternative to cope with long sample delays is to
combine knowledge from both control and embedded domains
to pipeline the sensing algorithm. Pipelined sensing control
was introduced by Krautgartner and Vincze in [5] and extended
in [6], [7]. They compared the performance of sequential and
pipelined sensing in visual servo-positioning systems by using
multiple control strategies. The pipelined sensing is shown
to outperform the sequential sensing in all tested controllers.
These results were only applied to visual servo-positioning
systems; they did not introduce a modelling strategy based
on the state space for pipelined sensing control, and they
did not investigate the possibility of reconfiguring the sensing
pipeline. Our work considers these aspects. We introduce a
modelling strategy for pipelined systems which is applicable
to a wide class of linear systems and we cope with the
reconfigurability by extending the model and presenting a
control design strategy.

III. MODELLING CONTROL APPLICATIONS

Notation preliminaries on resources: Consider a multi-
core platform with N cores. Such platform executes a set A
of M sporadic applications along with a control application.
The controller is composed by three tasks: Tac acquisition,
Ts sensing, Tc control computation, and Ta actuation. Tac is
performed by a camera. Ts, Tc, and Ta are executed by the
resources. One of the N cores periodically executes the control
computation Tc and actuator Ta tasks. The remaining cores are
shared by Ts and the set A of sporadic applications.

Notation preliminaries on control: linear time-invariant
control applications of the following form are considered:

ẋ(t) = Gx(t) +Hu(t− τ) (1)
y(t) = Cx(t)

u(K − lMC
−2)

u(K − lMC − 1) u(K − 2) Sample
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K− lMC − 1 K− lMC K− 1 K

τ ′hMC

τ

Fig. 2: Relationship between the delays τ , τ ′, and lMC , and
the sample period hMC .

where G ∈ Rp×Rp is the state matrix, H ∈ Rp×Rq the input
matrix, C ∈ Rr × Rp the output matrix, u(t − τ) ∈ Rq the
controller output vector, x(t) ∈ Rp the state vector, y(t) ∈ Rr
the output vector, and τ the sensor-to-actuator delay given by:

τ = τac + τs + τc + τa

with τac, τs, τc, and τa the acquisition, sensing, control, and
actuating latencies respectively and τs >> τa + τac + τc

Our Reconfigurable Pipelined Controller (RPC) is com-
posed by a Maximal Configuration (MC) and n Reduced
Configurations (RCs) {RC1, RC2, ..., RCn}. A MC uses the
maximum amount of resources designated for the IBC NMC

while the RCs use a smaller amount of resources NRC < NMC

to release cores for other applications. A RPC is active when
the system is capable of switching between a MC and one
or more RCs. For example, Fig. 1c shows a RPC switching
between a MC with NMC=4 and a RC with NRC = 3.

A. Modelling MC

Consider an IBC with NMC < N processing units avail-
able for computation. Since Tc and Ta are executed in a fixed
processing unit, only NMC − 1 processing units are available
for Ts. Eq. 1 is discretized by using a zero order hold and the
sample period of a MC hMC is:

hMC =
τ

NMC − 1
(2)

leading to a discrete state space representation of the form:

x(K + 1) = Φdx(K) + Γα(τ)u(K− lMC)+

Γβu(K− lMC − 1)
(3)

with [17]:

Φd = eGhMC

Γα(τ ′) =

∫ hMC−τ ′

0

eGsHds (4)

Γβ(τ ′) =

∫ hMC

hMC−τ ′
eGsHds

where τ ′ = τ − (lMC−1)hMC , lMC = d τ
hMC
e, u(K− lMC−

1), and u(K−lMC) are the delayed controller outputs, x(K) is
the discrete time state vector. Fig. 2 illustrates the relationship
between different timing components. The sample period hMC

should be chosen such that:

lMC = NMC − 1 (5)

If lMC < (NMC − 1) not all the available cores are used



for running the sensing algorithm, leading to a longer sample
period. Redefining the states from Eq. 3 as

z(K) = [xT (K), uT (K− lMC), uT (K− lMC + 1) · · ·
uT (K− 2), uT (K− 1)]T

(6)

the following augmented system is obtained:

z(K + 1) = ΦMCz(K) + ΓMCu(K) (7)

ΦMC =


Φd Γα(τ ′) Γβ(τ ′) . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

 (8)

ΓMC = [ 0 0 . . . 0 I ]
T (9)

where ΦMC ∈ Rp+lMC ×Rp+lMC and ΓMC ∈ Rp+lMC ×Rq
are the state and input matrix respectively.

