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Unsupervised Subject Detection via Remote-PPG
Wenjin Wang, Sander Stuijk, and Gerard de Haan

Abstract—Subject detection is a crucial task for camera-based
remote healthcare monitoring. Most existing methods in subject
detection rely on supervised learning of physical appearance
features. However, their performances are highly restricted to
the pre-trained appearance model while still suffering from false
detection of human-similar objects. In this paper, we propose
a novel unsupervised method to detect alive subject in a video
using physiological features. Our basic idea originates from the
observation that only living skin tissue of a human presents
pulse-signals, which can be exploited as the feature to distinguish
human skin from non-human surfaces in videos. The proposed
VPS method, named Voxel-Pulse-Spectral, consists of three steps:
it (1) creates hierarchical voxels across the video for temporally
parallel pulse extraction; (2) builds a similarity matrix for
hierarchical pulse-signals based on their intrinsic properties; and
(3) utilizes incremental sparse matrix decomposition with hier-
archical fusion to robustly identify and combine the voxels that
correspond to single/multiple subjects. Numerous experiments
demonstrate the superior performance of VPS over a state-of-the-
art method. On average, VPS improves 82.2% on the precision
of skin-region detection; 595.5% on the Pearson correlation
and 542.2% on Bland-Altman agreement of instant pulse-rate.
ANOVA shows that in all-round evaluations, the improvements of
VPS are significant. The proposed method is the first method that
uses pulse to robustly detect alive subjects in realistic scenarios,
which can be favorably applied for healthcare monitoring.

Index Terms—Biomedical monitoring, remote sensing, photo-
plethysmography, face detection, object segmentation.

I. INTRODUCTION

The task of detecting subjects in a video has been exten-
sively studied in the past decades in the context of computer
vision. In the emerging field of camera-based healthcare moni-
toring, there is a growing interest in applying subject detection
to locate image region of living skin-tissue of a patient for
clinical diagnosis, i.e., remote heart-rate measurement. Most
existing works in subject detection exploit appearance features
of human skin to discriminate between subject and background
in a supervised training mechanism. However, a common
problem faced by these methods is that their trained features
are not unique to human beings; any feature that is similar
to human skin can be misclassified. Moreover, supervised
methods are usually restricted to prior-known samples and tend
to fail when unpredictable samples occur, i.e., the Viola-Jones
face detector trained with frontal faces cannot locate faces
viewed from the side [1], while a skin classifier trained with
bright skin fails with dark skin [2].
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Fig. 1. An example of the detected alive subjects by the proposed VPS
method, where (1) the real human face can been distinguished from an
artificial face (found in yellow non-rigid contour); (2) multiple subjects can
be differentiated from each other (identified in red bounding-box with an ID
number).

Inspired by the recent progress in remote photoplethysmog-
raphy (rPPG) [3]–[6], we observe that as compared to physical
appearance features, the invisible physiological features (e.g.,
pulse) can better differentiate human skin from non-human
surfaces. In the natural environment, only the skin tissue of
an alive subject exhibits pulsatility, so any object showing no
pulse-signal can be safely classified into the non-skin category.
It prevents the false detection of objects with an appearance
similar to human skin, as shown for example in Figure 1.
Moreover, as compared to some high-level feature descriptors
like Haar [1] and HOG [7], the patterns of a pulse-signal are
more unitary and intuitively recognizable, i.e., all pulse-signals
present a significant spectrum peak in certain frequency-bands.
Essentially, it allows the unsupervised detection of human skin
without training.

In this paper, we propose a novel method to detect alive
subjects (e.g., living skin-tissue) in a video using the pulse as
a feature. Given a video without any prior information related
to the subjects (e.g., location, size, and number), our strategy
is to first densely segment the whole video into hierarchical
voxels in the spatio-temporal domain. Each voxel is considered
as an independent pulse-sensor for temporally parallel pulse
extraction without interference. Afterwards, a similarity matrix
is built to describe the pairwise relationship of hierarchical
voxels based on intrinsic properties (e.g., frequency and phase)
of extracted pulse-signals. Since the voxels pointing at the
same subject are mutually correlated in the similarity matrix,
we develop an incremental sparse matrix decomposition algo-
rithm to factorize and select the voxels corresponding to the
skin-tissues of different subjects. Finally, hierarchical voxels
are robustly fused into a single objectness map of human skin-
tissues.

