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A Novel Algorithm for Remote
Photoplethysmography: Spatial Subspace Rotation

Wenjin Wang, Sander Stuijk, and Gerard de Haan

Abstract—In this paper, we propose a conceptually novel algo-
rithm, namely “Spatial Subspace Rotation” (2SR), that improves
the robustness of remote photoplethysmography. Based on the
assumption of (1) spatially redundant pixel-sensors of a camera
and (2) a well-defined skin mask, our core idea is to estimate
a spatial subspace of skin-pixels and measure its temporal
rotation for pulse extraction, which does not require skin-tone
or pulse-related priors in contrast to existing algorithms. The
proposed algorithm is thoroughly assessed on a large benchmark
dataset containing 54 videos, which includes challenges of various
skin-tones, body-motions in complex illuminance conditions, and
pulse-rate recovery after exercise. The experimental results show
that given a well-defined skin mask, 2SR outperforms the
popular ICA-based approach and two state-of-the-art algorithms
(CHROM and PBV). When comparing the pulse frequency
spectrum, 2SR improves on average the SNR of ICA by 2.22 dB,
CHROM by 1.56 dB, and PBV by 1.95 dB. When comparing
the instant pulse-rate, 2SR improves on average the Pearson
correlation and precision of ICA by 47% and 65%, CHROM
by 22% and 23%, PBV by 21% and 39%. ANOVA confirms the
significant improvement of 2SR in peak-to-peak accuracy. The
proposed 2SR algorithm is very simple to use and extend, i.e.,
the implementation only requires a few lines Matlab code.

Index Terms—Biomedical monitoring, photoplethysmography,
remote sensing, colors.

I. INTRODUCTION

REMOTE photoplethysmography (rPPG) enables contact-
less monitoring of human cardiac activities by detecting

the pulse-induced subtle color changes on skin surface using
a regular RGB camera [1], [2]. This detection is based on
the fact that the pulsatile blood propagating in the human
cardiovascular system changes the blood volume in skin tissue.
The oxygenated blood circulation leads to fluctuations in
the amount of hemoglobin molecules and proteins thereby
causing a fluctuation in the optical absorption across the light
spectrum. A regular RGB camera can therefore identify the
phase of the blood circulation based on minute color changes
in skin reflections.

The core of rPPG is the algorithm used for pulse extraction.
In recent years, several robust rPPG algorithms have been pro-
posed. These include: (1) Blind Source Separation (e.g., PCA-
based [3] and ICA-based [4]), which separates the temporal
RGB traces into independent signal-sources using different
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criteria and takes the most periodic source as the pulse; (2)
CHROM [5], which computes the pulse-signal as a linear
combination of chrominance-signals assuming a standardized
skin-color to white-balance the camera; (3) PBV [6], which
defines a

−→
P bv vector, the signature of blood volume change, to

distinguish the pulse-induced color changes from motion noise
in temporal RGB traces. A thorough review on the history of
rPPG can be found in [7], [8]. Based on these algorithms,
improvements have been made including enhancement of
motion robustness [9]–[11] and rPPG-signal quality [12]. More
recently, they also lead to further advances in vision-based
intelligent systems, such as vital signs monitoring [13], living
subject detection [14], facial expression analysis [15], mental
stress detection [16], etc. All these techniques are based on
the core rPPG algorithms.

In essence, all existing rPPG algorithms exploit a common
spatio-temporal scheme for pulse extraction, which can be
generalized as “temporal combination of spatial color mean”.
It consists of two steps: given a video sequence contain-
ing a subject, it (1) spatially quantifies RGB values of the
subject’s skin-pixels in each single frame, i.e., RGB mean,
and (2) temporally creates RGB traces over multiple frames
and combines them into a pulse-signal. The key difference
between these algorithms is the different criteria/priors used
to combine the RGB traces. The methods [3], [4], which are
based on Blind Source Separation, first combine the RGB
traces by linear projection and then select the most periodic
independent signals as the pulse, which cannot deal with the
case that motion is also periodic. For CHROM [5] and PBV
[6], if the relative contribution of the blood volume pulse to
the RGB channels is changed (e.g., due to different lighting
spectra), the relations between RGB traces for deriving pulse
will also change, and thus their fixed priors may be sub-
optimal, i.e., CHROM assumes a standardized skin-color and
PBV uses a pre-defined pulse signature, while both may vary
a bit especially with extreme illumination spectra.

To this end, we propose a conceptually novel rPPG algo-
rithm, namely “Spatial Subspace Rotation” (2SR), to solve the
limitations in the conventional rPPG scheme. The core idea of
our method is to measure the temporal rotation of the spatial
subspace of skin-pixels for pulse extraction. It consists of two
steps: (1) in the spatial domain, a subspace of skin-pixels is
constructed in RGB space; (2) in the temporal domain, the
rotation angle of spatial subspaces between subsequent frames
is measured for pulse extraction. Our experiments demonstrate
that when (1) multiple pixel-sensors of a regular RGB camera
are used for skin sensing, and (2) a well-defined skin mask
is available, 2SR outperforms the popular ICA-based method,
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as well as two state-of-the-art methods (CHROM and PBV),
especially for subjects with dark skin-tone or body-motions in
complex illuminance conditions.

The remainder of this paper is as follows. In Section II,
we analyze the concerned problems in detail and describe
the proposed rPPG algorithm. In Section III and IV, the
proposed algorithm is experimentally evaluated and compared.
In Section V, we discuss future improvements. Finally in
Section VI, we draw the conclusions.

