
NeuroVP: A System-Level Virtual Platform for

Integration of Neuromorphic Accelerators

Melvin Galicia

Institute for Communication

Technologies and Embedded

Systems

RWTH Aachen University

Aachen, Germany

galicia@ice.rwth-aachen.de

Ali BanaGozar

Electronics Systems

Eindhoven University of

Technology

Eindhoven, The Netherlands

a.banagozar@tue.nl

Karl Sturm

Institute for Communication

Technologies and Embedded

Systems

RWTH Aachen University

Aachen, Germany

sturm@ice.rwth-aachen.de

Felix Staudigl

Institute for Communication

Technologies and Embedded

Systems

RWTH Aachen University

Aachen, Germany

staudigl@ice.rwth-aachen.de

Sander Stuijk

Electronics Systems

Eindhoven University of

Technology

Eindhoven, The Netherlands

s.stuijk@tue.nl

Henk Corporaal

Electronics Systems

Eindhoven University of

Technology

Eindhoven, The Netherlands

h.corporaal@tue.nl

Rainer Leupers

Institute for Communication

Technologies and Embedded

Systems

RWTH Aachen University

Aachen, Germany

leupers@ice.rwth-aachen.de

Abstract—Executing neural network (NN) applications on

general-purpose processors result in a large power and

performance overhead, due to the high cost of data movement

between the processor and the main memory. Neuromorphic

computing systems based on memristor crossbars, perform the

NN main operation i.e., vector-matrix multiplications (VMM) in

an efficient way in the analog domain. Thus, they circumvent the

costly energy overhead of its digital counterpart. It can be

expected that neuromorphic systems will be used initially as

complements to current high-performance systems rather than as

a replacement. This paper presents NeuroVP, a virtual platform

integrating a neuromorphic accelerator, developed in SystemC

that can model functionality, timing, and power consumption of

the components integrating the system. Using NeuroVP to

evaluate performance and power consumption at the electronic

system level (ESL), it is corroborated that the execution of NN

applications with a neuromorphic accelerator yields of up to 46x

higher power efficiency and 26x speedup relative to a general-

purpose computing system.

Keywords—Virtual Platform, SystemC, RISC-V, Neuromorphic

Accelerator, Memristor, ESL Power Estimation

I. INTRODUCTION

Substantial advances in neural networks (NNs) have made
their extensive adoption in solving problems such as image
classification [1], face recognition [2], speech recognition [3],
and many others possible. Additionally, the ever-increasing data
generation and the development of high-performance computing
systems have collaborated to the positive feedback loop by
allowing more training data and faster training times. However,
NN applications running in general-purpose computing
architectures are extremely power and performance inefficient,
since they require massive data transfers from CPU to memory

and vice versa and also require a huge number of multiply-
accumulate (MAC) operations mainly [4, 5].

Brain-inspired neuromorphic computing, based on
memristive devices in crossbar architectures, is one of the most
promising emerging technologies for NN accelerators since it
offers solutions to the challenges of massive data transfer and a
large number of MAC operations. Memristors not only can serve
as memory elements but also perform computation on the stored
data [6, 7]. Thereby computations can be performed directly in-
memory reducing the data transfer bottleneck. Additionally,
memristive crossbar architectures, illustrated in Fig. 1, can be
used to efficiently perform vector-matrix multiplications
(VMMs) used in deep neural networks (DNNs). They reduce the
time complexity of VMM operations from ����� to ���� or
even to ��1� [8] if considering only the analog computation on
the crossbar array, therefore facilitating the VMM acceleration
and improving the overall power efficiency of the system.

This work was supported by the Federal Ministry of Education and Research
(BMBF, Germany) within the NEUROTEC project (No. 16ES1134 and
16ES1133K).

Fig. 1. Memristor-based crossbar array.