The key contributions of our work are two-fold: (1) we pro-
pose a similarity-based method that exploits the hierarchical
voxel-based segmentation and intrinsic properties of human
pulse for unsupervised alive subject detection; (2) we develop
a spectral analysis algorithm to robustly decompose and update
the similarity matrix in the temporal domain, which enables
automatic subject number definition. The Voxel-Pulse-Spectral
(VPS) method proposed in this work is the first complete
solution that uses the pulse for unsupervised alive subject
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Fig. 2. The flowchart of the proposed VPS method: (1) it takes an input video and constructs the hierarchical voxels across the video frames; (2) each voxel
simulates an independent pulse-sensor in a parallel pulse extraction process; and (3) all voxels in the hierarchy are pairwisely connected in a similarity matrix
based on the measured pulse, while the sparse similar entries denoting the voxel connections are incrementally factorized and fused into a human objectness
map. Finally, it outputs the detected non-rigid subject RoI.

detection in videos considering realistic challenges. It has been
thoroughly evaluated with numerous challenging videos and
demonstrates robustness to practical challenges, i.e., body-
motion, skin-tone, etc. The state-of-the-art performance of
VPS indicates that it can be applied in a large-scale camera-
based healthcare monitoring system that requires automatic
alive subject detection or living skin-tissue detection, i.e., the
remote monitoring of heart-rate, SPO2, respiration, etc.

II. RELATED WORK

A. Camera-based pulse extraction

In the human cardiovascular system, blood pulse propagat-
ing throughout the body changes the blood volume in skin
tissue. Since the optical absorption of hemoglobin in blood
varies across the light spectrum, detecting color variations of
skin reflection can reveal the pulse-rate [5]. Recent remote
photoplethysmography (rPPG) techniques demonstrate encour-
aging results by detecting pulse-induced color variations on
human skin using a regular RGB camera. In 2008, Verkruysse
et al. found that in an ambient light condition, the PPG-
signal has different relative amplitudes in the RGB channels
of human skin-pixels [6]. Based on this finding, Blind Source
Separation methods (e.g., PCA-based [4] and ICA-based [5])
were proposed to independently factorize the temporal RGB
signals for finding the pulse. In 2013, de Haan et al. introduced
a Chrominance-based rPPG method to define the pulse as a lin-
ear combination of RGB channels under a standardized skin-
tone assumption [3], which is one of the most accurate rPPG
methods in dealing with realistic challenges (e.g., various
skin-tones). More recently, Wang et al. proposed a complete
framework to significantly improve the motion robustness of
rPPG [8], which profits from the spatially redundant pixels of
a camera sensor. Nevertheless, all these rPPG methods rely on
a pre-defined skin area (e.g., face) for pulse extraction.

B. Pulse-based RoI detection

Given the fact that the human pulse can be measured by
rPPG in videos, the pulse-signal can thus be used to assist
the subject detection, i.e., detecting alive subjects by locating
their living skin tissue. In 2013, Gibert et al. proposed a face
detection method based on the pulse-signal [9]. This method
slices the video into fixed rigid-grids for local pulse extraction.
It sets a hard threshold to find the grids with high spectrum
energy and label them as the face region. It is limited to

videos in which the stationary face needs to be placed at a
pre-defined distance from the camera. Our VPS method does
not suffer from these limitations. Meanwhile, Lempe et al.
presented a Region of Interest (RoI) selection method on the
face to enhance the rPPG monitoring [10]. However, their
RoI is constrained to pre-defined facial landmarks, which is
not a general solution for subject detection, i.e., it cannot
detect other body parts (e.g., hands) that might be visible in
a video. In contrast, our VPS method does not make such an
assumption and can detect all body parts with pulsatile blood.

III. VOXEL-PULSE-SPECTRAL (VPS) METHOD

The overview of the proposed VPS method is shown in
Figure 2, which takes an input video and outputs the subject
RoI. There are three main steps in the flowchart: hierarchical
voxels, pulse extraction and spectral analysis. Each step is
discussed in detail in the following subsections.

A. Hierarchical voxels

Given a video without any prior information about the
subject, our strategy is to first segment the video into dense
local regions where a pulse can be independently measured. To
some extent, such strategy has already been exploited in [9] by
slicing the video into fixed rigid-grids. However, the subject
size is quantized by the grid geometry, which fails when the
subject is small or when there is body motion. Therefore, we
propose to use a superior video segmentation method for pulse
extraction called hierarchical voxels.

In our method, the hierarchical voxels consist of spatio-
temporally coherent clusters in multiple scales, where pixels
sharing appearance and spatial similarities in the temporal do-
main are grouped together. Starting from one scale, construct-
ing the voxels is defined as the procedure of minimizing the
chromatic energy Ec and spatial-distance energy Es between
adjacent pixels in a short interval T ∈ {2n+ 1, n ∈ N+} [11]
as:

arg min
( t+ T−1

2∑
t−T−1

2

∑
p∈P (t)

(1− λ)Etc(p, k) + λEts(p, k)
)
, (1)

where p ∈ P (t) is the set of pixels in the t-th frame. The rep-
resentation of p is a 4-dimensional feature vector (x, y, u, v),
where (x, y) and (u, v) are respectively the coordinates in
the image plane and the chromatic plane (e.g., UV plane of
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Fig. 3. An example of hierarchical voxels segmentation in videos with a
subject at different distances to the camera. It consists of three scales of
voxels with k = 16, 32, 64.