II. METHOD

A. Spatial subspace formulation

In the spatio-temporal scheme of rPPG, the first step is to
quantify RGB values of skin-pixels in each single frame as
the spatial representation. All existing rPPG algorithms use the
spatially averaged RGB to quantify skin-pixels, i.e., (R,G,B).
They do not consider the spatial distribution of skin-pixels in
RGB space. As an alternative, we propose to take the spatial
distribution of skin-pixels into account, which can be simply
derived by the spatial RGB correlation:

C =
V > · V
N

, (1)

where N > 0 is the number of skin-pixels; V is a N × 3
matrix vectorized from RGB channels of skin-pixels in a video
frame (e.g., each row of V is a skin-pixel while each column
of V is a color channel); C is a 3× 3 symmetric correlation
matrix with non-negative values. Note that C is different from
a covariance matrix in which the mean of V is subtracted. The
reason is: (R,G,B) contains important pulsatile information
when being concatenated in the temporal domain, which is
an essential element used by existing rPPG algorithms [3]–
[6] for pulse extraction. If (R,G,B) is removed from V , the
pulsatile components will be eliminated in C, which makes it
impossible to perform pulse extraction. By decomposing C,
we can obtain the subspace of skin-pixels:

C · U = Λ · U subj.to det(C − Λ · I) = 0, (2)

where det(·) denotes the matrix determinant; U and Λ denote
the eigenvectors and eigenvalues respectively. The eigenvalue
decomposition is based on the QR algorithm [17]. Note that
C is a 3 × 3 full-rank matrix, since the elements between
RGB channels can hardly be identical in realistic situations.
This is due to the 3D geometry of the skin surface, different
hemoglobin and melanin concentrations in skin tissues, and
the presence of independent sensor noise in RGB channels.
Thus we can expand C as:

C = λ1 · u1 · u>1 + λ2 · u2 · u>2 + λ3 · u3 · u>3 , (3)

where ui is the i-th column vector of U ; λi is the i-th diagonal
element of Λ. In RGB space, we define U as a new axis
system of skin-pixels, where (1) the principal eigenvector u1 is
the skin-vector dominating the cluster of skin-pixels (the main
direction), which is a least square estimation that is robust to
spatial outliers; (2) u2 and u3 are succeeding directions of
variation that are orthogonal to u1.

Fig. 1 illustrates the subspaces of skin-pixels in different
circumstances. There are two important properties that one
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Fig. 1. An example of subspaces of skin-pixels formulated in different
circumstances. The subspace (e.g., the eigenvector denoted in red) can adapt
to different spatial distributions of skin-pixels (e.g., scatters denoted in blue)
in variant skin-tones and illuminance conditions. The principal direction of
subspace is along the main variance of the skin-pixel cluster.

should consider when looking at these figures: (1) skin-
pixel values are non-negative, so u1 can never point to the
negative direction in RGB space; (2) human skin is relatively
homogeneous in chromaticity (within a specific hue range) but
varies in intensity due to shadows and specular reflections.
Based on different intensity levels, the distribution of skin-
pixels in RGB space can either be an ellipse that originates
from the RGB origin or a compact sphere with uniform skin
reflections. In both cases, u1 will point to the skin-pixel cluster
from the RGB origin. Since human skin is not a colorful
surface, the distribution of skin-pixel can never be a sparse
cloud that is spread everywhere in RGB space.

So far in this paper, the conventional spatial representation
(R,G,B) is replaced by U of skin-pixels. The essence of the
proposed method is the notion to exploit the information con-
tained in C (e.g., direction and energy) instead of the averaged
skin-pixel values. Note that (1) U has to be estimated from
multiple pixel-sensors using a regular camera and thus only
works for rPPG, which is different from existing algorithms
(e.g., CHROM and PBV) that also work for a single pixel-
sensor similar to the contact-based PPG; (2) since U depends
on the statistical distribution of skin-pixels, it requires a well-
defined skin mask for measuring the single cluster of skin-
pixels, otherwise it models the joint distribution of skin and
background (e.g., multiple clusters), which would render our
algorithm invalid.

B. Spatial subspace rotation

In the temporal domain, pulsatile blood causes variations
in RGB channels and thus changes the subspace of skin-
pixels. Since the spatial subspace is constructed from spatially
redundant skin-pixels without temporal normalization (i.e.,
dividing the RGB channels by their temporal mean), we cannot
directly use the subspace translation (i.e., distance shift of
spatial RGB mean) to measure pulse. This is because that
pulsatile variations without temporal normalization are propor-
tional to the luminance intensity and thus in a multiplicative
relationship. We model the temporal relation between two
subspaces as an instantaneous rotation and scaling: (1) the
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Fig. 2. A video sequence (with 200 frames) is used to illustrate the function
of cosine and sine angles in the rotation matrix. The recorded subject has
bright skin and remains stationary in this video. Regarding the first frame as
the reference, we estimate the rotation matrix of two subspaces between the
reference and subsequent frames using Eq. 4. The first row of the rotation
matrix [cos(θ11), sin(θ12), sin(θ13)] is temporally concatenated to generate
cos(θ) and sin(θ) traces. Due to their different temporal variations, cos(θ)
trace and sin(θ) trace are plotted in separate subfigures for visual comparison.

rotation between eigenvectors (direction change) is related to
the different relative PPG-contributions in RGB channels; and
(2) the change of eigenvalues (energy change) is related to the
pulsatility of the measured skin.

Since the subspace U consists of eigenvectors with unit
norm, its temporal changes can only cause a rotation. Thus we
define a temporal stride with length l to analyze the subspace
rotation. Considering the subspace in the first frame of a stride
Uτ as the reference, the rotation between Ut,t≤l and Uτ is:

R = U>t · Uτ =

ut>1ut>2
ut>3

 · (uτ1 uτ2 uτ3
)
, (4)

where R is the rotation matrix; uti denotes the i-th column
of Ut. Since the L2-norm of the eigenvectors is normalized
to 1, the entries in R essentially represent the cosine angles
between eigenvectors:

cos(θij) =
ut>i · uτj
‖uti‖ · ‖uτj ‖

, (5)

where i and j denote the column index; θij denotes the rotation
angle between uti and uτj ; ‖ ·‖ denotes the L2-norm; ‖uti‖ and
‖uτj ‖ are 1. Thus R can be rewritten as:

R =

 cos(θ11) cos(θ12) cos(θ13)
−cos(θ12) cos(θ22) cos(θ23)
−cos(θ13) −cos(θ23) cos(θ33)