Eqs. 6-9 correspond to a system under a MC. Since this
model includes τs, hMC , and a fixed number of sensing
instances NMC − 1, it can be used for modelling control
applications with static pipelined sensing.

In the state definition of Eq. 6, the number of states depends
on lMC (i.e. the number of available cores). In a RC, lRC
increases with the number of available cores for sensing (See
Eq. 12) leading to a discrete time model with fewer states than
the MC. However, in order to design a RPC, it is necessary that
the discrete time models of the MC and the RC have an equal
number of states. In the next section, we propose a modelling
strategy for the RCs that addresses this aspect.

B. Modelling RC

Consider a reduced pipelined sensing controller with NRC
processing units available for computation. The sample period
of the RCs is defined by:

hRC =
τ

NRC − 1
(10)

Using hRC and Eqs. 3 and 4 the continuous time system
in Eq. 1 is discretized. The new state definition is given by:

z(K) = [xT (K), uT (K− lRC), uT (K− lRC + 1) · · ·
uT (K− 2), uT (K− 1)]T

(11)

with

lRC = NRC − 1 (12)

Since NRC < NMC , lRC < lMC . Therefore the state
vector in Eq. 6 has more states than the state vector in Eq. 11.
In order to equalize the number of states in all configurations,
Eq. 11 is augmented by introducing old controller outputs u
in the state vector definition, so that the length of z(K) in the
RC is equal to its length in the MC:

z(K) = [xT (K), uT (K− lMC), uT (K− lMC + 1), · · · ,
uT (K− lRC − 1), uT (K− lRC), uT (K− lRC + 1), · · · ,

uT (K− 3), uT (K− 2), uT (K− 1)]
(13)

Sensing cores: NRC − 1
hRC = τ

NRC−1

Model: Φ = ΦRC,Γ = ΓRC
Controller: kRC ,FFRC

Method: Theorem 3

Sensing cores: NMC − 1
hMC = τ

NMC−1

Model: Φ = ΦMC,Γ = ΓMC
Controller: kMC ,FFMC

Method: e.g. LQR

MC RC

Performance
enhancement

Stability
guarantee
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applications> 0

# of active
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Fig. 3: Operation modes of a RPC. One of the RCs becomes
active when one or multiple tasks from the set A are triggered
and executed on the resources. Otherwise the MC becomes
active.

where xT (K) and uT (K) are the discrete time state vector
and controller output of the RC respectively. Therefore, the
augmented discrete state space matrices are denoted by:

z(K + 1) = ΦRCz(K) + ΓRCu(K) (14)

ΦRC =



Φd 0 . . . Γα(τ ′) Γβ(τ ′) . . . 0
0 0 . . . 0 0 . . . 0

0 0
. . . 0 0 . . . 0

...
... . . .

...
...

. . .
...

0 0 . . . I 0 . . . 0
0 0 . . . 0 I . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 0 . . . I
0 0 . . . 0 0 . . . 0


(15)

lMC

lRC

ΓRC = [ 0 0 . . . 0 I ]
T (16)

where ΦRC ∈ Rp+lMC × Rp+lMC and ΓRC ∈ Rp+lMC × Rq
form the augmented state input matrix for an RC.

The model of the MC (Eqs. 6-9) and of the RCs (Eqs. 13-
16) are used to design control systems in the next section.

