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Abstract—Executing neural network (NN) applications on 

general-purpose processors result in a large power and 

performance overhead, due to the high cost of data movement 

between the processor and the main memory. Neuromorphic 

computing systems based on memristor crossbars, perform the 

NN main operation i.e., vector-matrix multiplications (VMM) in 

an efficient way in the analog domain. Thus, they circumvent the 

costly energy overhead of its digital counterpart. It can be 

expected that neuromorphic systems will be used initially as 

complements to current high-performance systems rather than as 

a replacement. This paper presents NeuroVP, a virtual platform 

integrating a neuromorphic accelerator, developed in SystemC 

that can model functionality, timing, and power consumption of 

the components integrating the system. Using NeuroVP to 

evaluate performance and power consumption at the electronic 

system level (ESL), it is corroborated that the execution of NN 

applications with a neuromorphic accelerator yields of up to 46x 

higher power efficiency and 26x speedup relative to a general-

purpose computing system.    

Keywords—Virtual Platform, SystemC, RISC-V, Neuromorphic 

Accelerator, Memristor, ESL Power Estimation 

I. INTRODUCTION 

Substantial advances in neural networks (NNs) have made 
their extensive adoption in solving problems such as image 
classification [1], face recognition [2], speech recognition [3], 
and many others possible. Additionally, the ever-increasing data 
generation and the development of high-performance computing 
systems have collaborated to the positive feedback loop by 
allowing more training data and faster training times. However, 
NN applications running in general-purpose computing 
architectures are extremely power and performance inefficient, 
since they require massive data transfers from CPU to memory 

and vice versa and also require a huge number of multiply-
accumulate (MAC) operations mainly [4, 5].  

Brain-inspired neuromorphic computing, based on 
memristive devices in crossbar architectures, is one of the most 
promising emerging technologies for NN accelerators since it 
offers solutions to the challenges of massive data transfer and a 
large number of MAC operations. Memristors not only can serve 
as memory elements but also perform computation on the stored 
data [6, 7]. Thereby computations can be performed directly in-
memory reducing the data transfer bottleneck. Additionally, 
memristive crossbar architectures, illustrated in Fig. 1, can be 
used to efficiently perform vector-matrix multiplications 
(VMMs) used in deep neural networks (DNNs). They reduce the 
time complexity of VMM operations from  �����  to ���� or 
even to ��1�  [8] if considering only the analog computation on 
the crossbar array, therefore facilitating the VMM acceleration 
and improving the overall power efficiency of the system. 

This work was supported by the Federal Ministry of Education and Research 
(BMBF, Germany) within the NEUROTEC project (No. 16ES1134 and 
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Fig. 1.   Memristor-based crossbar array. 



However, all these benefits are commonly expressed relative 
to stand-alone crossbar array accelerators. A more 
comprehensive finding might be concluded when examining 
these types of neuromorphic accelerators integrated within a full 
system, i.e. CPU, memory cache, data buses, and other 
peripherals devices altogether. Since, it can be expected that 
neuromorphic systems will be used initially as complements to 
current high-performance systems rather than as a replacement, 
which as well might happen but at a much later point in time. 

Analyzing the whole system’s behavior at the electronic 
system level (ESL) with the help of a virtual platform (VP) is an 
efficient way to carry out design space exploration (DSE) while 
integrating neuromorphic accelerators in the system. VPs offer 
high flexibility while enabling hardware and software co-design 
of the new neuromorphic paradigm. SystemC with transaction-
level modeling (TLM) [9] is widely used to build VPs and to 
perform thorough DSE. This paper introduces Neuromorphic-
Virtual-Platform (NeuroVP) developed in SystemC that can 
model functionality, timing, and power consumption of the 
components integrating the system, allowing to estimate the 
system’s complete behavior during the early stages of the 
design. The contributions of NeuroVP are as follows:  

 Application of ESL power estimation methodology using a 
VP that includes a neuromorphic accelerator. 

 DSE using a VP for the integration of general-purpose 
memristive accelerator, with different crossbar sizes, into a 
complete system. 

 Verifying the consistency of power estimation results at the 
ESL modeling for non-cycle-accurate simulations 
compared to cycle-accurate ones for neuromorphic 
systems. 