. (6)

Due to the orthogonality of eigenvectors in U , cos(θij,i 6=j)
in the non-diagonal entries actually measures the sine angle
changes, i.e., sin(θij,i 6=j) = cos(θij,i 6=j − π

2 ). Thus Eq. 6 can
be rewritten as:

R =

 cos(θ11) sin(θ12) sin(θ13)
−sin(θ12) cos(θ22) sin(θ23)
−sin(θ13) −sin(θ23) cos(θ33)

. (7)

Since the pulse-induced color changes are minute, θij are
subtle angular changes varying around 0. Thus cos(θii) in
diagonal entries vary around 1, which cannot reflect the exact
direction of rotation (always positive), i.e., the relative PPG-
contributions in RGB channels become vague due to the
unsigned rotation. Besides, the cosine angle is less sensitive to

subtle pulsatile fluctuations, i.e., cos(·) can be considered as a
kernel function here. In contrast, sin(θij,i 6=j) in non-diagonal
entries do not have the sign problem and exhibit the steepest
changes when varying around 0. Fig. 2 shows an example of
temporal cos(θ) and sin(θ) traces concatenated by the first
row of R. The sin(θ) trace presents much stronger pulsatile
variations than the cos(θ) trace, i.e., the standard deviations
for cos(θ11), sin(θ12) and sin(θ13) traces are respectively
4.3 × 10−6, 1.6 × 10−3 and 1.9 × 10−3. Therefore, only the
non-diagonal entries in R will be used.

Pulsatile blood changes the skin-tone, which is in fact
the dominant skin-vector u1 in RGB space. Hence, only the
temporal rotation of u1 is concerned. However, as explained
before, the rotation between ut1 and uτ1 (e.g., cos(θ11)) cannot
be used. We only measure the rotation between the vector ut1
and orthonormal plane

(
uτ2 uτ3

)
as:

R′ =
(
ut>1
)
·
(
uτ2 uτ3

)
=
(
ut>1 · uτ2 ut>1 · uτ3

)
, (8)

which are in fact sin(θ12) and sin(θ13). To understand the
performance of this step, we show the signals produced by R′

in Fig. 3 (b). In the stationary case, the blood volume pulse is
the only signal-source causing the periodic rotation of the skin
subspace, which produces two periodic in-phase signals. In the
motion case, one direction in R′ is somehow distorted by the
head motion, which is related to the lighting spectrum. The
other direction in R′ is orthogonal to the distorted direction,
and thus is more or less independent of motion distortions,
i.e., the signal is still dominated by the pulse.

In addition to the subspace rotation, the eigenvalues corre-
sponding to the variance/energy of the eigenvectors are also
influenced by the pulsatile blood, which should be exploited
as well. Since λi, decomposed from C, is powered variance,
we square it and derive its scale changes as:

S =
√
λt1 · diag(

(√
λτ2 0

0
√
λτ3

)−1
) =

(√
λt1/λ

τ
2√

λt1/λ
τ
3

)
, (9)

where diag(·) denotes the diagonal entries of a matrix. The
signals produced by S are shown in Fig. 3 (c): they represent
the scale/energy change of the rotated subspace (always posi-
tive), which is in fact related to the pulsatility of measured
skin. However, if skin-reflections also contain the spectra
intensity changes (e.g., caused by motion distortion), S could
be affected as well, i.e., the signals obtained on rotating
subject are modulated by the head rotation and change in a
larger range (e.g., ±10) as compared to that of a stationary
subject (e.g., ±4). Thus we cannot only use the eigenvalues
to derive the pulse. Since S is estimated with respect to the
reference subspace, we can restrict its changes to the direction
of subspace rotation by combining Eq. 9 with Eq. 8:

SR = S> �R′

=

scaling︷ ︸︸ ︷(√
λt1
λτ2

√
λt1
λτ3

)
�

rotation︷ ︸︸ ︷(
ut>1 · uτ2 ut>1 · uτ3

)
,

(10)

where � denotes the element-wise multiplication. An intuitive
explanation to Eq. 10 is: the dominant skin-vector ut1 is
projected and scaled on the orthonormal plane

(
uτ2 uτ3

)
.
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This step has two benefits: (1) it magnifies the amplitude
of subspace rotation, i.e., pulsatility is emphasized; and (2)
it suppresses the energy variations in S that do not align
with the rotation direction, such as light intensity distortions.
Although the magnitude of the scaling term (due to λ1) is
much larger than that of the rotation term, the scaling term
is always positive and can thus be steered by the rotation
term to positive/negative direction. The improved signals of
the rotating subject are shown in Fig. 3 (d).

Considering a sliding window approach [5], the reference
subspace Uτ is constantly changed in different temporal
strides. In order to obtain the time-consistent SR over multiple
strides, SR has to be analyzed in the same space, and thus is
backprojected into the original RGB space:

SR′ = SR ·
(
uτ>2
uτ>3

)
=
(√

λt1
λτ2

√
λt1
λτ3

)
�
(
ut>1 · uτ2 ut>1 · uτ3

)
·
(
uτ>2
uτ>3

)
=

√
λt1
λτ2
· ut>1 · uτ2 · uτ>2 +

√
λt1
λτ3
· ut>1 · uτ3 · uτ>3

.

(11)

The arbitrary sign problem of eigenvector decomposition is
eliminated after the backprojection. In a single stride, multiple
SR′ between the reference frame and succeeding frames are
estimated and concatenated into a trace

−−→
SR′. The first two

traces in
−−→
SR′ are in anti-phase, as our example in Fig. 3 (e)

shows. Similar to CHROM [5], we derive/boost the pulse-
signal by combining the anti-phase traces as:

−→p =
−−→
SR′1 −

σ(
−−→
SR′1)

σ(
−−→
SR′2)

·
−−→
SR′2, (12)

where
−−→
SR′i is the i-th trace of

−−→
SR′; σ(·) denotes the standard

deviation operator. Consequently, a long-term pulse-signal
−→
P

is estimated from successive strides using overlap-adding as:
−→
P t−l =

−→
P t−l + (−→p − µ(−→p )), (13)

where µ(·) denotes the averaging operator;
−→
P , an one-

dimensional signal with length K (the total number of video
frames), is initialized by zero-entries and constantly updated
by −→p . An example of

−→
P is shown in Fig. 3 (f): the pulse-

signal can be extracted even when RGB channels are seriously
distorted by the head rotation in Fig. 3 (a).