IV. CONTROL DESIGN STRATEGY

Depending on the number of available cores, the RPC
switches between a MC and one or more RCs, which can
potentially lead to an unstable closed loop behaviour [18].
The control design strategy has to cope with this problem.
The purpose of this section is:

• to design feedback gains ki which allow stable switch-
ing between the above mentioned sensing configura-
tions, as is shown in Fig. 3;



• to design a feed-forward gain FFi such that the output
vector y converges to the input step reference R. This
problem is called set-point regulation.

These results provide a RPC of the following form:

u(K) = kiz(K) + FFiR (17)

where the sub-index i denotes one of the sensing configurations
i = {MC,RC}.

In the following subsection we provide an overview for
our strategy to design a RPC. Theoretical background and the
detailed controller design strategy are provided in Section IV-B
and Section IV-C respectively.

A. Design summary

Given a sensor-to-actuator delay τ , a continuous time
model of the form of Eq. 1, and resources running a set of
sporadic applications A, a RPC with maximum NMC − 1
sensing units is designed following these design steps:

1) Modelling MC. Find sample period hMC using
Eq. 2. Discretize the continuous model with Eq. 4.
Construct the discrete time model using Eqs. 6-9.

2) Controller design MC. Find a feedback gain kMC

using Linear Quadratic Regulator (LQR) or pole-
placement such that the performance (e.g. settling
time, quadratic cost) is enhanced. Find a feed-forward
gain FFMC from Theorem 3.

3) Modelling RCs. Based on the M sporadic tasks,
decide how many RCs n are required; this is a
design parameter. For each configuration, determine
the available number of cores NRC and find the
sample period hRC by Eq. 10. Discretize the model
for all the sample periods by Eq. 4 and construct the
set of discrete time models following Eqs. 13-16.

4) Controller design RCs. Find the feedback gains
kRC by solving the Linear Matrix Inequalities (LMIs)
stated in Theorem 4. Design a feed-forward gain
FFRC for each RC by using Theorem 3.

Following these design steps, a RPC is designed. Such a
controller is capable of stable switching between a MC and
one or more RCs. The next subsections introduce detailed
information about the controller design.

B. Theoretical background

Consider the discrete time models from Eqs. 7 and 14 with
control law u(K) = kiz(K). The closed loop representation is
given by:

z(K + 1) = (Φi + Γiki) z(K) (18)

The stability requirements of the systems in Eq. 18 are de-
fined in Theorem 1 for an individual system, and in Theorem 2
for the set of systems. Theorem 3 defines the feedforward gain
FFi introduced in Eq. 17.

Theorem 1. A discrete time model Φi + Γiki is stable if and
only if there exist positive definitive matrices P � 0 and Qi �
0 that satisfy the Discrete Time Lyapunov Equation (DTLE)
P − (Φi + Γiki)

TP (Φi + Γiki) � Qi [19].

Theorem 2. Given a set of models of the form Φi + Γiki,
V (z) = zTPz is a Common Quadratic Lyapunov Function
(CQLF) if there exist positive definitive matrices P � 0 and
Qi � 0 such that P is the simultaneous solution of the DTLEs

P − (Φi + Γiki)
TP (Φi + Γiki) � Qi.

The existence of a CQLF is a necessary and sufficient condition
for stable arbitrary switching between the set of systems in
Eq. 18. [20].

Theorem 3. Given a control law of the form u(K) = kiz(K)+
FFiR, the system states z(K) converge to a desired reference
R if FFi is defined by [21]

FFi = [ ki I ]

[
Φi − I Γi
C 0

]−1 [
0
I

]

C. Controller design strategy

The control design is accomplished in two stages: (i) for
the MC (ii) for n RCs.

1) gains in MC: As already explained in Section III-A,
the MC has the largest number of cores in the RPC NMC .
Therefore, the MC has the shortest sample period in the
RPC (see Eq. 2) and hence, the best control performance
can potentially be achieved. To this end, a feedback gain
kMC is designed to enhance performance by using LQR or
pole-placement [21]. Finally, a feed-forward gain FFMC is
computed using Theorem 3. The controller output for the MC
is then given by:

u(K) = kMCz(K) + FFMCR

The above control law provides the desired performance as
long as the system is running under the MC. However, due to
the triggering of one or multiple sporadic tasks of the set A,
the system switches to the RCs as illustrated in Fig. 3.