However, all these benefits are commonly expressed relative
to stand-alone crossbar array accelerators. A more
comprehensive finding might be concluded when examining
these types of neuromorphic accelerators integrated within a full
system, i.e. CPU, memory cache, data buses, and other
peripherals devices altogether. Since, it can be expected that
neuromorphic systems will be used initially as complements to
current high-performance systems rather than as a replacement,
which as well might happen but at a much later point in time.

Analyzing the whole system’s behavior at the electronic
system level (ESL) with the help of a virtual platform (VP) is an
efficient way to carry out design space exploration (DSE) while
integrating neuromorphic accelerators in the system. VPs offer
high flexibility while enabling hardware and software co-design
of the new neuromorphic paradigm. SystemC with transaction-
level modeling (TLM) [9] is widely used to build VPs and to
perform thorough DSE. This paper introduces Neuromorphic-
Virtual-Platform (NeuroVP) developed in SystemC that can
model functionality, timing, and power consumption of the
components integrating the system, allowing to estimate the
system’s complete behavior during the early stages of the
design. The contributions of NeuroVP are as follows:

 Application of ESL power estimation methodology using a
VP that includes a neuromorphic accelerator.

 DSE using a VP for the integration of general-purpose
memristive accelerator, with different crossbar sizes, into a
complete system.

 Verifying the consistency of power estimation results at the
ESL modeling for non-cycle-accurate simulations
compared to cycle-accurate ones for neuromorphic
systems.

This paper is structured as follows: Section II provides
related work and background to this paper. Section III
introduces the structure of NeuroVP and its characteristics.
Section IV summarizes the used ESL power estimation
methodology. In Section V, the significance of NeuroVP is
demonstrated by using it to perform simulations. It provides
system power results of selected case studies. Finally, in Section
VI conclusions are drawn and remarks on future work are
provided.

II. RELATED WORK

A good deal of effort is being invested by academia in
developing different types of neuromorphic simulators. Ranging
from high-performance like PUMA [10], ISAAC [11] to edge-
computing such as Tiny-but-Accurate [12] and the one proposed
by G. Yuan et al. in [13]. They are also designed as purpose-
specific, like Pinatubo [14], MemTorch [15], or general-purpose
such as, CIM-SIM [16], PRIME [4] and NMSIM [17]. PUMA
proposes a programmable architecture and ISA design
organized in three tiers: cores, tiles, and nodes bringing
programmability and generality to memristor crossbars. On the
other hand, Tiny-but-Accurate takes full advantage of the
“alternating direction method of multipliers” algorithm with
memristor hardware constraints, thus achieving an extremely
high compression rate with minimum accuracy loss. Pinatubo
introduces a processor in memristor-based architecture for bulk
bitwise operations, including OR, AND, XOR, and INV.

Oppositely, CIM-SIM presents a general-purpose accelerator
that includes the memristor crossbar with surrounding analog
drivers, providing the required interface to the co-processing
digital elements, and it presents a micro-instruction set
architecture that controls and operates both analog and digital
components. All aforementioned simulators use memristive
crossbar arrays to simulate the performance of NN required
operations and benchmarks within their respective architectures.
The execution of those benchmarks drives the system’s overall
performance. To report the power consumption, due to such
executions, of the proposed accelerator architecture or the power
consumption of the full system, all proposed works rely on
register transfer level (RTL) or lower levels of simulation
making the whole estimation process time consuming and very
computationally demanding.

Power estimation at abstraction levels above RTL has been
extensively investigated by academia already. Approaches like
[18] and [19], focus on the integration of various ESL power
models into the workflow, while other approaches provide a
methodology of how to create the power models, e.g. [20]. A
commercial framework like Docea Aceplorer [21] is a good
example of ESL power estimation being adopted in the industry
due to its advantage for rapid and accurate estimation. Works
from academia have developed power models suitable for ESL
simulations for different kinds of system components, such as
dynamic memories (DRAMs) [22], peripheral cores [23], and
communication architectures in general as proposed in [24].
Therefore, NeuroVP uses for the first time, ESL power
estimation methodology for obtaining the system-level power
consumption of a system that integrates a neuromorphic
accelerator. Furthermore, it allows a rapid DSE and performing
fast instruction-accurate simulations.