In order to show the independent performance and im-
provement of the proposed method, we remove all the post-
processing steps (e.g., signal smoothing) to keep the algorithm
as clean as possible, i.e., even the commonly used band-pass
filtering is rejected. The complete algorithm of 2SR is shown
in Algorithm 1, which is very simple to use and extend, i.e.,
the implementation only requires a few lines Matlab code.

III. EXPERIMENTS

This section presents the experimental setup for evaluat-
ing the proposed rPPG algorithm. First, we introduce the
benchmark video dataset. Next, four evaluation metrics are
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Fig. 3. Two video sequences (with 200 frames) are used to illustrate the
results obtained by each step of 2SR. The subject either remains stationary
or rotates head in these two videos to simulate an easy and a challenging
scenario. The signals in the figure are concatenated by the vectors produced
in each step of 2SR, which are respectively the (a) RGB mean traces, which
is used in previous works but not this work, i.e., only for comparison purpose,
(b) R′ in Eq. 8, (c) S in Eq. 9, (d) SR in Eq. 10, (e) SR′ in Eq. 11, and (f)
pulse-signal in Eq. 13. The mean of all the signals are subtracted for visual
comparison. Note that in the steps producing two signals, we use red/blue
color to denote the first/second trace.

Algorithm 1 Spatial Subspace Rotation
Input: a video sequence containing K frames

1: Initialize:
−→
P = zeros(1,K)

2: for k = 1, 2, ...,K do
3: Ck =

V >
k ·Vk
N

4: [Uk,Λk] = eigs(Ck) where Uk = {uki },Λk = {λki }
5: if τ = k − l + 1 > 0 then
6: for t = τ, τ + 1, ..., k do
7: SR′ =

√
λt1
λτ2
·ut>1 ·uτ2 ·uτ>2 +

√
λt1
λτ3
·ut>1 ·uτ3 ·uτ>3

8:
−−→
SR′ ← concatenated by SR′

9: end for
10: −→p =

−−→
SR′1 −

σ(
−−→
SR′

1)

σ(
−−→
SR′

2)
·
−−→
SR′2

11:
−→
P t−l =

−→
P t−l + (−→p − µ(−→p ))

12: end if
13: end for
Output: the pulse-signal

−→
P



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, MONTH 2015 5

adopted to assess the performance. Finally, the popular ICA-
based approach and two state-of-the-art methods (CHROM
and PBV) are compared in the benchmarking.

A. Benchmark dataset

A benchmark dataset containing 54 video sequences (with
108000 frames) has been built to evaluate the proposed rPPG
algorithm. The videos are recorded with a regular RGB
camera1 in an uncompressed bitmap format, 768×576 pixels,
8 bit depth, and 20 FPS. During the recording, the subject
sits in front of the camera with his/her face visible and
wearing a finger-based transmissive pulse oximetry2 for syn-
chronized PPG-signal sampling - the ground-truth. The subject
is illuminated by a fluorescent lamp3 (parallel illuminance
source) that is placed 1.5 meters in front of the subject face.
The non-uniform illumination produces shadows and specular
reflections on the subject’s face. Since the lighting condition
is crucial to the rPPG technique, we simulate it as a challenge
in the “body-motion” category, where the number of light-
sources, color of the light-source, and types of the illumination
will be introduced in details. Note that all the recordings are
carried out indoors.

To thoroughly evaluate the robustness of the proposed rPPG
algorithm in realistic scenarios, we performed three tests. In
the first test we evaluate the effect of different skin-tones. In
the second test we ask the subjects to perform head motions
in front of the camera, while in the last test we record them
during recovery from a running exercise. This allows us to
investigate these challenges independently, as described below
(the bold number in brackets indicates the number of frames
simulated for this challenge):
• Skin-tone (22500) 15 subjects with various skin-tones

are recorded and categorized into three skin-types based on
the Fitzpatrick scale, i.e., participants are from West Europe
(skin-type I-II, 5 subjects), East Asia (skin-type III, 5 subjects)
and Sub-Sahara Africa/India (skin-type IV-V, 5 subjects).
• Body-motion (31500) To rPPG, the most significant

challenge caused by body-motion is not the “motion tracking”,
but the modulated reflections of lighting spectra on the skin-
surface, which disrupt subtle color changes induced by the
pulse. Thus we combine the body-motion challenge with the
illuminance challenge in this category. Ignoring the problem
of tracking, three basic motion-types, i.e., stationary, rotation
(rigid motion) and talking (non-rigid motion), are defined for a
subject (skin-type III) to perform under 7 different illuminance
conditions including single/mixture of colored light sources,
i.e., fluorescent lamp, red LED lamp, green LED lamp, blue
LED lamp, red-green LED lamps, red-blue LED lamps and
green-blue LED lamps. Note that the colored LED lamps are
point illuminance sources.
• Recovery after exercise (54000) In order to evaluate

the robustness of rPPG to pulse-rate changes, a series of
videos are recorded to analyze subjects recovering from a
running exercise. In this category, 6 subjects (3 males and 3

1Global shutter RGB CCD camera USB UI-2230SE-C from IDS.
2Model CMS50E from ContecMedical.
3Philips HF3319 - EnergyLight White.

