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Motion robust remote-PPG in infrared
Mark van Gastel, Sander Stuijk and Gerard de Haan

Abstract—Current state-of-the-art remote PPG (rPPG) algo-
rithms are capable of extracting a clean pulse-signal in ambient
light conditions using a regular color camera, even when subjects
move significantly. In this study, we investigate the feasibility of
rPPG in the (near)-infrared spectrum, which broadens the scope
of applications for rPPG. Two camera setups are investigated,
one setup consisting of three monochrome cameras with different
optical filters, and one setup consisting of a single RGB camera
with a visible light blocking filter. Simulation results predict the
monochrome setup to be more motion robust, but this simulation
neglects parallax. To verify this, a challenging benchmark dataset
consisting of 30 videos is created with various motion scenarios
and skin-tones. Experiments show that both camera setups are
capable of accurate pulse-extraction in all motion scenarios, with
an average SNR of +6.45 and +7.26 dB respectively. The single
camera setup proves to be superior in scenarios involving scaling,
likely due to parallax of the multi-camera setup. To further
improve motion robustness of the RGB camera, dedicated LED-
illumination with two distinct wavelengths is proposed and veri-
fied. This paper demonstrates that accurate rPPG measurements
in infrared are feasible, even with severe subject motion.

Index Terms—Infrared, remote photoplethysmography, vital
signs monitoring

I. INTRODUCTION

THE (cardiac) pulse-signal is one of the most important
physiological signals used by medical professionals for

the diagnosis and tracking of the patient’s medical condition.
Photoplethysmography (PPG) is a low-cost optical technique
for detecting arterial pulsations non-invasively. The technique
was first described by Hertzman [1] in the 1930s. PPG is
based on the principle that blood volume changes vary the
optical density of the skin over a vascular region, because
of the differences in light absorbtion between blood and the
surrounding tissue. Nowadays, PPG is applied ubiquitously in
hospital settings, where a contact sensor is typically attached
to a finger/toe/ear, or patched to the skin [2]. The contact
sensor comprises a light source emitting light to the skin
surface, and a photo-detector capturing the light reflected
or transmitted from/through the skin. The PPG waveform
consists of a pulsatile component, superimposed on a slowly
varying component. The pulsatile component shows changes
in the blood volume that occur between the systolic and
diastolic phases of the cardiac cycle. The slowly varying
component of the PPG waveform corresponds to the detected
transmitted or reflected optical signal from the tissue, and
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depends on the structure of the tissue and the average blood
volume of both arterial and venous blood.

Over the last decade, it has been shown that blood volume
variations can also be measured at a distance, leading to
remote PPG (rPPG). This is highly attractive for cases
where direct contact with the skin has to be prevented (e.g.
neonates, subjects with skin-damage) or unobtrusiveness
is desired (e.g. surveillance, fitness). Humphreys et al. [3]
was able to successfully extract the PPG signal with a
monochrome CMOS camera placed at 40 cm from the finger,
and a LED with a wavelength of 800 nm as illumination.
Verkruysse et al. [4] proved the feasibility of rPPG under
ambient light conditions using a regular color camera. They
observed that the green color channel features the strongest
plethysmographic signal, corresponding to an absorption peak
of oxy-hemoglobin.

More recently, rPPG methods using multiple wavelengths
have been proposed [5]–[7]. The motivation is to improve
the robustness to subject motion, which is the main concern
with (r)PPG. With a single wavelength, no distinction
between pulse-induced intensity variations and variations
caused by motion exist. Multiple channels with different
mixtures of the pulse-induced intensity variations allows
to distinguish between both. Hülsbusch separated the noise
and the PPG signal into two independent signals built as a
linear combination of the DC-normalized red and green color
channel [8]. The energy in the pulse-signal was minimized
as an optimization criterion. Poh et al. [6] and Lewandowska
et al. [7] proposed to construct the pulse-signal as a linear
combination of all three normalized color channels. To
find this linear combination, they employed blind-source-
separation (BSS) techniques, ICA and PCA respectively. Since
it is a priori unknown which of the components comprises
the pulse-signal, the periodic nature of the pulse-signal is
used for component selection in both methods. However, this
heuristic selection criterion fails when strong periodic subject
movements are present, e.g. in a fitness setting.

De Haan et al. [9] eliminated the component selection
criterion by constructing a linear combination of the color
channels orthogonal to the main distortions: intensity-variation
and specular reflection, assuming a standardized normalized
skin-color. This chrominance-based method outperforms the
BSS methods for videos recorded in a gym with subjects
exercising with vigorous motion.