III. SYSTEMC VIRTUAL PLATFORM

The NeuroVP consists of several SystemC modules: a main

processor, L1 instruction and data caches, a bus, main memory,

and a neuromorphic accelerator. Each module can work as a

transaction initiator and a transaction target depending on its

current function or just as a forwarder in the case of the bus

module. The modules have their corresponding sockets for

Fig. 2. NeuroVP high level architecture.

TLM2.0 transaction-based communication where the tracing of

each transaction is being monitored and stored. Fig. 2 depicts

NeuroVP’s high level architecture and illustrates the tracing

approach. By collecting all the transactions, it is possible to have

a histogram and the total number of transactions that occurred

during the execution of any particular benchmark.

A. RISC-V

NeuroVP uses RISC-V [25], an open-source Instruction Set
Architecture (ISA) which is license-free and royalty-free, as the
main system processor. The RISC-V core implemented in [26]
using SystemC and TLM-2.0 is the one integrated into
NeuroVP. This implementation offers a 32/64-bit RISC-V core
supporting the IMAC instruction set with different privilege
levels, CLINT interrupt controller with a set of peripherals. It is
designed as an extensible and configurable platform with a
generic bus system. Additionally, it provides a sensor peripheral
and extension debug functionality from the software application
perspective. By adding this SystemC RISC-V 64IMAC,
NeuroVP achieves a significantly faster simulation compared to
using an RTL implementation, while being more accurate than
other commercially available Instruction Set Simulators (ISSs).
Lastly, the aforementioned RISC-V implementation is fully
open source following the MIT licensing model.

The RISC-V processor is used to execute different software
applications that exploit the available neuromorphic accelerator
by offloading specific types of operations, such as VMMs,
meanwhile being free to perform other computational tasks. It is
important to point out that the RISC-V core does not make use
of any standard extension instructions to offload operations to
the accelerator but rather it is the Computation In-Memory
(CIM)-Unit that interprets and handles the executions of the
operations using its internal controller and own set of micro-
instructions.

B. CIM-Unit

NeuroVP integrates the CIM-Unit, proposed in [27], since it
provides built-in interfaces that allow interaction with SystemC-
based virtual platforms in several abstraction levels. The CIM-
Unit consists of two main parts Calculator and its digital
surrounding, the Micro-engine as shown in Fig. 3. The
calculator is a simulator that not only replicates the functional
behavior of memristor crossbars but also covers the operation of
surrounding mixed-signal circuitries, e.g., ADC, DAC, S+H,
which are essential for driving the memristor crossbar. The
micro-engine, on the other hand, comprises the digital
components, e.g., controller, registers files, and buffers, that [27]
finds necessary for operating the memristor crossbar. In addition
to these, the CIM-Unit offers a micro-instruction set that allows
the unit to communicate with the main processor, if it is
deployed as an accelerator --as it is the case in this work-- or
other functional units, in a coarse grain reconfigurable
architecture. For the CIM-Unit to operate it should first be
supplied with some necessary parameters, e.g., size of the matrix
that is to be mapped on the crossbar, I/O resolution, etc. The
controller stores these parameters, which are passed to the CIM-
Unit through several instructions, into the configuration register.
As soon as all the necessary parameters are received, Controller
--which is a state-machine-- transitions into the state IN
signaling that is ready to accept input data. It stays in IN until all

the input data is received. The number of cycles that it takes to
be ready to move to the next state depends on the width of the
input ports, the resolution of the input data, and the size of the
input vector. In the next state, OP, the Controller executes the
operation that is specified in the configuration register. In the
end, the Controller moves to the final state, OUT, where it sends
out the processed information and goes back to the initial state,
IDLE, as soon as all the output is sent out.

C. Memory Modules

Main memory (DRAM) and instruction and data cache
(SRAM) modules are taken from an in-house library. In addition
to commonly modeling memory in SystemC with a read and
write access delay, further delays for page switches and write-
to-read switches are introduced. Each module has its annotated
power model for leakage power, sequential and random
dynamic power for writing and reading operations.