Fig. 4. Snapshots of some recordings in the benchmark dataset. The frames
in the first row are from the “skin-tone” category, where subjects have
various skin colors; in the second row are from the “body-motion” category,
where subjects perform head motions in different illuminance conditions;
and in the third row are from the “recovery after exercise” category, where
subjects achieve different levels of pulse-rate after a running exercise, i.e.,
all participants achieve their maximum limits in the high-level and breathe
heavily or sweat perfusely.

females) in skin-type I-III participate in the recordings. Each
subject perform 3 different levels of running (with different
intensities) by adjusting speed and gradient of the treadmill:
low (gradient=12◦, speed=4-5 km/p), medium (gradient=14◦,
speed=5-6 km/p), and high (gradient=15◦, speed=7-8 km/p).
The duration of each running exercise is 3 minutes. After the
exercise, the subject immediately sits in front of the camera
for a video recording.

Fig. 4 shows snapshots of some recordings in our bench-
mark dataset. All videos are pre-processed by the OC-SVM
classifier that has been used in [9] for selecting the skin-pixels.
This study has been approved by the Internal Committee
Biomedical Experiments of Philips Research, and informed
consent has been obtained from each test subject.

B. Evaluation metrics

For comparison, the performance of rPPG is evaluated using
four different metrics:
• SNR of pulse frequency In line with [5], the Signal-to-

Noise-Ratio (SNR) of the pulse frequency is derived by the
ratio between the energy around the first two harmonics and
remaining parts in the frequency spectrum, where the location
of the first two harmonics is determined by the reference PPG-
signal. The SNR values are measured from each video and
averaged in each challenge of a particular category.
• Pearson correlation of instant pulse-rate The Pearson

correlation is applied to evaluate the correspondence of instant
pulse-rates between rPPG and the PPG-reference. The instant
pulse-rate, defined as the inverse of the peak-to-peak interval
of the pulse-signal, is derived by a simple peak detector in the
time-domain. It captures the instantaneous changes and reflects
the real-time differences. For statistical analysis, the Pearson
correlation is performed in each challenge per category and
interpreted by the ρ-value.
• Precision of instant pulse-rate The instant pulse-rate of

rPPG is also measured in terms of “precision”, the percentage
of frames where the absolute difference between the reference
is under a threshold T (error tolerance). For statistical analysis,
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TABLE I
SNR (µ)

Category Challenge ICA CHROM PBV 2SR

Skin-tone
Type I-II 6.51 6.47 5.57 7.44
Type III 6.61 6.21 6.26 7.90

Type IV-V 4.56 5.43 4.04 6.60

Body-motion
Stationary 11.61 9.42 6.57 10.53
Rotation 4.04 3.63 6.36 6.16
Talking 3.11 3.99 4.01 5.33

Recovery
low 1.78 2.66 1.95 4.93

medium 1.64 3.62 3.15 5.26
high -0.82 3.52 3.52 4.84

Overall Average 4.34 4.99 4.60 6.55

TABLE II
PEARSON CORRELATION (ρ)

Category Challenge ICA CHROM PBV 2SR

Skin-tone
Type I-II 0.88 0.92 0.89 0.93
Type III 0.66 0.66 0.94 0.97

Type IV-V 0.69 0.83 0.84 0.95

Body-motion
Stationary 0.94 0.95 0.62 0.97
Rotation 0.27 0.29 0.82 0.89
Talking 0.37 0.75 0.53 0.84

Recovery
low 0.76 0.73 0.64 0.98

medium 0.73 0.93 0.85 0.99
high 0.48 0.88 0.87 0.96

Overall Average 0.64 0.77 0.78 0.94

TABLE III
PRECISION (AUC)

Category Challenge ICA CHROM PBV 2SR

Skin-tone
Type I-II 0.64 0.73 0.58 0.77
Type III 0.56 0.58 0.67 0.74

Type IV-V 0.46 0.54 0.45 0.65

Body-motion
Stationary 0.77 0.82 0.60 0.85
Rotation 0.36 0.50 0.66 0.77
Talking 0.31 0.57 0.45 0.65

Recovery
low 0.24 0.37 0.26 0.62

medium 0.16 0.40 0.31 0.55
high 0.12 0.35 0.32 0.38

Overall Average 0.40 0.54 0.48 0.66

we estimate a precision curve by setting T ∈ [0, 3] beats
per minute (bpm) and use the Area Under Curve (AUC) to
interpret the precision. Note that the AUC is normalized by
3, the total area. Similarly, the precision is evaluated in each
challenge per category.
• ANOVA To investigate the significance of difference

between compared rPPG methods, we apply the balanced one-
way Analysis of Variance (ANOVA) to analyze the results
obtained by each evaluation metric. The p-value of ANOVA
is used for interpretation and a common threshold 0.05 is
specified to determine whether the difference is significant,
i.e., when p < 0.05, the difference is significant.

C. Compared method

The 2SR proposed in this paper, is intended as an algo-
rithmic component in an rPPG monitoring-system [9]. Thus
we compare it as clean as possible with direct algorithmic
alternatives, such as the popular ICA-based [4], CHROM [5]

and PBV [6] (the state-of-the-art), but not with the complete
rPPG system [9] that combines many other non-rPPG in-
gredients like face detection/tracking and signal smoothing.
Among the compared rPPG algorithms, CHROM and PBV
require skin-tone/pulse related priors, while ICA does not. All
these methods have been implemented in Matlab and run on a
laptop with an Intel Core i7 processor (2.70 GHz) and 8 GB
RAM. The implementation of 2SR strictly follows Algorithm 1
presented in this paper. The parameters in ICA, CHROM and
PBV are set to the optimal values in the original papers, while
the only parameter in 2SR is defined as l = 20 without tuning,
i.e., the default setting according to the camera frame-rate (20
FPS) in our setup. For fair comparison, all the parameters
remained identical when processing different videos.

IV. RESULTS

The experimental results of ICA, CHROM, PBV and 2SR
on 54 benchmark video sequences are summarized in Table
I-III. The performance of all four algorithms are compared
under each challenge per category. The bold entries in tables
indicate the best result obtained by the corresponding rPPG
algorithm during the comparison. Fig. 5 shows the plots of
Pearson correlation and precision curves.