YUV space, the empirical space for skin segmentation). K-
means clustering is performed to assign pixels into k clusters
for minimizing the total energy during T . λ is the parameter
controlling the balance between two energy terms.

Furthermore, the single scale voxels are extended to multi-
ple scales by initializing different k in Eq. 1 simultaneously,
where each scale is an independent clustering. Considering
that the voxels in separate scales have different resolutions
and energy variations, the λi in i-th scale is adaptively self-
tuned based on its own energy variations at t as:

λti = log(k)

√
σ
(
φ(uti)

)
· σ
(
φ(vti)

)
σ
(
φ(xti)

)
· σ
(
φ(yti)

) , (2)

where σ(·) denotes the standard deviation operator; φ(·) repre-
sents the set of cluster means; log(k) controls the voxel com-
pactness, i.e., voxels with higher resolution (larger k) should
be more compact. The real-time tuning of λ in different scales
avoids volatile and flickering clustering, which preserves the
fine-grained segmentation.

To our purpose, there are four benefits of using hierarchical
voxels for video segmentation, as illustrated in Figure 3: it (1)
establishes the spatio-temporally coherent “tubes” for pulse
measurement; (2) enables the scale-invariant subject detection
in a video, where the motion of a subject can be quantized
by voxels with different resolutions in multiple scales; (3)
maintains high boundary recall of subject shapes; and (4)
creates a statistical observation of skin-regions, since the pulse
measured from voxels with different resolutions have different
quantized qualities.

B. Pulse extraction

Each voxel in the hierarchy is assumed to be an indepen-
dent pulse-sensor in parallel pulse extraction. Based on our
study in the state-of-the-art rPPG methods, we rely on the
Chrominance-based method (CHROM) [3] for pulse measure-
ment. Different from CHROM that uses the spatially averaged
RGB of all pixels to derive the pulse-signal in a local region,
we combine the pixel RGB values in a voxel by weighting
them based on their distance to the voxel boundary, i.e., pixels
close to the voxel boundary are less reliable due to occasional
jittering artifacts between neighboring voxels and thus should
be less weighted. Assuming that the closest Euclidean distance

from a pixel k to the voxel boundary is dk, the average RGB
of j-th voxel in i-th scale at t is combined as:

(R̄tij , Ḡ
t
ij , B̄

t
ij) =

∑N
k=0

(
dk · (Rtijk, Gtijk, Btijk)

)∑N
k=0 dk

, (3)

where N denotes the number of pixels in j-th voxel. In a
constant lighting environment, human skin tissue shows the
same relative PPG-amplitude, but the chromatic differences in
voxels lead to the variations in pulse-amplitudes. So different
from [3], we use the temporal derivatives of average RGB in
a voxel, i.e., dCtij = Ctij−C

t−1
ij , C ∈ {R̄, Ḡ, B̄}, to derive its

chrominance-signals. In the interval T (defined in Eq. 1), the
normalized chrominance derivatives are calculated as:
−→
dXT

ij = 3
−→
dRT

ij∑T
t=0 dR

t
ij

− 2
−→
dGT

ij∑T
t=0 dG

t
ij

−→
dY Tij = 1.5

−→
dRT

ij∑T
t=0 dR

t
ij

+
−→
dGT

ij∑T
t=0 dG

t
ij

− 1.5
−→
dBT

ij∑T
t=0 dB

t
ij

, (4)

where (dRtij , dG
t
ij , dB

t
ij) denotes the temporal derivatives of

RGB in a voxel between two frames. The chrominance deriva-
tives estimated in each interval are linearly combined into
pulse derivatives and further integrated. Afterwards, different
pulse intervals are overlap added to a complete pulse-signal−→
S L
ij with length L. This procedure is interpreted as:

−→
S L
ij =

L−T+1∑
t=0

−→
S t+T
ij + w · csum(

−→
dXT

ij −
σ(
−→
dXT

ij)

σ(
−→
dY Tij)

−→
dY Tij), (5)

where csum(·) denotes the cumulative sum of temporal deriva-
tive signals; w is the Hanning window for smoothing the
overlap adding [3]. Consequently, the parallel extracted pulse-
signals

−→
S L
ij (from j-th voxel in i-th scale) are centralized and

normalized as:

−→
S L
ij =

−→
S L
ij − µ(

−→
S L
ij)

σ(
−→
S L
ij)

, (6)

where µ(·) denotes the averaging operation. Note that the
pulse-signal is the only feature used in our method. No other
appearance features like color or texture are used.