2) gains in RCs: The controllers for the RCs are designed
to guarantee stability if arbitrary switching occurs between the
MC and the n RCs. To this end, the feedback gains kRC are
found by solving the LMIs from Theorem 4. Finally, a feed-
forward gain FFRC for each RC is found using Theorem 3.

Theorem 4. Consider the models of Eq. 18. If there exist
positive definitive matrices O � 0 and QMC � 0, QRC � 0,
YMC and YMC such that the following LMIs hold

 O (ΦMCO + ΓMCkMCO)T O
(ΦMCO + ΓMCkMCO) O 0

O 0 Q−1MC

 � 0

(19) O (ΦRCO + ΓRCYRC)T O
(ΦRCO + ΓRCYRC) O 0

O 0 Q−1RC

 � 0

(20)

then the models in Eq. 18 have a CQLF with a feedback
gain kRC = YRCO

−1.



Proof: Applying the Schur complement on Eq. 20 yields:

O − (ΦRCO + ΓRCYRC)TO−1 (ΦRCO + ΓRCYRC)−
OQRCO � 0

Defining O = P−1 and YRC = kRCP
−1:

P−1 − (ΦRCP
−1 + ΓRCkRCP

−1)TP (ΦRCP
−1+

ΓRCkRCP
−1)− P−1QRCP−1 � 0

Pre and post multiplying by P :

PP−1P − P (ΦRCP
−1 + ΓRCkRCP

−1)TP

(ΦRCP
−1 + ΓRCkRCP

−1)P − PP−1QRCP−1P � 0

P − (ΦRC + ΓRCkRC)TP (ΦRC + ΓRCkRC) � QRC (21)

An identical procedure is applied to the LMIs in Eq. 19:

P − (ΦMC + ΓMCkMC)TP (ΦMC + ΓMCkMC) � QMC

(22)

From Eqs. 21 and 22 it is clear that the systems defined by
Eq. 18 have a CQLF defined in Theorem 2. This completes
the proof.

The controller output for the RC is then defined by:

u(K) = kRCz(K) + FFRCR

This section presents a control design strategy for a RPC.
This controller enhances performance if a MC is used and
stability with temporarily degraded performance if the RCs
are used. The next section provides a motivational set-up that
shows how RPC is beneficial to control performance.

V. CASE STUDY: XCPS

We evaluate our approach through simulations based on
an experimental platform eXplore Cyber-Physical Systems
(xCPS) called [22]. An Image-Based Controller and multiple
applications share a multi-core platform in the system. The
applications are sporadically triggered allowing their cores to
be temporarily reused by the controller in order to enhance the
controller performance.

The xCPS platform is an industrial assembly line simulator
which is used for teaching and research purposes. The machine
assembles or disassembles circular complementary objects that
come in two shapes: lower and upper parts. The assembly
section of xCPS (Fig. 4a) is considered in our case study. The
following subsections describes detailed information about the
xCPS assembly process.

A. Assembly tasks and resources

A schematic of the assembly hardware is depicted in
Fig. 4b. Four tasks are involved in the assembly process:
A Supervisory Control Task (SCT), a Turner Task (TT), an
Indexing Table Task (ITT), and an Image-Based Control (IBC).
The assembly process is controlled by means of the SCT,
which is activated whenever a new assemble object enters
conveyor belt 1. The SCT also generates set-points for the
controllers, activates the system actuators (such as switches,
the stopper and the pick and place unit), and distributes the
available resources among the assembly tasks. The TT corrects
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Fig. 4: Assembly section on xCPS. a) camera view. b)
schematic.

the orientation of the assembly objects in case it is necessary,
by manipulating the turner actuator. The ITT consists of a local
controller which aligns an indexing table either with switch 2
or with a pick and place actuator. The IBC regulates the speeds
of the conveyor belts using DC motors. A camera and an image
processing algorithm are used as sensor to measure the speed
of the belts. The speed is kept low when an object is going
through the actuators (e.g. turner, switch 2, and pick and place)
and high otherwise. All three applications (SCT, ITT, and TT)
are triggered sporadically based on the arrival of a new object
whereas the controller always remains active.