A. Skin-tone robustness comparison

In the “skin-tone” category, the newly proposed 2SR shows
the highest score in all skin-types in three evaluation metrics,
which demonstrates its superior performance against ICA,
CHROM and PBV in skin-tone robustness. When comparing
the pulse frequency spectrum, 2SR improves on average the
SNR of ICA by 1.42 dB, CHROM by 1.28 dB, PBV by 2.02
dB. When comparing the instant pulse-rate, 2SR improves on
average the Pearson correlation and precision of ICA by 28%
and 30%, CHROM by 18% and 17%, PBV by 7% and 27%.

All color-based rPPG methods including 2SR have problems
in dealing with dark skin as the pulsatility is much lower. Our
experiments show that 2SR has relatively stable performance
across various skin types. The hypothesis for this improvement
is: the skin subspace formulated by 2SR is adapted to the video
content in real-time (e.g., a specific skin distribution), and
the subspace rotation is estimated on the direction orthogonal
to the skin-tone direction, where the pulse-induced subtle
changes are maximized. In Fig. 5, (1) the Pearson correlation
curves show that the performance of ICA, CHROM and PBV
are more variant than 2SR in this category; and (2) the
precision curves show that 2SR gains more improvements in
skin-type IV-V (dark skin) than skin-type I-III, as compared
to the benchmarked algorithms.

In 2SR, we also notice that the temporal changes of λ is
much lower for dark skin as compared to bright skin. The
reason is that the dark skin has higher melanin contents than
the bright skin. It absorbs a portion of diffuse reflections
carrying the pulse-signal, whereas the specular reflection is
not reduced. The lower pulsatility of dark skin leads to lower
amplitudes of pulse-induced color variations in RGB channels,
and thus the smaller λ.
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Fig. 5. In each challenge of a category, ICA, CHROM, PBV and 2SR are statistically compared using Pearson correlation and precision. Both metrics evaluate
the instant pulse-rates of the rPPG-signal.
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Fig. 6. Categorizing the experimental results of “body-motion” in terms of
“illuminance condition”, four algorithms are compared in “single lamp” and
“double lamps” challenges using Pearson correlation and precision.

B. Motion robustness comparison

In the “body-motion” category, 2SR outperforms ICA,
CHROM and PBV in almost all three evaluation metrics
except in the SNR comparison with ICA on stationary subjects
and PBV on rotating subjects. When comparing the pulse
frequency spectrum, 2SR improves on average the SNR of
ICA by 1.09 dB, CHROM by 1.66 dB, PBV by 1.69 dB. When
comparing the instant pulse-rate, 2SR improves on average the
Pearson correlation and precision of ICA by 70% and 58%,
CHROM by 36% and 20%, PBV by 37% and 33%.

As can be seen in Fig. 5, the most significant improvement
of 2SR over (1) ICA and CHROM is in motion (e.g., rotation
and talking), and (2) PBV is in stationary. In ICA, although the
blind source separation step does not rely on the assumption
of skin-tone or illuminance color, the selection of pulsatile
component that based on periodicity is problematic for motion.
The component containing motion frequency noise can be
incorrectly selected. For example, ICA outperforms the other
three algorithms in stationary subjects illuminated by different

colored light sources (e.g., SNR achieves 11.61 dB), but is
much worse in rotation and talking (e.g., SNR is only 3-4 dB).
The use of blood volume signature in PBV brings a modest
loss in signal quality in stationary subjects, which is in line
with the findings in [6], i.e., PBV performs better in motion.

Furthermore, the Pearson correlation curves in the “body-
motion category” of Fig. 5 show that most errors produced
by the benchmarked algorithms (e.g., scattering points far
from the regression line) are on the side of higher pulse-rate
(e.g., 75-85 BPM), especially in the videos containing rotation
and talking. This is due to incorrectly detected peaks when
estimating the instant pulse-rate, but not the pulse-rate of test
subjects, i.e., the instant pulse-rate, derived from inter-beat
interval, is highly sensitive to high-frequency noise or abrupt
changes (e.g., motion artifacts) in the rPPG-signal. To further
understand the algorithms’ performance in different lighting
conditions, we categorize the results obtained in the “body-
motion” in terms of “illuminance condition”: “single lamp”
and “double lamps” categories, as shown in Fig. 6. It shows
that 2SR performs better in both lighting categories, while its
improvement in the “double lamps” category is more clear.

C. Recovery after exercise comparison

In the “Recovery after exercise” category, 2SR outperforms
ICA, CHROM and PBV by showing an all-round improvement
in all three evaluation metrics. When comparing the pulse
frequency spectrum, 2SR improves on average the SNR of
ICA by 4.14 dB, CHROM by 1.74 dB, PBV by 2.14 dB. When
comparing the instant pulse-rate, 2SR improves on average the
Pearson correlation and precision of ICA by 49% and 198%,
CHROM by 15% and 38%, PBV by 24% and 74%.

In Fig. 5, the Pearson correlation curves suggest that 2SR
has a better correlation with the PPG-reference than others.
However, we notice that in the precision curves, when sub-
jects’ pulse-rates are increased to medium and high levels
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(e.g., more intensive exercise), the peak-to-peak accuracies of
all benchmarked algorithms are improved at T = 0 (e.g., error
tolerance is 0), but degraded at T = 3 (e.g., allowing 3-beats
difference). The reason is that after running the subject’s pulse
amplitude is stronger, which helps estimation. On the other
hand, the relatively fast change in pulse-rate renders the 3-
beats error tolerance insufficient.

To further understand their performance, we show the
pulse frequency spectrums obtained by PPG-reference and
four rPPG algorithms on one subject (e.g., the subject 2) at
three running levels in Fig. 7. We can see that (1) when the
subject pulse-rate is increased from low to high levels, ICA
shows noisier spectrums and performs worse. The respiratory
component showing strong frequency is incorrectly selected
as pulse, especially in medium and high levels where the sub-
ject breathes heavily after intensive exercise; (2) conversely,
CHROM and PBV show cleaner spectrums in higher levels.
Since the pulsatility of measured skin becomes stronger after
subjects perform intensive exercise, it leads to easier pulse
extraction. Besides, these two methods do not have problem of
component selection as ICA; and (3) 2SR shows much cleaner
spectrums than the other compared algorithms in all three
levels, and obtains a performance similar to the PPG-reference.
The improved robustness of 2SR over the compared algorithms
are further validated by the statistics in “recovery” category of
Table I-III. Moreover, we notice that in the medium and high
levels of 2SR, the respiration frequency is well preserved in
the spectrum, which does not interrupt the pulse frequency
as ICA. This implies that 2SR could be useful for respiration
extraction as well.