C. Spectral analysis

After extracting the pulse-signals from hierarchical voxels,
a more critical question concerning our task is: how to
effectively exploit the pulse-signal as a feature to distinguish
skin and non-skin in an unsupervised manner? We observe that
the pulse-signals extracted from the skin-regions belonging to
the same subject share similarities in many aspects such as
phase and frequency, whereas the ones extracted from non-
skin regions (e.g., background) are irregular noises without
correlation. Therefore, we propose to use the pairwise sim-
ilarities of pulse-signals to find alive subjects. This is also
applicable to the case of multiple subjects, because the pulse
measured from different subjects can be differentiated in phase
and frequency as well.
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1) Similarity matrix: In this step, we create a similarity ma-
trix Σ = (D,C) to interconnect the hierarchical voxels based
on the measured pulse. In Σ, the entries D in the diagonal trace
contain all voxels in different scales; the remaining entries C
denote the pairwise connection between any pair of voxels.

To build such a similarity matrix, the distance metric for
measuring the pulse similarity needs to be defined. The most
commonly used distance metrics, i.e., L1 and L2 distances,
are not applicable to the pulse-feature. However, compared to
other appearance features (e.g., Haar and HOG), we notice an
essential and unique character in the pulse-feature: it contains
periodicity.

According to our observation, the pulse-signals from the
same subject show the following relations: (1) they have
similar frequency and thus their cross-correlation presents
a significant spectrum peak; (2) they have no significant
phase shift; (3) their frequency correlation is regular and
less disordered; and (4) if considering pulse-signals as multi-
dimensional vectors, the included angle between two similar
vectors is small. Therefore, we propose a new distance metric
to build the similarity matrix for pulse-signals by emphasiz-
ing above connections, which is composed of four different
measurements:

• Spectrum peak In the frequency domain, we define a pulse-
rate band f ∈ [40, 240] BPM (Beats Per Minute) for voxels
to communicate, which is a broad range for healthy subjects
including neonates and sporting subjects. The spectrum peak
of two cross-correlated pulse-signals is defined as:

F = arg max
f∈[40,240]

(
F(
−→
S L
ij) ◦ F(

−→
S L
i′ j′

)∗
)
, (7)

where ◦ denotes the element-wise product; ∗ is the conjuga-
tion; F(·) represents the Fast Fourier Transform (FFT).

• Spectrum phase Two similar pulse-signals are also in the
same phase, so their normalized cross-correlation should show
a strong response in the time domain as:

P = max
(
F−1(NCC)

)
, (8)

with

NCC =
F(
−→
S L
ij) ◦ F(

−→
S L
i′ j′

)∗∥∥F(
−→
S L
ij) ◦ F(

−→
S L
i′ j′

)∗
∥∥

2

, (9)

where ‖ · ‖2 is the L2-norm; F−1(·) denotes the inverse FFT.
• Spectrum entropy We use the term “entropy” to measure the

regularity of correlation between two pulse-signals as:

E =

∑240
f=40NCC(f) log

(
NCC(f)

)
log(240− 40)

, (10)

where the interpretation of E is consistent with the other
measurements, i.e., larger E denotes better correlation.

• Inner product In the time domain, we use the inner product
to measure the cosine angle between two pulse-signals as:

I =<

−→
S L
ij

‖
−→
S L
ij‖2

,

−→
S L
i′ j′

‖
−→
S L
i′ j′
‖2

>, (11)

where <,> denotes the inner product operation.
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Fig. 4. An example of four measurements and their fused similarity matrix
Σ. The entries with higher energy represent the index of similar voxels in the
hierarchy.

Finally, these four measurements are normalized to the
range [0, 1] and fused together with a Gaussian kernel as:

Σ = 1− exp
(
− (F ◦ P ◦ E ◦ I)2

2σ2
I,F,P,E

)
, (12)

where σI,F,P,E represents the entry-wise standard deviation
between four matrices. Note that the four measurements are
not completely independent from each other, the redundancy
between measurements is beneficial for reducing the uncer-
tainty in similarity estimation. Figure 4 shows an example of
four measurements and their fused similarity matrix. In our
distance metric, two well-aligned pulse-signals show boosted
frequency energy during the cross-correlation, which can
effectively suppress the noise entries (e.g., voxels without
pulse). In contrast, previous distance metrics are all objective
measurements that cannot enhance the connection between
similar entries in the comparison.

In the end, all voxels in the hierarchy are mutually con-
nected in the similarity matrix. The task of detecting an alive
subject in voxels can be reformulated as finding a subspace
partition of the similarity matrix such that the entries in the
same subspace have identical similarity direction.