IV. SYSTEM POWER ESTIMATION

The ESL power estimation methodology relies on obtaining
a reference power trace for the component of interest in one
arbitrary scenario. There are a few options for obtaining this
reference; by using a power simulation at lower levels such as
gate or layout level, by using direct power measurements from
a device containing the component of study, or ultimately, by
using reference values reported by the research community. In
all previous cases, there is always the possibility of further
refinement and subsequent calibration.

 The available power information from the reference
scenario is then back-annotated to the ESL model, thus creating
the ESL power model for the component and then storing it into
the component’s ESL library. Afterward, it can be used to
estimate the power consumption of the component in the same
system running different scenarios or even in different systems

Fig. 3. CIM-Unit architecture.

with different scenarios. If power models for all components of
the system are available, the power consumption of the entire
system can be predicted using the ESL simulation. This power
estimation methodology is based on the work first presented in
[18] and is briefly summarized as follows:

The power consumption of CMOS devices is a combination
of leakage and dynamic power. Leakage power can be assumed
as constant as long as temperature and supply voltage changes
are not taken into consideration. Dynamic power, on the other
hand, depends on short circuit and switching power caused by
the total activity performed by the device. The dynamic power
depends on control signals which initiate actions or instructions
performed by the device. Therefore, to estimate the dynamic
power consumption at ESL, it is sufficient to trace those control
signals, as illustrated in Fig. 2, to calculate the power. A total of
N traces of control signals will be recorded over T sampling
periods. All traces can be represented by a matrix � ∈ ℕ��.
Where the first trace is always set to 1, i.e. Q�,� � 1, to take into

consideration, the constant part of the power consumption. The
power estimate is then calculated as:

 ���� � � ∙ � with � ∈ ℝ� (1)

where � denotes a vector of power model factors, which
allows for the model’s calibration. A reference power trace
���� ∈ ℝ� recorded at a lower level than ESL simulation, or
using a real hardware sample, should represent closely the ESL
traces as much as possible. Hence, � can be calculated using the
pseudo-inverse matrix � as follows:

 � ≔ � ∙ ���� �2�

In general, more activity in the internals of a component
corresponds to higher dynamic power consumption, with an
approximately linear relationship. Therefore, all in-house
developed ESL models have been extended to deliver all
available information of their internal signals to the linear power
model that will compute the power estimation utilizing (1). A
reference power trace necessary for the RISC-V processor was
obtained performing an RTL simulation using the 64 bit 6-stage
CVA6 (formerly Ariane core) from [28]. In the case of the main
memory and cache memories values from in-house libraries
reported in [19] were used.

V. METHODOLOGY AND SIMULATIONS

A. System Hardware Characteristics

Table I lists the components that play an active role in the
power and performance of the entire system. Main RAM
memory and cache memories have small sizes just enough to
handle bare-metal applications. Adding larger memory sizes
would mainly add static power consumption to the overall
system. Reference for the energy values for ADC, DAC, sample
and hold (S+H) components of the CIM-Unit are the ones
reported in ISAAC [11]. As for the crossbar and the Micro-
engine digital components are the ones reported in [27].

B. NeuroVP Operation flow

A RISC-V bare-metal application triggers the VMM
operations required by the NN. If the neuromorphic accelerator

is enabled, the system will proceed to offload those operations
otherwise it will execute them using the main processor and the
main memory. To offload the VMM operations, all micro-
instructions, required by the CIM-Unit’s Micro-engine to
perform the calculations on the memristor crossbar, are pushed
to a reserved program address space on main memory. Similarly,
it is done for the matrix and vector values being pushed to the
respective data address space reserved for the CIM-Unit.
Afterwards, a start signal is sent to the Micro-engine controller
and it will fetch all data from memory without the help of the
RISC-V processor. The aforementioned process flow is
illustrated in Fig. 4. The system’s main processor is now free to
execute other applications if any was included on the
benchmark, which is not the case in this work for an adequate
comparison. The operation flow inside the CIM-Unit is
described in [27] in detail. In summary, the weight values will
be written once in the memristor crossbars and the convolution
operation with the input vectors happen sequentially and results
are stored in the main memory. The process repeats until the last
program instruction is encountered and then a done message is

Fig. 4. NeuroVP simulation flow.