In the high-level running exercise, all subjects achieve
their maximum limits before finishing the test. Although the
recordings are performed immediately after the exercise, some
subjects recover so quickly that their pulse-rates have already
dropped prior to the recording, especially the subject 4. To
investigate the algorithms’ performance in this level, we show
their frequency spectrums obtained on 6 subjects in Fig. 8.
As can be seen, (1) ICA shows much noisier spectrums
than the others, especially in subject 1 where the respiratory
component confused with the pulse-rate for a long period; (2)
the spectrums of 2SR are cleaner than that of CHROM and
PBV, and comparable to that of PPG-reference, i.e., it even
outperforms the PPG-reference in subject 2 and 6, where the
PPG-sensor (finger-contacted pulse oximetry) is occasionally
interfered by finger movement and produces motion artifacts.

Interestingly, we find that during the exercise recovery, the
pulse-rates of (1) subject 1, 2, 3 and 6 decrease slowly and
smoothly, and are not fully recovered within 150 seconds; and
(2) subject 4 and 5 return to their normal states rapidly, within
80 and 120 seconds respectively. Particularly, their pulse-
rates change dramatically and irregularly in a short period, as
shown in both the PPG and rPPG approaches. These irregular
changes in pulse-rates are not caused by motion artifacts or
sensor noise, but are actual cardiac arrhythmias. These are not
uncommon in endurance athletes [18], and our subject 4 and
5 are amateur endurance athletes that run a lot (e.g., at least
three times per week), even half and full marathons.
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Fig. 7. The frequency spectrums obtained by PPG-reference and four rPPG
algorithms on subject 2 (male) at 3 exercise levels, where the x-axis and y-axis
denote the time and frequency respectively.
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Fig. 8. The frequency spectrums obtained by PPG-reference and four rPPG
algorithms on 6 subjects at the high-level exercise (most intensive), where the
x-axis and y-axis denote the time and frequency respectively.

D. Overall comparison

Table IV shows the ANOVA results between three existing
rPPG algorithms and 2SR in our benchmark dataset respec-
tively, where the bold entries indicate significant improvements
(p < 0.05). From Table IV, we conclude that in our benchmark
dataset: (1) in SNR evaluation, 2SR outperforms the other
three algorithms, although the improvements are not signifi-
cant except in the comparison with PBV (p = 0.031). Since the
estimation of SNR is based on the frequency spectrum energy,
it is less sensitive to modest improvements; (2) in Pearson
correlation and precision evaluations, the improvements of
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TABLE IV
ANOVA (P-VALUE)

Comparison SNR Pearson correlation Precision
ICA vs 2SR 0.121 0.001 0.009

CHROM vs 2SR 0.115 0.027 0.098
PBV vs 2SR 0.031 0.005 0.017
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Fig. 9. The overview of performance comparison between ICA, CHROM,
PBV and 2SR in three evaluations, which compares the median (red bar),
standard deviation (blue box), minimum and maximum (black bar) values.

2SR over the other three algorithms are significant except the
comparison with CHROM in precision (p = 0.098). Since
these two metrics are based on the instant pulse-rate derived
from inter-beat interval, it suggests that 2SR can eliminate
high-frequency noises that degrade the accuracy of the peak-
detector used to determine the interval; (3) the most significant
improvement obtained by 2SR is in the comparison with ICA.
This is in line with the findings in CHROM [5] that ICA
is in general less robust to motion distortions, especially to
periodic motions; and (4) the improvements of 2SR over PBV
is slightly larger than that over CHROM. In the model of PBV,
the blood volume pulse signature depends on the optical filters
of the camera and illumination spectrum [6], which is not
adapted to the different illumination conditions incorporated
in our recordings. Our hypothesis is that its noise suppression
may be sub-optimal.

Fig. 9 shows the overall comparison between four rPPG al-
gorithms in our benchmark dataset. Given a well-defined skin
mask, 2SR shows improved robustness over ICA, CHROM
and PBV in all-round evaluations. When comparing the pulse
frequency spectrum, 2SR improves on average the SNR of ICA
by 2.22 dB, CHROM by 1.56 dB, and PBV by 1.95 dB. When
comparing the instant pulse-rate, 2SR improves on average the
Pearson correlation and precision of ICA by 47% and 65%,
CHROM by 22% and 23%, PBV by 21% and 39%.

V. DISCUSSION

A. Skin-pixel cluster

As discussed in Section II, 2SR requires two preliminary
conditions for reliable pulse estimation: (1) multiple skin-
pixels in the spatial domain, and (2) the measured skin-pixels
need to be in a single cluster. This implies that the performance
of 2SR may drop when either the number of skin-pixels
decreases or the skin mask is noisy, i.e., including non-skin
pixels. To thoroughly understand the limitation/weakness of
2SR, we perform another quantitative comparison between
benchmarked algorithms. In these experiments, we (1) reduce
the number of measured skin-pixels, and (2) introduce non-
skin pixels into the skin mask. Examples of the simulated

challenges are shown in Fig. 10, where each challenge is
simulated in two different ways and also multiple times by
using a different percentage of skin-pixels or non-skin pixels
with respect to the original measurement.