Instead of making assumptions about the distortions and
skin-tone or the periodicity of the pulse-signal, De Haan et al.
[10] proposed to use the unique signature of the blood volume
pulse to extract the pulse-signal. This ‘signature’ is derived
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from physiology and optics, and used to create a method, the
“PBV-method”, to extract the pulse-signal. Essentially, the
PBV-method suppresses all variations not aligned with the
signature of the blood volume pulse. Experimental results
show a large improvement in motion robustness compared to
earlier methods, and we therefore recognize the PBV-method
as the current state-of-the-art method for motion robust
remote pulse-extraction.

In this paper, we aim at further extending the application
range of the PBV-method by investigation the feasibility of
motion-robust rPPG in the near-infrared (NIR) part of the
light spectrum, enabling us to extract the pulse-signal in full
darkness. This is not trivial since the relative PPG amplitude
is significantly reduced in NIR compared to visible light.
Because also the spectral response of the camera has decreased
in NIR, safety regulations regarding the maximum radiation
levels of the illuminant have to be observed to not cause any
risk to the subject, e.g. eye damage.

First, the optimal wavelengths for motion-robust rPPG in
NIR are investigated, using three monochrome cameras with
different optical filters. Predictions for the blood volume pulse
vector are made, which are consequently verified by large scale
experiments. Next, the feasibility of using a single camera
in NIR is investigated, by replacing the IR blocking filter
of a regular RGB camera with a visible light blocking filter.
To further improve motion robustness, spectrally optimized
LED-illumination is proposed and experimentally verified.
In Section II-D the framework of the pulse-extraction algo-
rithm is presented. The proposed methods are evaluated on a
challenging dataset consisting of 30 videos of subjects with
different skin-tones which perform various motion scenarios,
as described in Section II-E. The results are presented in
Section III, with a discussion on the results in Section IV.
Finally, in Section V, our main conclusions are drawn.

II. MATERIALS AND METHODS

To investigate the feasibility of robust rPPG in IR, current
state-of-the-art algorithms in visible light are employed, which
are adapted for operating in IR. A modified version of the
framework of Wang et al. [11] with multiple parallel rPPG
sensors, is combined with the PBV pulse-extraction method
of De Haan et al. [10]. The next subsection provides a more
detailed description of the PBV-method to clarify the design
considerations and simulations in the subsequent subsections.

A. PBV method

De Haan et al. showed that the minute optical absorbtion
changes caused by blood volume variations in the skin occur
along a very specific vector in a normalized RGB-space [10].
This unique blood volume ‘signature’ enables robust rPPG
pulse-extraction that minimizes the contribution to the pulse-
signal of color variations with other signatures. Compared to
the motion robust chrominance-based pulse-extraction method
by De Haan et al. [9], no assumptions about the distortion
signals have to be made. Instead, the known ratios of the
relative PPG amplitudes in the normalized color channels, ~Pbv,

are employed to discriminate between the pulse-signal and
distortions. The relative PPG amplitudes in the normalized
color channels are defined as: σ(~C(i)n), where i ∈ {R,G,B}
and σ denotes the standard deviation. The color channels are
normalized by: ~C(i)n = 1

µ(~C(i))
~C(i) − 1, where µ corresponds

to the (temporal) mean value. More details about why the
pulse vector is known, are provided in the continuation of this
subsection.

We assume that the pulse-signal ~S can be constructed as a
linear combination of the three normalized color channels:

~S = ~WCN, (1)

where ~W , dimensions 3 x 3, is the weighting matrix with
~W ~WT = 1, and CN has dimensions 3 x N, where N indicates
the number of samples in the time-window.

Since the ratios of the relative PPG amplitudes in the color
channels of the camera are known, the aim is to find the
weights, ~W , that construct the pulse-signal ~S, for which the
correlation with the normalized color channels equals ~Pbv:

~SCT
N = k ~Pbv ⇔ ~WPBVCNC

T
N = k ~Pbv, (2)

and therefore the weights ~WPBV can be calculated using:

~WPBV = k ~PbvQ
−1 with Q = CNC

T
N , (3)

where scalar k is chosen to assure that ~WPBV has unit length.
To employ the PBV-method and extract the pulse-signal,
the ratios of the relative PPG amplitudes of the normalized
channels compiled in the normalized blood volume pulse
vector ~Pbv have to be known.