2) Incremental sparse matrix decomposition: In fact, the
similarity matrix Σ can be interpreted as a linear combination
of λ1x1x

>
1 + λ2x2x

>
2 + ...λnxnx

>
n , where xi ∈ X is a set

of orthogonal vectors in the multi-dimensional space. In order
to find the voxels belonging to the same subject, we use the
matrix decomposition technique to factorize Σ into X , where
different subjects are separated into different eigenvectors.
Since Σ is a sparse matrix with many zero entries (e.g., the
voxels pointing at background share no similarity), we apply
the Sparse PCA [12] to decompose Σ into X by seeking a
trade-off between expressive power and data interpretability.
The Sparse PCA finds the first sparse eigenvector with the
maximum variance in Σ by optimizing the following non-
convex objective function:

arg max
X

(X>ΣX) subj.to ‖X‖2 = 1, ‖X‖1 ≤ n, (13)

where ‖ · ‖1 is the L1-norm; n > 0 controls the cardinality of
X . However, computing sparse eigenvectors with maximum
variance is a combinatorial problem and numerically hard to
solve, so we drop the non-convex rank constraint in Eq. 13
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Fig. 5. An example of similarity matrix decomposition using incremental
sparse PCA, where similar voxels are factorized into the same direction in
the selected eigenvectors.

following the lifting procedure for semidefinite relaxation with
l1 penalization [12] as:

arg max
Σ̂

Tr(ΣΣ̂)− ρ‖Σ̂‖1 subj.to Tr(Σ̂) = 1, Σ̂ � 0, (14)

where Tr(·) denotes the matrix trace operation; ρ > 0 controls
the sparsity; Σ̂ = XX> is a symmetric matrix approximated
by the first leading eigenvector. At this point, we adopt a recent
algorithm named Hybrid Conditional Gradient Smoothing
(HCGS) [13] to solve Eq. 14. The merit of HCGS is the fast
convergence in convex relaxation using conditional gradient
approaches.

However in practice, Σ may consists of multiple sparse
eigenbasis in case of multiple subjects, whereas Eq. 14 only
promotes the sparsity in the first leading eigenvector. To
address this issue, we estimate the succeeding sparse eigen-
vectors xi by sequentially deflating Σ with preceding sparse
eigenvectors x1, x2, ..., xi−1 using Hotelling’s deflation as:

Σi = Σi−1 − (x>i Σi−1xi)xix
>
i , i ∈ [1,m], (15)

with

m = arg max
i

(
x>i−1Σi−1xi−1

1 + x>i Σixi
), (16)

where xi ∈ X can be derived by the power iteration [13];
m is the automatically found number of most expressive
eigenvectors, which also implies the number of subjects in
a video, i.e., m is usually found at the largest eigenvalue gap.
Figure 5 shows an example of the factorized and selected
eigenbasis from a similarity matrix: the noisy entries in the
original Σ are eliminated in Σ̂; the eigenvalues clearly show
the number of most expressive eigenvectors in Σ̂.

As a matter of fact, some intrinsic (e.g., pulse-rate variation)
and extrinsic (e.g., luminance changes) factors may occasion-
ally change the similarity matrix in subsequent frames, which
leads to an instability of the sparse eigenvectors estimated
from each single frame. To solve this problem, we employ
the incremental subspace updating [14] to smoothly adapt the
xi ∈ X to real-time changes in the time domain. Basically,
it considers the time-varying similarity matrix Σ̂new as a new
observation, and use multiple observations [Σ̂old, Σ̂new] from
different frames to enrich the subspace model as:

[U,D, V ] = SVD([Σ̂old, Σ̂new]), (17)

where SVD(·) denotes the Singular Value Decomposition; U
and D are incrementally updated eigenvectors and eigenvalues.
Eventually, we arrive at an algorithm to incrementally estimate
multiple sparse eigenvectors from a time-varying similarity
matrix, as shown in Algorithm 1.

3) Hierarchical fusion: By projecting the estimated sparse
eigenvectors onto the hierarchical voxels, we obtain the voxel-
based human objectness map in multiple scales, where each
scale has a different quantized description to the subject, as
illustrated in Figure 6: the eigenvector not only decides the
subject direction (sign) in subspaces, but also decides the
pulsatility (amplitude) of corresponding skin-regions, i.e., fore-
head and cheek show relatively high pulsatility in projection,
which aligns with the findings in [6].

The final step is to fuse multiple objectness maps into a
single output. Due to the fact that hierarchical measurement
creates a statistical observation for skin-regions, our basic idea
is exploiting this redundancy to derive a single output for
which all scales have the highest agreement. In this sense, the
hierarchical fusion is cast as the energy minimization between
multiscale objectness maps as:

arg min
ô

(γE1 + (1− γ)E2), (18)

withE1 =
∑
i

∑
j ‖oij , ô‖2

E2 =
∑
i(
∑
j ‖oij , oi−1,j‖2

oij⊆oi−1,j

+
∑
j ‖oij , oi+1,j‖2

oi+1,j⊆oij
) , (19)

Algorithm 1 Incremental Sparse PCA
Input: similarity matrix Σ ∈ Rn×n, eigenvectors U , eigen-

values D
1: ρ = 0.25 (sparsity), N = 100 (iteration times)
2: for k = 1, 2, ..., N do
3: βk = 1

nTr(ΣΣk) + ρ
n‖Σk‖1

4: Zk = Σ−
√
kρ

2
√

2
Σk +

√
kρ

2
√

2
sign(Σk)� (|Σk| − 2

√
2

n
√
k

)

5: X = {x1, x2, ..., xm} ← multiple eigenvectors of Zk,
where m is determined by Eq. 15 and Eq. 16