This paper is structured as follows: Section II provides 
related work and background to this paper. Section III 
introduces the structure of NeuroVP and its characteristics. 
Section IV summarizes the used ESL power estimation 
methodology. In Section V, the significance of NeuroVP is 
demonstrated by using it to perform simulations. It provides 
system power results of selected case studies. Finally, in Section 
VI conclusions are drawn and remarks on future work are 
provided. 

II. RELATED WORK 

A good deal of effort is being invested by academia in 
developing different types of neuromorphic simulators. Ranging 
from high-performance like PUMA [10], ISAAC [11] to edge-
computing such as Tiny-but-Accurate [12] and the one proposed 
by G. Yuan et al. in [13]. They are also designed as purpose-
specific, like Pinatubo [14], MemTorch [15], or general-purpose 
such as, CIM-SIM [16], PRIME [4] and NMSIM [17]. PUMA 
proposes a programmable architecture and ISA design 
organized in three tiers: cores, tiles, and nodes bringing 
programmability and generality to memristor crossbars. On the 
other hand, Tiny-but-Accurate takes full advantage of the 
“alternating direction method of multipliers” algorithm with 
memristor hardware constraints, thus achieving an extremely 
high compression rate with minimum accuracy loss. Pinatubo 
introduces a processor in memristor-based architecture for bulk 
bitwise operations, including OR, AND, XOR, and INV. 

Oppositely, CIM-SIM presents a general-purpose accelerator 
that includes the memristor crossbar with surrounding analog 
drivers, providing the required interface to the co-processing 
digital elements, and it presents a micro-instruction set 
architecture that controls and operates both analog and digital 
components. All aforementioned simulators use memristive 
crossbar arrays to simulate the performance of NN required 
operations and benchmarks within their respective architectures. 
The execution of those benchmarks drives the system’s overall 
performance. To report the power consumption, due to such 
executions, of the proposed accelerator architecture or the power 
consumption of the full system, all proposed works rely on 
register transfer level (RTL) or lower levels of simulation 
making the whole estimation process time consuming and very 
computationally demanding. 

Power estimation at abstraction levels above RTL has been 
extensively investigated by academia already. Approaches like 
[18] and [19], focus on the integration of various ESL power 
models into the workflow, while other approaches provide a 
methodology of how to create the power models, e.g. [20]. A 
commercial framework like Docea Aceplorer [21] is a good 
example of ESL power estimation being adopted in the industry 
due to its advantage for rapid and accurate estimation. Works 
from academia have developed power models suitable for ESL 
simulations for different kinds of system components, such as 
dynamic memories (DRAMs) [22], peripheral cores [23], and 
communication architectures in general as proposed in [24]. 
Therefore, NeuroVP uses for the first time, ESL power 
estimation methodology for obtaining the system-level power 
consumption of a system that integrates a neuromorphic 
accelerator. Furthermore, it allows a rapid DSE and performing 
fast instruction-accurate simulations. 

III. SYSTEMC VIRTUAL PLATFORM 

The NeuroVP consists of several SystemC modules: a main 

processor, L1 instruction and data caches, a bus, main memory, 

and a neuromorphic accelerator. Each module can work as a 

transaction initiator and a transaction target depending on its 

current function or just as a forwarder in the case of the bus 

module. The modules have their corresponding sockets for 

 

Fig. 2.   NeuroVP high level architecture. 



TLM2.0 transaction-based communication where the tracing of 

each transaction is being monitored and stored. Fig. 2 depicts 

NeuroVP’s high level architecture and illustrates the tracing 

approach. By collecting all the transactions, it is possible to have 

a histogram and the total number of transactions that occurred 

during the execution of any particular benchmark.  

A. RISC-V 

NeuroVP uses RISC-V [25], an open-source Instruction Set 
Architecture (ISA) which is license-free and royalty-free, as the 
main system processor. The RISC-V core implemented in [26] 
using SystemC and TLM-2.0 is the one integrated into 
NeuroVP. This implementation offers a 32/64-bit RISC-V core 
supporting the IMAC instruction set with different privilege 
levels, CLINT interrupt controller with a set of peripherals. It is 
designed as an extensible and configurable platform with a 
generic bus system. Additionally, it provides a sensor peripheral 
and extension debug functionality from the software application 
perspective. By adding this SystemC RISC-V 64IMAC, 
NeuroVP achieves a significantly faster simulation compared to 
using an RTL implementation, while being more accurate than 
other commercially available Instruction Set Simulators (ISSs). 
Lastly, the aforementioned RISC-V implementation is fully 
open source following the MIT licensing model. 