A 6 core multiprocessor board (N = 6) is considered
as multi-core platform to simulate the assembly tasks. The
three mentioned sporadic applications (M = 3 with A =
{SCT, TT, SCT}) and the controller are executed on these
6 cores. Each task runs in a separate core in case they need to
be executed at the same time.

B. Assembly process

The assembly process begins when an object is fed into
conveyor belt 1 and it is blocked by a stopper. The SCT is
immediately triggered to generate controller references and
activation times of the actuators which guarantee the correct
assembly of the object. The SCT retracts the Stopper and
the object moves through a turner activating the TT. Lower
objects go to an indexing table using switch 2 and trigger the
ITT, whereas upper objects go to conveyor belt 2. A pick and
place actuator grabs the upper objects from conveyor belt 2 and
push them to the lower parts in the indexing table. Assembled



objects are moved by switch 3 into conveyor belt 3. The system
also rejects objects by using conveyor belt 4 and switch 1.

Since the conveyor belts speeds are regulated by the IBC,
the time elapsed between an object leaving the stopper and
reaching the turner or the indexing table is known. Therefore,
the activation time of the ITT and TT can be predicted. On
the other hand, the SCT is triggered by the arrival of a new
object; therefore its activation time can not be predicted. This
is particularly important for the design of the reconfigurable
controller in the next section. The throughput of the machine is
directly affected by the Settling time (S) of the control system:
a shorter S means that the blocks reach each stage of the
assembly process faster, increasing the number of assembled
blocks per time unit. So, optimizing the performance of the
controller increases the throughput of the system.

VI. SIMULATION RESULTS

In this section four different sensing configurations of the
Image-Based Controller are studied and their performance is
evaluated on xCPS. The settling time (S) of the control system
is used as performance metric since it has a direct impact on
the throughput of xCPS.

A. Image-Based Controller design

The IBC manipulates the speed of the conveyor belts on
xCPS by adjusting the input voltage to the DC motors. The
parameters of the motor model in Eq. 1 are G = −49.5050,
H = 0.01, and C = 1. The reference R is the desired speed
of the DC motor. The controller is designed to reach such a
reference as fast as possible (i.e., shortest S). The sensor-to-
actuator delay is τ = 0.125s. Given the number of sporadic
tasks (SCT, TT, ITT with M = 3) and the multi-core platform
(N = 6), multiple IBCs are designed by changing the number
of cores (NMC) assigned to the controller:

1) Serial configuration: A serial configuration (denoted by
SC) uses the same core for executing the Ts, Tc, and Ta tasks
as shown in Fig. 5a. The sensor-to-actuator delay τ = 0.125s
implies a sample period h = τ = 0.125s. Since the sample
period is known, Eq. 4 is used to discretize the continuous time
model. The states are redefined using Eqs. 6-9 to include the
delay in the state space notation. An IBC is designed by using
standard a pole-placement technique [21]. The poles are tuned
such that the shortest settling time is achieved. The resulting
feedback gain is

kSC = [−17× 10−9 − 16× 10−6].

Theorem 3 is used to find the feed-forward gain FF = 0.5.

2) Pipelined configuration: Using the two free cores in the
board, an IBC with two sensing pipes (denoted by PC) is
designed, as illustrated in Fig. 5b. The control and actuation
tasks are executed on a different core in order to locally
maintain the required information for computing the controller
output such as FFPC , kPC , and old u(K). Since the number
of available cores for sensing is constant, the controller is
designed using the guidelines of Section IV-A for a MC,
considering that NMC = 3. The resulting sample period is
hMC = 62.5 × 10−3s. The feed-forward gain is given by
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Fig. 5: Resources distribution on xCPS when a new lower
part object arrives. The colours follow those of Fig. 1. a) SC
b) PC c) RPC with NMC = 5 d) RPC with NMC = 6
and no interruption from SCT e) RPC with NMC = 6 with
interruption from SCT at time 0.2s. No sensing information is
delivered at time 0.275s (see red squares).