6: Σ̂ = XX>

7: Σk+1 = (1− 2
k+1 )Σk + 2

k+1 Σ̂

8: if |βk−βk−1|
βk

< 10−3 then
9: break

10: end if
11: end for
12: if U,D == 0 then
13: [U,D, V ] = SVD(Σ̂)
14: else
15: [U, Σ̂

′
]R = QR([UD, Σ̂]) ← solved by QR decompo-

sition
16: [U

′
, D
′
, V
′
] = SVD(R)

17: U
′

m ∈ U
′
, D

′

m ∈ D
′ ← select top m eigenvectors and

eigenvalues, where m is determined by Eq. 16
18: U = sign(U) � |[U ′ ,Σ′new]U

′

m|, D = D
′

m ← update
subspace model

19: end if
Output: updated U and D
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Fig. 6. The selected sparse eigenvectors are projected onto the hierarchical
voxels and further fused into a single human objectness map, where different
subjects are isolated.

where oij corresponds to the objectness value of j-th voxel
in i-th scale that determined by the eigenvector elements;
ô denotes the fused objectness map; γ controls the balance
between two energy terms. In Eq. 19, E1 minimizes the energy
between inputs and output, while E2 minimizes the energy
between spatially overlapped voxels in different scales, i.e.,
an implicit tree structure. Figure 6 shows an example of the
fused result in a video with two alive subjects.

IV. EXPERIMENTS

A. Benchmark dataset
A benchmark dataset consisting of 40 video sequences has

been built to evaluate the proposed VPS method. The videos
are recorded by a regular RGB camera 1 in an uncompressed
data format, at a frame rate of 20 Hz, 768 × 576 pixels, 8
bit depth. During recordings, the subjects, staying in front of
the camera with skin visible, are illuminated by the constant
office light. In each video, 400 frames are used for evaluation
and thus 16000 frames are measured in total.

In order to assess the method’s robustness to realistic
challenges, our recordings simulate 10 different challenging
scenarios as described below (the bold number in bracket
denotes the number of frames simulated for this challenge):

• Skin-tone (2400) Six subjects with different skin-tones are
recorded, i.e., participants are from West Europe, East Asia,
Sub-Sahara Africa and India.

• Scale (2000) Subject has five distances to the camera during
recordings, i.e., 0.5 m, 1 m, 1.5 m, 3 m and 5 m.

• Motion (2000) Subject performs five basic types of head
motion during recordings, i.e., translation, rotation, scaling,
non-rigid talking and mixture of all motions.

• Position (1600) Subject has four different 2D positions (hori-
zontal and vertical) in videos, i.e., top, bottom, right and left.

• Posture (1200) Subject has three different postures in videos,
i.e., sitting, lying and standing.

• Occlusion (1200) Subject has different parts of face occluded
by non-human objects (e.g., book and cloth).

• Fake (2000) Non-human objects that could be falsely rec-
ognized as human are recorded together with subject, i.e.,
artificial face, luminance source with flickering frequency.

• Background (800) Subject is recorded in both the colorful-
clutter background and skin-similar background.

• Body-part (1600) Different body parts are recorded, i.e., both
the frontal and back sides of the palm and arm.

• Multi-subjects (1200) Different number of subjects are
recorded in the same video.

1The global shutter RGB CCD camera with type USB UI-2230SE-C of
IDS.

B. Evaluation metrics

Since the output of VPS is a binary human objectness
map, the Ground-Truth (GT) for each video is also a binary
video sequence containing non-rigid human RoI, which is
created by machine-assisted manual annotation (e.g., assisted
by object tracker and skin classifier). The performance of VPS
is measured from the following two aspects.

Overlap region The overlap region between the RoI ob-
tained by VPS and GT is defined as a ratio:

r =
Area(ROIGT ∩ ROIVPS)

Area(ROIGT ∪ ROIVPS)
∈ [0, 1] (20)

The precision of overlap region in a video is represented by
the success rate, i.e., the percentage of frames where r the
exceeds a threshold t ∈ [0, 1]. Consequently, we use the Area
Under Curve (AUC) of precision curve and the precision at
t = 0.5 to show the results.

Instant pulse-rate When the RoI obtained by VPS and GT
are well-aligned, the extracted pulse-signals should be very
similar. So we apply the Pearson correlation (e.g., r-value) and
Bland-Altman (e.g., 1.96σ)2 metrics to show the agreement
between VPS and GT on instant pulse-rate. The instant pulse-
rate, defined as the inverse of the peak-to-peak interval of
the pulse-signal, is derived by a peak detector in the time-
domain and smoothed by a 3-point mean filter. It can capture
the instantaneous change of the pulse and reflect the real-time
differences between two signals.