Let us summarize the prediction of the pulse vec-
tor from physiology and optics following [10]. The rel-
ative PPG amplitude as function of the wavelength λ,
σ(PPG(λ))/µ(PPG(λ)), has been modeled by Hülsbusch
[8]. Corral [12] measured the absolute PPG spectrum,
σ(PPG(λ)), using a tungsten-halogen lamp as illumination
which emits radiation in the visible and NIR section of the
light spectrum. The relative PPG (RPPG) can be related to
the absolute PPG by:

PPG(λ) = ρs(λ)Ih(λ)RPPG(λ), (4)

since the light-source and the skin determine the baseline
component of the absolute PPG spectrum. Here ρs(λ) and
Ih(λ) represent the skin reflectance spectrum and the emission
spectrum of the tungsten-halogen illumination, respectively.
The PPG spectra of Hülsbusch and Corral are displayed in
Figure 1, the skin reflectance spectra and the light spectra in
Figure 2. The ratios of the relative PPG amplitudes in the
three channels of a camera, described by the blood volume
pulse vector ~Pbv, can be predicted by:

~Pbv =



∫ 1000
λ=400

HC1(λ)
I(λ)
Ih(λ)

PPG(λ)dλ∫ 1000
λ=400

HC1(λ)
I(λ)
Ih(λ)

ρs(λ)dλ∫ 1000
λ=400

HC2(λ)
I(λ)
Ih(λ)

PPG(λ)dλ∫ 1000
λ=400

HC2(λ)
I(λ)
Ih(λ)

ρs(λ)dλ∫ 1000
λ=400

HC3(λ)
I(λ)
Ih(λ)

PPG(λ)dλ∫ 1000
λ=400

HC3(λ)
I(λ)
Ih(λ)

ρs(λ)dλ

 . (5)
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Fig. 1: a) The modeled relative PPG spectrum by Hülsbusch [8] and the derived absolute PPG spectrum, b) The measured absolute PPG
spectrum of Corral [12] and the derived relative PPG spectrum. All spectra have been scaled to 1 for their peak locations.

Here HC1,C2,C3 are the responses of the three channels
respectively and I(λ) is the spectrum of the illuminant.

Kanzawa et al. [13] measured the skin reflectance of 50
subjects in the visible and NIR section of the light spectrum.
The subjects in [13] have different skin-melanin concentrations
and their skin-color is classified into three categories; “bright”,
“mongoloid” and “dark”, which we have interpreted as skin-
types II, III and V, according to Fitzpatricks scale [14], and we
shall use this interpretation in the continuation of this paper.

Since motion affects all color channels equally under uni-
form white illumination, the normalized vector describing the
motion induced color variations is: [0.58, 0.58, 0.58], further
referred to as ‘motion vector’ (not to be confused with a vector
describing displacement). For motion robustness, the inner-
product between this motion vector and the pulse vector ~Pbv
should be small to be able to discriminate between signals
in the direction of the pulse vector and signals which have a
different orientation.

Predictions of the pulse vector in visible light with an
RGB camera performed by De Haan [10], showed that the
PPG amplitude spectrum of Hülsbusch provides more accurate
predictions compared to Corral’s spectrum. The simulated
pulse vector using Hülsbusch’s deviated only 4◦ from the mea-
surements, while simulations using Corral’s curve were 7◦ off.
We repeat the predictions in NIR with both spectra for the two
camera setups, which are later compared to the measured pulse
vectors to verify which spectrum provides the most accurate
predictions. This PPG spectrum is subsequently employed for
the simulations of the dedicated LED-illumination described
in Section II-C.

400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

S
ki

n 
R

ef
le

ct
an

ce

 

 

Skin−category I
Skin−category II
Skin−category III

(a) Skin Reflectance

400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
el

at
iv

e 
T

ra
ns

m
itt

an
ce

 

 

Quartz Halogen
Incandescent Light

(b) Light Spectra

Fig. 2: a) Skin reflectance spectra of three skin-categories measured
by Kanzawa [13], b) Transmittance spectra of a tungsten halogen
lamp and the incandescent light bulbs in the experimental setup.

In order to compare the predicted results with the measured
pulse vectors, a large dataset comprising recordings of 40 par-
ticipants with skin-pigmentation concentration levels ranging
from 45 to 600 (on a scale of values from 0-999), is created.
The participants are asked to sit still with their head fixed
by a head-rest to prevent motion affecting our measurements.
Informed consent is obtained for each participant prior to
the recordings. After recording, a rectangular bounding-box
is manually annotated and tracked by the CSK algorithm of
Henriques et al. [15]. The spatial means of all pixels within
the ROI are calculated for every frame. By concatenating
these values, traces for every camera channel in the setup are
constructed.