FFMC = 0.5. Similar to the SC, a pole-placement controller
is tuned to achieve the shortest S giving the feedback gain

kPC = [−0.04 − 1.99 − 44.02]× 10−3.

3) Five core RPC: Fig. 5b shows that the ITT and TT are
applications with a low frequency of appearance. Such applica-
tions are triggered by the SCT, making it possible to schedule
them in such a way that their cores are temporarily reused
by the sensing instances of a RPC. This scenario is shown
in Fig. 5c. The procedure presented in Section IV-A is used
to design the control system. The RPC is composed of two
sensing configurations: a MC with 4 sensing cores (NMC = 5)
and one RC (n=1) {RC1} with 2 sensing cores (NRC1 = 3).
The MC has a sample period hMC = 31.25×10−3s. The feed-
forward gain is FFMC = 0.61. Using the procedure described
for the sequential controller, a pole-placement controller is



tuned to find the feedback gain resulting in

kMC = [0.2 − 1.6 − 7.8 − 37 − 174]× 10−3.

The sample period of the RC1 is hRC1 = 62.5 × 10−3s.
The feed-forward gain is FFRC1 = 0.3138. The set of LMIs
[23] from step 4 in the design summary are solved with
the optimization toolbox YALMIP [24] and a semi-definite
quadratic solver SDPT3 [25]. The resulting feedback gain is

kRC = [0.3 2.9 13.2 62.2 293]× 10−3.

4) Six core RPC: In order to reuse all resources of the
sporadic tasks, the procedure from Section IV-A is used for
designing a RPC which uses 6 cores. Since the activation
time of the SCT is not predictable, two cases are considered:
when no interruption occurs in the sensing pipeline (e.g. SCT
triggers when its sensing core is available as shown in Fig. 5d)
and when it does (e.g. SCT preempts the sensing task as
shown in Fig. 5e). The RPC is composed by three sensing
configurations: a MC with 5 pipes (NMC = 6), and two RC
(n = 2) {RC1, RC2}. RC1 uses two pipes (NRC1 = 3), and
RC2 uses three pipes (NRC2 = 4). For the MC the parameters
are hMC = 25× 10−3s, FFMC = 0.68, and

kMC = [−0.3 − 1.9 − 6.5 − 22.6 − 78 − 269]× 10−3.

For the RC1 the parameters are hRC1 = 62.5 × 10−3s,
FFRC1 = 0.28, and

kRC1 = [0.4 2.4 7.4 25.7 88.7 306]× 10−3.

For the RC2 the parameters are hRC2 = 50 × 10−3s,
FFRC2 = 0.29, and

kRC2 = [0.4 2.2 6.9 23.8 82 284]× 10−3.

B. Controllers simulations

The performance of the controllers designed in the previous
subsection is computed by simulating the arrival of a new
lower part object on the conveyor belt. For simplicity, only the
speed on the first conveyor belt is illustrated in the figures. The
reference is initially kept low while the object passes through
the turner. When the TT is finished, the speed is temporarily
increased to reach the next stage of the assembly process. The
object then moves to the indexing table activating the ITT.
The tasks distribution on the multi-core platform is shown in
Fig. 5 for the different sensing configurations. In absence of
disturbances, sensing errors, and modelling errors, zero steady
state error is achieved in the cases.

1) SC vs PC: The model output and the controller output
are plotted in Fig. 6. It is clear that the controller with pipelined
sensing (red line) outperforms the serial controller (purple
line). The controller in SC actuates once every sensor-to-
actuator delay τ , whereas the controller in PC actuates twice
in the same period. As a consequence, a more aggressive
controller output is achieved by the PC controller. At time
0.25s, the controller output of the PC controller is initially
higher than the SC controller but it switches to the same value
in the following sample. The PC controller (red line) achieves
a settling time 29% shorter than the SC controller (purple). It
can be seen in Fig. 6 that as a result of the sensing latency τs,
a change on the controller output is not immediately seen in
the motor speed.