C. Compared methods

We compare the proposed VPS method to the most recent
FDR method [9], named the “Face Detection based on RPPG”.
Both methods are implemented by us in C++ using the
OpenCV 2.4 library [15] and ran on a laptop with an Intel
Core i7 processor (2.70 GHz) and 8 GB RAM. The parameters
in FDR are remained identical to [9], while the parameters in
VPS are empirically defined as: (1) 3 scales segmentation with
k = 16, 36 and 64 in Eq. 1; (2) T in Eq. 1 is 3; (3) L in Eq. 5
is 128; and (4) γ in Eq. 18 is 0.5. For fair comparison, all the
parameters are fixed without tuning when processing different
videos.

V. RESULTS AND DISCUSSION

A. Comparison per challenge

The experimental results obtained by VPS and FDR in 10
challenging categories are shown in Figure 7 and summarized
in Figure 8. In the “scale”, “posture” and “position” categories
where influences are from the subject spatial location, VPS
demonstrates the superior performance over FDR by achieving
the highest score in each evaluation, i.e., when t is set to
0.5 in comparing overlap regions, VPS obtains 98.8%, 99.1%
and 100.0% precision against FDR’s 26.7%, 6.0% and 7.5%.
It shows that FDR fails with videos where the subject has
variant spatial positions or postures, whereas the hierarchical
segmentation in VPS allows the subject to have different

2Coefficient of repeatability (1.96σ) is inverted to remain the interpretation
consistent with other metrics.
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Fig. 7. Results obtained by VPS and FDR in 10 challenge categories, which are measured by (1) success rate of overlap region; (2) Pearson correlation
of instant pulse-rate, where bold lines denote the regression coefficients; and (3) Bland-Altman agreement of instant pulse-rate, where bold lines denote the
coefficient of repeatability. (4) shows the spectrum amplitude of pulse extracted from both the subjects with different skin-tones and different body-parts in a
single subject.

distances to the camera, spatial positions or postures when
being recorded. In the “scale” category, we notice that the
longer distance between subject and camera actually increases
the uncertainty for detection, which is mainly due to the fact
that less skin reflections can be received by the remote camera.

In the “occlusion”, “fake” and “background” categories
where influences are from the natural environment, both
methods show favorable performance in the AUC of overlap
region precision. Since pulse-signal is the only feature used in
both methods, non-human objects showing no pulsatility (e.g.,
artificial face, occluded book and skin-similar background) can
be safely excluded. Although the color lamp in the “fake”
category also exhibits flickering frequencies, its color changes
do not align with the pulsatile direction in RGB space and
thus can be eliminated. In the instant pulse-rate evaluation,
VPS significantly outperforms FDR by showing strong corre-
lation and high agreement with ground-truth, i.e., in Pearson
correlation, VPS gains 0.89, 0.99 and 0.85 correctness against
FDR’s −0.43, 0.19 and 0.14. It shows that FDR almost has no
correlation with ground-truth signals. This can be explained
by the RoI’s temporal consistency: the variant shapes and
locations of RoI estimated by FDR in subsequent frames

leads to abrupt changes in the instant pulse-rate. This problem
has been solved in VPS by using the incremental subspace
updating.

The temporal consistency maintained by VPS shows ex-
traordinary benefits in the “motion” category, i.e., in Pearson
correlation, VPS achieves 0.75 correctness against FDR’s
−0.10. First, the voxel-based segmentation in VPS strengthens
the temporal coherence of space-time “tubes” for pulse extrac-
tion. Second, the hierarchical segmentation can quantize the
subject motions with different extent, i.e., vigorous body mo-
tion can be captured by voxels with lower resolutions. Third,
the incremental subspace updating in similarity factorization
rejects inconsistent motion-induced outliers. In comparison,
FDR completely fails with the subject with even slight body
motions. However, a limiting factor for voxel-based motion
tracking could be the “subject size”. For example, if a subject
is too far away from the camera (e.g., 10 meters) and moving
in high speed, the segmentations in all scales cannot quantize
such motion and thus not voxel can track this subject. In this
case, a higher resolution camera is preferred.

Besides, it has to be noted that VPS works properly when
the pulse-rate of a subject is changed during the monitor-
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Fig. 9. The snapshot of detected alive subject RoI in benchmark videos using the proposed VPS method (red non-rigid contours) and FDR method (yellow
rigid grids). The red ID number denotes the subjects’ identity found by VPS.

ing (e.g., while doing gymnastic exercises). This is because
humans only have one cardiovascular system. Therefore the
pulse-rate changes simultaneously in all skin-regions of one
subject. Since VPS is essentially based on pulse similarities,
skin-regions showing similar pulses at a certain moment are
mutually connected in the similarity matrix, i.e., it does
not matter how pulses are changed, once they are changed
together.