TABLE I. SYSTEM HARDWARE CHARACTERISTICS

Component Parameters

Processor 1 core 64-bits; 1.7 GHZ; in order

L1 I&D cache SRAM 16KB & 32KB

RAM DRAM 128MB

CIM-Unit (values per 8 bits) [11] [27]

DAC 3.3 pJ

ADC 13 pJ

S+H 8.3 fJ

Crossbar -- Compute 200 fJ

Crossbar -- Write 200 pJ

Crossbar sizes 32x32, 64x64, 128x128, 256x256

Micro-engine (digital) 64.8 pJ

sent to the RISC-V. Finalizing the bare-metal application will
also trigger the end of the NeuroVP simulation and subsequent
dumping of all collected data to an external file.

All operations and TLM transactions between each
component at any point during the simulation are stored for post-
processing and estimation of the entire system power and
performance. Internal operations and statistics are as well
collected, for components that deliver that information.

C. Benchmarks

Convolutional layers from Googlenet [29], ImageNet [1],
and MobileNets [30] NN are selected as benchmarks, to show
the acceleration within layers that requires several vector
multiplications. The layers are listed in Table II, where m and n
are the matrix height and width respectively and p is the number
of vectors. The matrix and vector sizes varied to assess different
scenarios; some matrices fit into the crossbar, whereas some do
not. When the number of columns or rows of the weight matrix
is bigger than that of the memristor crossbar, the task is then
divided evenly over time to fit the crossbar. A straightforward
algorithm of a nested loop for a VMM operation was
implemented. This implementation is used in both cases, for
RISC-V plus main memory case and also for the case when the
host system offloads the operations to the CIM-Unit. However,
for the latest case, the internal handling is left to the Micro-
engine.

D. Results

In this work, power efficiency is represented by the number
of operations (for every 8-bit) performed per watt (GOPS/W)
similar to [11]. Simulation results of the power efficiency of the
complete system, for the benchmarks listed in Table II, are
presented in Fig. 5. From all cases, up to 46� higher power
efficiency was registered for ImageNet_conv_1. The CIM-Unit
was configured with only one crossbar array of 128 ×128. Fig.
6 shows results for different sizes of the crossbar array
implementation for one benchmark. As expected the efficiency
increases with the size of the crossbar, which is more evident for
the cases when the tasks do not need to be divided over time
anymore. Additionally, Fig. 7 shows the speedup achieved when
using the CIM-Unit relative to the main processor, using
simulation time as a measurement metric. The main factors that
influence the speedup achieved by the CIM-Unit are crossbar
write and calculate latencies, where updating the matrix weights
takes the biggest penalty. However, this is still faster than the
overall data movement and latencies to access the main memory
to update the partial results incurred by the main processor. In
the best case up to a 26� speedup was registered as result of
utilizing the neuromorphic accelerator.

It is important to notice that in all cases the CIM-Unit still
requires access to the main memory. Furthermore, all
components of the VP are active during the benchmark
execution, even if they are not being specifically utilized by the
benchmark. All this considered, reported power efficiency and
speedup using NeuroVP are in line with figures reported in other
works that use cycle-accurate simulations [10, 11, 27]. This
corroborates the fitness of the ESL methodology for modeling
this type of systems. Discrepancies can be rationalized due to
other accelerators relying much less on accessing the main
memory, and including software techniques for optimizing
VMM operations. Other case studies like configuring more than
one crossbar array inside the CIM-Unit or integrating more than
one CIM-Unit inside the virtual platform were left out of this
work, but certainly, such DSE is possible using NeuroVP.