To acquire ~Pbv, the ratios of the relative PPG amplitudes
in the channels have to be measured. First, the traces of the
camera channels are mean-centered normalized within a time-
window by:

~C(i)n =
1

µ(~C(i))
~C(i) − 1, for i = 1,2,3, (6)

where the vectors have length 64 and µ(~C(i)) corresponds
to the (temporal) mean of the vector. Next, the normalized
channel traces are band-pass filtered, [0.6-3] Hz, to eliminate
noise. A pulse-signal is constructed by performing PCA on the
filtered channel traces, where potential involuntary motion and
noise present in the traces are separated from the pulse-signal.
By using an overlap-add procedure with a Hanning window on
the time-windowed traces of 64 samples, traces for the entire
recording time of 120 seconds are constructed. Finally, ~Pbv is
obtained after normalization of the inner-products between the
constructed pulse-signal and the three channels.

B. Monochrome Cameras

By employing appropriate optical filters, desired light wave-
lengths can be exposed to the sensor of a monochrome camera
where other wavelengths are blocked. Since the goal is to
attain motion robustness, filters have to be selected such
that the inner-product between ~Pbv and the motion vector is
minimal. This criterion is analogous to maximizing the angle
between both vectors, with a maximum of 90◦ correspond-
ing to an inner-product of zero. To determine which filter



TBME-01367-2014.R1 4

400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

R
el

at
iv

e 
R

es
po

ns
e

 

 

Spectral sensitivity
Filter 800nm
Filter 675nm
Filter 842nm

Fig. 3: Spectral response of the monochrome CCD camera, type
Marlin F046B, with the filter characteristics of the three applied
optical filters of Semrock Inc.

TABLE I: Pulse vector simulations for the setup with the three
monochrome cameras.

Hülsbusch
Skin-type PBV800 PBV675 PBV842 Angle (degrees)
II 0.69 0.57 0.44 10.1
III 0.69 0.57 0.44 10.1
V 0.69 0.57 0.44 10.2
Average 0.69 0.57 0.44 10.1

Corral
Skin-type PBV800 PBV675 PBV842 Angle (degrees)
II 0.55 0.30 0.78 20.2
III 0.55 0.31 0.78 19.3
V 0.55 0.33 0.77 17.8
Average 0.55 0.31 0.78 19.1

combination provides the best motion robustness, simulations
with all possible filter combinations are performed, assuming
a pass-band of 50 nm for all three filters. The simulation
results show that an angle of more than 23◦ between ~Pbv
and the motion vector can be achieved when a combination
of filters with center wavelengths of 670, 750 and 830 nm
is employed. Limited by the available optical filters in the
laboratory, our best approximation lead us to use filters with
center wavelengths of 675, 800 and 842 nm, as illustrated in
Figure 3.

As described in the previous subsection, the blood volume
pulse vector ~Pbv can be predicted by Equation (5), where
HC(1,2,3)(λ) is here corresponding to the product of the
spectral response of the camera and the response of the applied
optical filter. In Table I, the predicted pulse vectors for the
monochrome cameras are displayed together with the angles
between the pulse and motion vectors, assuming incandescent
illumination.

An overview of the measured pulse vectors for the setup
with the monochrome cameras is displayed in Figure 4. The
results show that pulse vectors are quite stable over the
entire range of skin pigmentation levels. This was also to
be expected, because the skin reflectance spectrum is largely
uniform in the NIR section of the light spectrum [13].
The average pulse vector for the three monochrome cameras
with optical filters of 800, 675 and 842 nm respectively, is:

~Pbv =
[
0.61, 0.29, 0.74

]
, (7)

which has an angle of 19.0◦ with respect to the motion vector.
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Fig. 4: Pulse vector estimation for the three monochrome cameras in
NIR.

It can be seen that Corral’s PPG spectrum provides a more
accurate prediction of the blood volume pulse vector compared
to Hülsbusch’s PPG spectrum. Pulse vector simulations using
Corral’s curve are 4◦ off, while simulations using Hülsbusch’s
curve are 24◦ off when compared to the measured pulse
vector (7). This large discrepancy may be caused by Hülsbusch
focussing primarily on visible wavelengths by modelling the
PPG spectrum, while Corral et al. actually measured the PPG
amplitude for wavelengths up-to 980 nm.

C. RGB Camera

An RGB camera samples the visible light spectrum [400-
700] nm, using a Bayer pattern to achieve color selectivity
[16]. Wavelengths longer than 700 nm are blocked by an
IR-blocking filter. As explored by De Haan et al. [10], the
blood volume pulse vector for an RGB camera has an angle
of approximately 19◦ with respect to the motion vector in
visible light.