“Skin-tone” and “body-part” are the two most challenging
categories where both methods show declined performance
compared to other categories. This is due to the fundamental
physiological limitations in color-based rPPG: (1) dark skin
has higher melanin contents than bright skin. The higher
spectral absorption of melanin contents in dark skin limits the
amount of light entering the deeper skin layer with pulsatile
blood vessels; (2) the skin tissue in different body parts show
different portions of pulsatile blood volume, which is mainly
due to the difference in skin composition, i.e., the skin-regions
with more fat are more difficult to be detected. As a proof,
we show the pulse frequency spectrums measured from the
subjects with different skin-tones and also the different body-
parts of a single subject in Figure 7 (4): it is apparent that the
spectrum of dark skin and arm are more noisy. In Figure 9,
we also notice that the palm is easier to be detected than the
arm, and only the skin-regions close to the wrist in an arm
can be found with pulse. Although both methods suffer from
performance degradation in these two categories, VPS is still
clearly much better. Especially for subjects with dark skin,
the similarity-based measurement in VPS effectively boosts
the voxels containing weak pulse-signals while suppressing
the noisy ones.

In the “multi-subjects” category, VPS again obtains superior
results in comparison, i.e., in Pearson correlation, it improves
FDR’s 0.36 correctness to 0.91. Although FDR can roughly
find multiple subjects via thresholding the grids with higher
spectrum energy, it only finds the regions with living beings
instead of identifying them. In contrast, our VPS method,
factorizing the different similarities of pulse-features into
independent directions, can identify/separate different subjects
with even similar pulse-rates, i.e., subtle phase shift in two
pulse-signals can be revealed by inner product metric in VPS.
Figure 9 shows an example of identified subjects in videos
with multiple living beings. Obviously, our VPS method
cannot distinguish two individuals if their pulse would have
exactly the frequency and phase.

TABLE I
ANOVA FOR OVERALL BENCHMARK DATASET. BOLD ENTRIES INDICATE

THE EVALUATION METRIC WITH ρ-VALUE SMALLER THAN 0.05.

Evaluation metric MS-within MS-between ρ-value
Precision (AUC) 0.0078 0.4663 4.2139e−7

Precision (t=0.5) 0.0406 2.0804 1.1536e−6

Correlation 0.0545 2.6032 1.8420e−6

Bland-Altman 0.0227 0.3706 0.0008

B. Overall comparison

To understand the significance of difference between VPS
and FDR, we apply the balanced oneway Analysis of Variance
(ANOVA) to analyze the results obtained by each evaluation
metric. In ANOVA, the p-value is used for interpretation and a
common threshold 0.05 is specified to determine whether the
difference is significant, i.e., if p-value < 0.05, the difference
is significant.

Table I shows the ANOVA results of each evaluation metric
in the complete benchmark dataset, from which we conclude
that VPS is significantly different from FDR in all round
evaluations, i.e., p-values are all much smaller than 0.05. This
implies that the improvement from FDR to VPS is substantial.
Additionally, the overall comparison in Figure 10 shows that
VPS significantly outperforms FDR in all evaluations and
achieves the state-of-the-art performance, i.e., on average, the
percentage of improvements obtained by VPS are respectively
the 82.2%, 265.7%, 595.5% and 542.2% on precision (AUC),
precision (t=0.5), correlation and Bland-Altman.

In addition, we would like to stress the practical functions
of VPS in real use-cases. As can be seen, the key idea
of VPS is the use of physiological signals (e.g., pulse) in
detecting human beings, which is conceptually different from
conventional subject detection methods that rely on physical
appearance. The proposed method can directly lead to further
advances in rPPG: it can substitute the commonly used Viola-
Jones face detector or skin classifier in existing rPPG methods
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metrics using ANOVA, which shows the comparison of median (red bar),
standard deviation (blue box), minimum and maximum (black bar) values.
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[3], [8]. The benefits are two-fold: (1) the accurate skin-region
localization (e.g., non-rigid RoI) could improve the quality
of the extracted rPPG-signal, since only the living skin-pixels
showing pulsatility are detected, tracked and finally measured;
and (2) the continuous pulsatile-region detection avoids drift
of an object tracker during long-term tracking.

VI. CONCLUSION

In this study, we have presented a novel method for alive
subject detection using rPPG. In essence, our method creates
hierarchical voxels for parallel pulse extraction, builds a sparse
similarity matrix based on pulse characters, and incrementally
factorizes it for finding the living skin-tissues of alive subjects.
Experiments show the superior performance of our method
in comparison with a state-of-the-art method. On average,
our method improves 82.2% on the precision of skin-region
detection; and 595.5% and 542.2% on the Pearson correlation
and Bland-Altman of instant pulse-rate. Besides, ANOVA
shows that in all-round evaluations, the improvements obtained
by our method are significant, i.e., all p-values < 0.05. It
has been proved that only using pulse-features can robustly
detect real human being in videos without supervised training.
The superior robustness of the proposed method demonstrates
it to be the first approach that successfully uses the pulse-
signal to detect real human being in realistic scenarios. The
proposed method is very valuable for camera-based healthcare
monitoring systems that require automatic alive subject or
living skin-tissue detection.
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