The RISC-V processor is used to execute different software 
applications that exploit the available neuromorphic accelerator 
by offloading specific types of operations, such as VMMs, 
meanwhile being free to perform other computational tasks. It is 
important to point out that the RISC-V core does not make use 
of any standard extension instructions to offload operations to 
the accelerator but rather it is the Computation In-Memory 
(CIM)-Unit that interprets and handles the executions of the 
operations using its internal controller and own set of micro-
instructions. 

B. CIM-Unit 

NeuroVP integrates the CIM-Unit, proposed in [27], since it 
provides built-in interfaces that allow interaction with SystemC-
based virtual platforms in several abstraction levels. The CIM-
Unit consists of two main parts Calculator and its digital 
surrounding, the Micro-engine as shown in Fig. 3. The 
calculator is a simulator that not only replicates the functional 
behavior of memristor crossbars but also covers the operation of 
surrounding mixed-signal circuitries, e.g., ADC, DAC, S+H, 
which are essential for driving the memristor crossbar. The 
micro-engine, on the other hand, comprises the digital 
components, e.g., controller, registers files, and buffers, that [27] 
finds necessary for operating the memristor crossbar. In addition 
to these, the CIM-Unit offers a micro-instruction set that allows 
the unit to communicate with the main processor, if it is 
deployed as an accelerator --as it is the case in this work-- or 
other functional units, in a coarse grain reconfigurable 
architecture. For the CIM-Unit to operate it should first be 
supplied with some necessary parameters, e.g., size of the matrix 
that is to be mapped on the crossbar, I/O resolution, etc. The 
controller stores these parameters, which are passed to the CIM-
Unit through several instructions, into the configuration register. 
As soon as all the necessary parameters are received, Controller 
--which is a state-machine-- transitions into the state IN 
signaling that is ready to accept input data. It stays in IN until all 

the input data is received. The number of cycles that it takes to 
be ready to move to the next state depends on the width of the 
input ports, the resolution of the input data, and the size of the 
input vector. In the next state, OP, the Controller executes the 
operation that is specified in the configuration register. In the 
end, the Controller moves to the final state, OUT, where it sends 
out the processed information and goes back to the initial state, 
IDLE, as soon as all the output is sent out.  

C. Memory Modules  

Main memory (DRAM) and instruction and data cache 
(SRAM) modules are taken from an in-house library. In addition 
to commonly modeling memory in SystemC with a read and 
write access delay, further delays for page switches and write-
to-read switches are introduced. Each module has its annotated 
power model for leakage power, sequential and random 
dynamic power for writing and reading operations. 

IV. SYSTEM POWER ESTIMATION 

The ESL power estimation methodology relies on obtaining 
a reference power trace for the component of interest in one 
arbitrary scenario. There are a few options for obtaining this 
reference; by using a power simulation at lower levels such as 
gate or layout level, by using direct power measurements from 
a device containing the component of study, or ultimately, by 
using reference values reported by the research community. In 
all previous cases, there is always the possibility of further 
refinement and subsequent calibration.  

 The available power information from the reference 
scenario is then back-annotated to the ESL model, thus creating 
the ESL power model for the component and then storing it into 
the component’s ESL library. Afterward, it can be used to 
estimate the power consumption of the component in the same 
system running different scenarios or even in different systems 

 

Fig. 3.  CIM-Unit architecture. 



with different scenarios. If power models for all components of 
the system are available, the power consumption of the entire 
system can be predicted using the ESL simulation. This power 
estimation methodology is based on the work first presented in 
[18] and is briefly summarized as follows: 