TABLE II. NETWORK LAYER BENCHMARKS

Network Name Layer Type _id m n p

Googlenet Conv_1 224 224 7

Googlenet Conv_2 56 56 3

ImageNet Conv_1 224 224 11

ImageNet Conv_2 207 207 5

MobileNets Conv_1 224 224 3

MobileNets Conv_2 112 112 3

Fig. 7. System speedup from simulation time.

Fig. 6. System power efficiency for different crossbar sizes.

Fig. 5. Overall system power efficiency.

VI. CONCLUSION

This paper presented NeuroVP, a SystemC-based system-

level virtual platform that integrates a neuromorphic

accelerator. It uses a RISC-V 64IMAC as the main processor

unit and offloads NN operations to a neuromorphic accelerator.

The introduced virtual platform allows the verification of power

and performance estimation results at the ESL modeling using

TLM2.0 tracing while offering a rapid DSE. The execution of

selected NN applications using a neuromorphic accelerator

yields up to 46� higher power efficiency and 26� speedup

relative to a general-purpose computing system.

Future work might extend the virtual platform to integrate

distinct neuromorphic accelerators, and compare performance

between them or explore complementary acceleration when

they are designed as purpose-specific.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet
classification with deep convolutional neural networks. In Proceedings of
the 25th International Conference on Neural Information Processing
Systems - Volume 1 (NIPS'12). Curran Associates Inc., Red Hook, NY,
USA, 1097–1105.

[2] F. Schroff, D. Kalenichenko, and J. Philbin. 2015. FaceNet: A Unified
Embedding for Face Recognitionand Clustering. CoRR abs/1503.03832
arXiv:1503.03832 http://arxiv.org/abs/1503.03832.

[3] Z. Q. Lin, A. G. Chung, and A. Wong. 2018. EdgeSpeechNets: Highly
Efficient Deep Neural Networks for Speech Recognition on the Edge.
CoRR abs/1810.08559 (2018).

[4] P. Chi, et al., 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main Memory.
SIGARCH Comput. Archit. News 44, 3 (June 2016), 27–39.
https://doi.org/10.1145/3007787.3001140.

[5] X. Qiao, X. Cao, H. Yang, L. Song, and H. Li. 2018. Atomlayer: A
Universal reRAM-based CNN Accelerator with Atomic Layer
Computation. In Proceedings of DAC (San Francisco, California) (DAC
’18). ACM, New York, NY, USA, Article 103, 6 pages.
https://doi.org/10.1145/3195970.3195998.

[6] H. Akinaga and H. Shima. 2010. Resistive Random Access Memory
(ReRAM) Based on Metal Oxides. Proc. IEEE 98, 12 (Dec 2010), 2237–
2251. https://doi.org/10.1109/JPROC.2010.2070830.

[7] M. A. Lastras-Montaño and K. Cheng. 2018. Resistive random-access
memory based on ratioed memristors. Nature Electronics 1 (08 2018),
466–472. https://doi.org/10.1038/s41928-018-0115-z.

[8] C. Lammie, O. Krestinskaya, A. James and M. R. Azghadi, "Variation-
aware Binarized Memristive Networks," 2019 26th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy,
2019, pp. 490-493, doi: 10.1109/ICECS46596.2019.8964998.

[9] SystemC. [Online] http://www.accellera.org/downloads/standards/
systemc (accessed 03/2021).

[10] A. Ankit, et al., “PUMA: A Programmable Ultra-efficient Memristor
based Accelerator for Machine Learning Inference,” CoRR, vol.
abs/1901.10351, 2019. http://arxiv.org/abs/1901.10351.

[11] A. Shafiee, et al., 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In 2016 ISCA.
14–26. https://doi.org/10.1109/ISCA.2016.12.

[12] X. Ma et al., "Tiny but Accurate: A Pruned, Quantized and Optimized
Memristor Crossbar Framework for Ultra Efficient DNN
Implementation," 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), Beijing, China, 2020, pp. 301-306, doi:
10.1109/ASP-DAC47756.2020.9045658.