Fig. 11 shows the SNR comparisons between the algorithms
under the simulated challenges. In the challenge of reduced
number of skin-pixels, all four algorithms show a similar
quality drop in both down-sampling methods. The smaller
number of skin-pixels leads to larger quantized RGB errors,
which is a general problem for any rPPG algorithms, but
not a particular challenge for 2SR. When increasing the
number of non-skin pixels, all four algorithms suffer from
performance degradations, while the quality of 2SR drops
more dramatically when the percentage of non-skin pixels
becomes larger, i.e., it has an obvious SNR drop when the
percentage of non-skin pixels arrives between 10% and 30%.
This is understandable because 2SR is designed for measuring
the subspace of a single cluster distribution. The occurrence
of another non-skin cluster will distort the direction of the
skin-pixels’ subspace, and the degree of distortion depends
on the percentage of non-skin pixels. In comparison, ICA,
CHROM and PBV have a lower quality drop when significant
non-skin distortions occur, i.e., when the percentage of non-
skin pixels is between 30% and 50%. Since the simulated
non-skin cluster does not introduce extra frequencies, ICA
can properly separate and select the signal source for pulse
estimation. In addition, we notice that PBV performs worse
than CHROM and 2SR when the skin-mask is clean, but
better when skin-similar noise is introduced, which is due
to its design in suppressing noise variations. The simulated
comparisons suggest that the number of skin-pixels is not so
critical for 2SR, but a well-defined skin mask is essential, i.e.,
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Fig. 10. To verify the limitations of 2SR, we simulate two challenges in
the original recordings by (1) decreasing the number of skin-pixels, and
(2) increasing the number of non-skin pixels. The number of skin-pixels is
decreased in two different ways: a. subsampling a small region in face (e.g.,
forehead), and b. downsampling the complete face uniformly (e.g., nearest-
neighbor interpolation). The number of non-skin pixels is also increased in
two different ways: a. introducing a skin-similar noise cluster with RGB
vector [0.7, 0.5, 0.3] (e.g., skin-vector), and b. introducing a skin-different
noise cluster with RGB vector [0.5, 0.5, 0.5] (e.g., white light vector). Note
that the simulated non-skin cluster is also spatially and temporally variant in
RGB space.
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Fig. 11. The comparison between rPPG algorithms in the simulated challenges
of skin cluster according to Fig. 10. Since the instant pulse-rate that measures
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Fig. 12. The comparison between different l in 2SR on subjects with a low or
a high pulse-rate. The stride length of l is changed in [5, 60] when processing
the same video, as denoted in the x-axis. Similar to Fig. 11, SNR is used to
interpret the quality of rPPG-signal. The red dot represents the SNR obtained
by l = 20 (default setting in our experiment), and the green dot represents
the maximal SNR can be achieved by changing l.

when a large non-skin cluster occurs in RGB space, 2SR could
be worse than ICA, CHROM and PBV.

To further improve the robustness of 2SR, we propose to
either (1) employ advanced techniques for finding the skin-
regions, i.e., detecting pulsatile regions [14], or (2) use a better
method for subspace segmentation, which can simultaneously
separate multiple clusters into independent subspaces for mea-
surement. However, it has to be mentioned that due to the
integration effect of a camera sensor, some pixels may always
contain a combination of skin and non-skin in a scenario when
the skin-region is moving at high-speed (e.g., motion blur),
which will be inherently challenging to address.

B. Temporal window stride

Although 2SR does not rely on pulse/skin-tone priors, there
is still one parameter l fixed for processing, which defines the
temporal stride for measuring the subspace rotation. For pulse
extraction, each stride should include at least a half cardiac
cycle for capturing the maximal subspace rotation induced by
the blood volume pulse. Thus the optimal l is in fact based

on the camera frame-rate and subject pulse-rate. To simplify
the illustration, we perform a test on two benchmark videos
recorded on subjects with a low pulse-rate (around 45 BPM)
and a high pulse-rate (around 93 BPM). The frame-rates of
both videos are 20 FPS. We constantly change the stride
length of 2SR when processing these two videos and show
the corresponding SNR in Fig. 12.

As can be seen in Fig. 12, l = 20 (default setting) used in
our experiment is not optimal for both videos: the maximal
SNR in case of (1) the low pulse-rate achieves 7.00 dB when
l = 31 (e.g., SNR = 5.33 dB when l = 20); and (2) the
high pulse-rate achieves 5.49 dB when l = 12 (e.g., SNR
= 4.68 dB when l = 20). It shows that 2SR requires longer
stride for subject with low pulse-rate to obtain reasonably
good results, as compared to that of subject with high pulse-
rate. Besides, it shows that too short strides produce worse
results than that of long strides in both videos, i.e., the SNR
is even negative for subjects with low pulse-rate when l < 10.
This is to be expected, as the rotation angle becomes very
small when the reference frame is rapidly/frequently updated
in every short stride. However, a longer stride (e.g., l > 50)
does not guarantee a quality improvement, since long-term
motion distortions or other frequency sources (e.g., respiration)
could enter the estimation.

As a short conclusion, there is no fixed optimal l for all
video recordings. One could improve upon this is to adjust l
to a specific video content (e.g., based on the camera frame-
rate and subject pulse-rate) and seek the optimal stride length
algorithmically, i.e., l can even be adapted to time-varying
pulse-rate in real-time processing. Since this work focuses on
elaborating a novel concept in rPPG algorithm, we leave the
steps of optimization as future work, such as parameter tuning
or more complex and sophisticated rPPG systems.

VI. CONCLUSION

In this paper, we propose a conceptually novel rPPG algo-
rithm for pulse extraction, namely “Spatial Subspace Rotation”
(2SR). The core idea of the proposed algorithm is to estimate
the temporal rotation of skin-pixels’ subspace in RGB for
deriving the pulse. It exploits the benefit of statistical measure-
ment of multiple pixel-sensors provided by a remote camera,
and requires a well-defined skin mask for measuring the sin-
gle cluster distribution of skin-pixels. Numerous experiments
demonstrate that given a well-defined skin mask, the proposed
method outperforms the popular ICA-based approach and two
state-of-the-art algorithms (CHROM and PBV) in challenges
of skin-tone, body-motion in complex illuminance conditions,
and pulse-rate recovery after exercise.
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