The power consumption of CMOS devices is a combination 
of leakage and dynamic power. Leakage power can be assumed 
as constant as long as temperature and supply voltage changes 
are not taken into consideration. Dynamic power, on the other 
hand, depends on short circuit and switching power caused by 
the total activity performed by the device. The dynamic power 
depends on control signals which initiate actions or instructions 
performed by the device. Therefore, to estimate the dynamic 
power consumption at ESL, it is sufficient to trace those control 
signals, as illustrated in Fig. 2, to calculate the power. A total of 
N traces of control signals will be recorded over T sampling 
periods. All traces can be represented by a matrix � ∈  ℕ��. 
Where the first trace is always set to 1, i.e.   Q�,� � 1, to take into 

consideration, the constant part of the power consumption. The 
power estimate is then calculated as: 

   ���� � � ∙ �   with   � ∈  ℝ�   (1)   

where �  denotes a vector of power model factors, which 
allows for the model’s calibration. A reference power trace 
����  ∈  ℝ�  recorded at a lower level than ESL simulation, or 
using a real hardware sample, should represent closely the ESL 
traces as much as possible. Hence, � can be calculated using the 
pseudo-inverse matrix � as follows: 

 � ≔  �  ∙  ����    �2�

In general, more activity in the internals of a component 
corresponds to higher dynamic power consumption, with an 
approximately linear relationship. Therefore, all in-house 
developed ESL models have been extended to deliver all 
available information of their internal signals to the linear power 
model that will compute the power estimation utilizing (1). A 
reference power trace necessary for the RISC-V processor was 
obtained performing an RTL simulation using the 64 bit 6-stage 
CVA6 (formerly Ariane core) from [28]. In the case of the main 
memory and cache memories values from in-house libraries 
reported in [19] were used. 

V. METHODOLOGY AND SIMULATIONS 

A. System Hardware Characteristics 

Table I lists the components that play an active role in the 
power and performance of the entire system. Main RAM 
memory and cache memories have small sizes just enough to 
handle bare-metal applications. Adding larger memory sizes 
would mainly add static power consumption to the overall 
system. Reference for the energy values for ADC, DAC, sample 
and hold (S+H) components of the CIM-Unit are the ones 
reported in ISAAC [11]. As for the crossbar and the Micro-
engine digital components are the ones reported in [27]. 

B. NeuroVP Operation flow 

A RISC-V bare-metal application triggers the VMM 
operations required by the NN. If the neuromorphic accelerator 

is enabled, the system will proceed to offload those operations 
otherwise it will execute them using the main processor and the 
main memory. To offload the VMM operations, all micro-
instructions, required by the CIM-Unit’s Micro-engine to 
perform the calculations on the memristor crossbar, are pushed 
to a reserved program address space on main memory. Similarly, 
it is done for the matrix and vector values being pushed to the 
respective data address space reserved for the CIM-Unit. 
Afterwards, a start signal is sent to the Micro-engine controller 
and it will fetch all data from memory without the help of the 
RISC-V processor. The aforementioned process flow is 
illustrated in Fig. 4. The system’s main processor is now free to 
execute other applications if any was included on the 
benchmark, which is not the case in this work for an adequate 
comparison. The operation flow inside the CIM-Unit is 
described in [27] in detail. In summary, the weight values will 
be written once in the memristor crossbars and the convolution 
operation with the input vectors happen sequentially and results 
are stored in the main memory. The process repeats until the last 
program instruction is encountered and then a done message is 

 

Fig. 4.  NeuroVP simulation flow. 

TABLE I.  SYSTEM HARDWARE CHARACTERISTICS 

Component Parameters 

Processor 1 core 64-bits; 1.7 GHZ; in order 

L1 I&D cache SRAM 16KB & 32KB 

RAM DRAM 128MB 

CIM-Unit (values per 8 bits) [11] [27] 

DAC 3.3 pJ 

ADC 13 pJ 

S+H 8.3 fJ 

Crossbar -- Compute 200 fJ 

Crossbar -- Write 200 pJ 

Crossbar sizes 32x32, 64x64, 128x128, 256x256 

Micro-engine (digital) 64.8 pJ 



sent to the RISC-V. Finalizing the bare-metal application will 
also trigger the end of the NeuroVP simulation and subsequent 
dumping of all collected data to an external file. 