[13] G. Yuan et al., (2019). An Ultra-Efficient Memristor-Based DNN
Framework with Structured Weight Pruning and Quantization Using
ADMM. 1-6. 10.1109/ISLPED.2019.8824944.

[14] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. (2016). Pinatubo: a
processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. 1-6. 10.1145/2897937.2898064.

[15] C. Lammie and M. R. Azghadi, "MemTorch: A Simulation Framework
for Deep Memristive Cross-Bar Architectures," 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp.
1-5, doi: 10.1109/ISCAS45731.2020.9180810.

[16] A. BanaGozar, K. Vadivel, S. Stuijk, H. Corporaal, S. Wong, M. Abu
Lebdeh, J. Yu, and S. Hamdioui. 2019. “CIM-SIM: Computation In
Memory SIMuIator,” in Proceedings of the 22nd International Workshop
on Software and Compilers for Embedded Systems (SCOPES '19).
Association for Computing Machinery, New York, NY, USA, 1–4.
https://doi.org/10.1145/3323439.3323989.

[17] Li. Xia, et al., (2017). MNSIM: Simulation Platform for Memristor-Based
Neuromorphic Computing System. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. PP. 1-1.
10.1109/TCAD.2017.2729466.

[18] S. Schürmans, G. Onnebrink, R. Leupers, G. Ascheid and X. Chen, "ESL
power estimation using virtual platforms with black box processor
models," 2015 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), Samos,
Greece, 2015, pp. 354-359, doi: 10.1109/SAMOS.2015.7363698.

[19] G. Onnebrink, R. Leupers, and G. Ascheid. 2018. “ESL Black Box Power
Estimation: Automatic Calibration for IEEE UPF 3.0 Power Models,” in
Proceedings of the Rapido'18 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools (RAPIDO '18). Association
for Computing Machinery, New York, NY, USA, Article 1, 1–6.
https://doi.org/10.1145/3180665.3180667

[20] S. K. Rethinagiri, R. ben Atitallah, and J.-L. Dekeyser. A system level
power consumption estimation for MPSoC. In 2011 Intl. Symposium on
System on Chip. IEEE, 2011.

[21] Docea Aceplorer. [Online] http://www.doceapower.com/products-
services/aceplorer.html (accessed 03/2021).

[22] M. Jung, C. Weis, P. Bertram, and N. Wehn. Power modelling of 3D
stacked memories with TLM2.0 based virtual platforms. In Synopsys
User Group Conference (SNUG), 2013.

[23] T. Givargis, F. Vahid, and J. Henkel. Instruction-based system-level
power evaluation of system-on-a-chip peripheral cores. Very Large Scale
Integration (VLSI) Systems, 2002.

[24] S. Schurmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen, and
L. Wang. Creation of ESL power models for communication architectures
using automatic calibration. In 50th Design Automation Conference,
DAC ’13. ACM, 2013.

[25] A. Waterman and K. Asanovic,´ The RISC-V Instruction Set Manual;
Volume I: User-Level ISA, SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, 2017.

[26] V. Herdt, D. Grosse, P. Pieper, and R. Drechsler, RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,
Journal of Systems Architecture, Volume 109, 2020, 101756, ISSN 1383-
7621, https://doi.org/10.1016/j.sysarc.2020.101756.

[27] A. BanaGozar, K. Vadivel, J. Multanen, P. Jääskeläinen, S. Stuijk, H.
Corporaal. 2020. “System Simulation of Memristor Based Computation
in Memory Platforms,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation. SAMOS 2020. Lecture Notes in Computer
Science, vol 12471. Springer, Cham. https://doi.org/10.1007/978-3-030-
60939-9_11

[28] F. Zaruba and L. Benini, "The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-
2640, Nov. 2019, doi: 10.1109/TVLSI.2019.2926114.

[29] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

[30] A. Howard et al., (2017). MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv:1704.04861
http://arxiv.org/abs/1704.04861