TABLE I: Performance comparison of sensing configurations.

Sensing configuration S ms
Performance enhancement

%

SC 77 0
PC 55 29

RPC with NMC = 5 40 27
RPC with NMC = 6 24 38
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Fig. 6: Comparison: SC, PC, and RPC with NMC = 5.
Markers denotes the time when the controller is actuating. The
switching sequence of RPC is {MC,MC,RC2, RC1, RC1}.

2) PC vs five core RPC: The model output and controller
output are plotted in Fig. 6. The performance of the RPC
controller is enhanced by using MC when the system is away
from the reference. RC1 is used when the system is on the
reference. As a result, RPC actuates more frequently when the
reference changes. The RPC controller outperforms the PC
controller by reaching the reference 27% faster in all set-point
changes. This result is summarized in Table I.

3) Five core RPC vs six core RPC: If the arrival time of
a new block is known in advance, the SCT can be scheduled
in such a way that the RPC with NMC = 6 uses the MC
when there is a deviation from the reference and the RCs RC1
and RC2 are used when the system is on the reference. The
simulation from Fig. 7 shows such a scenario. The RPC with
NMC = 6 (red line) reaches the reference 38% faster than the
RPC with NMC = 5 (black line). This result is summarized
in Table I. However, if an unexpected block enters the system,
the SCT is triggered and the sensing information might be
dropped. In Fig. 7, the RPC with NMC = 6 (purple line) is
forced to switch from MC to RC2 because of the unexpected
activation of SCT at time 0.2s. RC2 assures stability of the
controller, at the cost of control performance.

C. Discussion

From the simulations described in this section, the follow-
ing insights are deduced: first, pipelined control outperforms
serial control due to the higher sample rate, at the cost of
more resources used [5]. Second, a RPC enhances the control
performance if the arrival times of the sporadic tasks are
known. If not, the controller is still stable with a lower
performance. Third, in case there is no predictability on one
or multiple sporadic applications, it is recommended to not
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Fig. 7: Comparison between the RPCs with NMC = 5 and
NMC = 6. The configuration with NMC = 6 has a switching
sequence of {MC,MC,RC2, RC1, RC1} (red line). The
sequence is changed to {MC,MC,RC2, RC1, RC1, RC2}
for the case of an unexpected block arrival (purple line).

include such cores in the RPC. Fourth, a larger number of
resources in pipelined sensing controllers will most likely
result in better control performance (See Table I).

VII. CONCLUSIONS AND FUTURE WORK

We have presented reconfigurable pipelined control for
Image-Based Controllers. A pipelined controller reduces the
sample period of Image-Based Controllers by using additional
sensing resources in a pipelined fashion. A reconfigurable
pipelined controller reduces the sample period further by
temporarily reusing the resources from other applications
running on the same platform. We have introduced a state-
based modelling strategy for pipelined and reconfigurable
pipelined control, and a control design strategy for reconfig-
urable pipelined control. Simulation results show that pipelined
control outperforms classical sequential implementations. Sim-
ulations also show that reconfigurable pipelined control out-
performs pipelined control, if the maximal configuration is
used when the output is deviated from the reference (e.g. in a
transient state). Otherwise, reconfigurable pipelined control is
still stable, at the cost of certain performance degradation. Our
simulation results suggest that increasing the number of cores
in pipelined sensing implementations leads to an improvement
of performance. However, this needs further exploration over
a wider range of systems. Further work may include the
modelling of reconfiguration time, sensing errors, variable
sensing latency, uncertainties, and disturbances. Considering
Image-Based Control with parallelized and pipelined sensing
simultaneously is also interesting. This provides further op-
portunities to reduce the sample period formulating a more
challenging reconfiguration and resource allocation problem.
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