All operations and TLM transactions between each 
component at any point during the simulation are stored for post-
processing and estimation of the entire system power and 
performance. Internal operations and statistics are as well 
collected, for components that deliver that information. 

C. Benchmarks 

Convolutional layers from Googlenet [29], ImageNet [1], 
and MobileNets [30] NN are selected as benchmarks, to show 
the acceleration within layers that requires several vector 
multiplications. The layers are listed in Table II, where m and n 
are the matrix height and width respectively and p is the number 
of vectors. The matrix and vector sizes varied to assess different 
scenarios; some matrices fit into the crossbar, whereas some do 
not. When the number of columns or rows of the weight matrix 
is bigger than that of the memristor crossbar, the task is then 
divided evenly over time to fit the crossbar.  A straightforward 
algorithm of a nested loop for a VMM operation was 
implemented. This implementation is used in both cases, for 
RISC-V plus main memory case and also for the case when the 
host system offloads the operations to the CIM-Unit. However, 
for the latest case, the internal handling is left to the Micro-
engine. 

D. Results 

In this work, power efficiency is represented by the number 
of operations (for every 8-bit) performed per watt (GOPS/W) 
similar to [11]. Simulation results of the power efficiency of the 
complete system, for the benchmarks listed in Table II, are 
presented in Fig. 5. From all cases, up to 46� higher power 
efficiency was registered for ImageNet_conv_1. The CIM-Unit 
was configured with only one crossbar array of 128 ×128. Fig. 
6 shows results for different sizes of the crossbar array 
implementation for one benchmark. As expected the efficiency 
increases with the size of the crossbar, which is more evident for 
the cases when the tasks do not need to be divided over time 
anymore. Additionally, Fig. 7 shows the speedup achieved when 
using the CIM-Unit relative to the main processor, using 
simulation time as a measurement metric. The main factors that 
influence the speedup achieved by the CIM-Unit are crossbar 
write and calculate latencies, where updating the matrix weights 
takes the biggest penalty. However, this is still faster than the 
overall data movement and latencies to access the main memory 
to update the partial results incurred by the main processor. In 
the best case up to a 26� speedup was registered as result of 
utilizing the neuromorphic accelerator. 

It is important to notice that in all cases the CIM-Unit still 
requires access to the main memory. Furthermore, all 
components of the VP are active during the benchmark 
execution, even if they are not being specifically utilized by the 
benchmark. All this considered, reported power efficiency and 
speedup using NeuroVP are in line with figures reported in other 
works that use cycle-accurate simulations [10, 11, 27]. This 
corroborates the fitness of the ESL methodology for modeling 
this type of systems. Discrepancies can be rationalized due to 
other accelerators relying much less on accessing the main 
memory, and including software techniques for optimizing 
VMM operations. Other case studies like configuring more than 
one crossbar array inside the CIM-Unit or integrating more than 
one CIM-Unit inside the virtual platform were left out of this 
work, but certainly, such DSE is possible using NeuroVP.   

TABLE II.  NETWORK LAYER BENCHMARKS 

Network Name Layer Type _id m  n  p 

Googlenet Conv_1 224 224 7 

Googlenet  Conv_2 56 56 3 

ImageNet Conv_1 224 224 11 

ImageNet Conv_2 207 207 5 

MobileNets Conv_1 224 224 3 

MobileNets Conv_2 112 112 3 

 

 
Fig. 7.  System speedup from simulation time.  

Fig. 6.  System power efficiency for different crossbar sizes. 

 
Fig. 5.  Overall system power efficiency. 



VI. CONCLUSION 

This paper presented NeuroVP, a SystemC-based system-

level virtual platform that integrates a neuromorphic 

accelerator. It uses a RISC-V 64IMAC as the main processor 

unit and offloads NN operations to a neuromorphic accelerator. 

The introduced virtual platform allows the verification of power 

and performance estimation results at the ESL modeling using 

TLM2.0 tracing while offering a rapid DSE. The execution of 

selected NN applications using a neuromorphic accelerator 

yields up to 46� higher power efficiency and 26� speedup 

relative to a general-purpose computing system. 

Future work might extend the virtual platform to integrate 

distinct neuromorphic accelerators, and compare performance 

between them or explore complementary acceleration when 

they are designed as purpose-specific. 
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