Since the sensor of an RGB camera is sensitive for wave-
lengths in IR, typically up-to 1000 nm, rPPG with a color
camera seems possible also in NIR. The most obvious pos-
sibility to apply it in IR, is to replace the Bayer color field
array (CFA) for a CFA which samples the light spectrum for
wavelengths in NIR, [700-1000] nm. However, this operation
is rather expensive and difficult to realise.

We considered it more interesting to just use a regular RGB
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Fig. 5: Measured spectral response of the Marlin F046C CCD color
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attached to the camera.
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TABLE II: Pulse vector simulations for the setup with the RGB
camera.

Hülsbusch
Skin-type PBVR PBVG PBVB Angle (degrees)
II 0.62 0.50 0.61 5.2
III 0.62 0.50 0.61 5.2
V 0.62 0.50 0.61 5.3
Average 0.62 0.50 0.61 5.2

Corral
Skin-type PBVR PBVG PBVB Angle (degrees)
II 0.38 0.67 0.63 12.8
III 0.40 0.67 0.63 12.1
V 0.41 0.66 0.63 11.0
Average 0.40 0.67 0.63 11.9

camera with a visible light blocking filter replacing the IR
blocking filter. Although not clearly specified in most camera
specifications, the color channels of an RGB camera have
responses for NIR wavelengths. However, it is ambiguous how
auspicious the blood volume vector for this configuration is in
terms of motion robustness. To predict the performance of an
RGB camera in IR, the spectral response of the RGB camera
in the wavelength range from 400 to 900 nm is measured
using the Lambda 800 photospectrometer from PerkinElmer R©,
with a spectral resolution of 10 nm. The spectral response of
the Marlin F046C CCD camera of Allied Vision Technologies
GmbH is visualized in Figure 5.

As described in subsection II-A, the blood volume
pulse vector ~Pbv can be predicted by Equation (5), where
HC(1,2,3)(λ) is here corresponding to the product of the
spectral response of the camera color channel and the response
of the applied visible light blocking filter. In Table II, the
predicted pulse vectors for the RGB camera are displayed.

An overview of the measured pulse vectors for the RGB
camera is displayed in Figure 6. Similar to the results with
the monochrome cameras, the pulse vector is quite stable over
the entire range of skin-pigmentation levels.
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Fig. 6: Pulse vector estimation for RGB camera in NIR.

The average pulse vector for the RGB camera is:

~Pbv =
[
0.39, 0.70, 0.60

]
, (8)

which has an angle of 12.7◦ with respect to the motion vector.
Similar to the monochrome cameras setup, Corral’s curve

provides the most accurate simulation results. For the RGB

camera, predictions using Corral’s curve are 2◦ off, where
predictions using Hülsbusch’s curve are 17◦ off.

Hardware Improvements

Since the pulse vector is influenced by the light spectrum, it
may be possible to improve motion robustness by selecting
a specific light spectrum. This can be achieved by employing
dedicated LEDs, whose emission spectra are more bandlimited
compared to incandescent light bulbs. To verify which combi-
nation of LEDs yields the best motion robustness, simulations
are performed for all wavelengths passed by the visible light
blocking filter.

The results of simulations for the RGB camera are visu-
alized in Figure 7. Here, the center wavelengths are on the
horizontal axis, and the power ratio between the LEDs are
on the vertical axis. For the simulations, the absolute PPG
spectrum of Corral et al. is employed. The emission spectra
of the LEDs are modeled by a Gaussian distribution function.
Simulation results show that the angle between the pulse and
the motion vector can be increased from 12.7◦ (obtained with
incandescent light) to more than 18◦. As can be observed
from the simulations, a combination of LEDs with center
wavelengths of 660 and 940 nm results in this favorable
pulse vector. To verify that the simulated pulse vector is
corresponding with the actual pulse vector, a LED illumination
unit with the optimal wavelength combination is constructed,
which is described in Section II-E. For fair comparison, the
~Pbv prediction is repeated with the actual emission spectra of
the LEDs in the illumination unit, instead of the model used to
determine the optimal wavelength combination. The predicted
pulse vector has an angle of 18◦, close to the measured pulse
vector which has an angle of more than 17◦.

As the optimal LED combination requires a 660 nm LED,
the illumination is still visible for the human eye. In order to
demonstrate the capability of the RGB camera in full darkness,
λ>700 nm, the 660 nm LED is replaced by a LED with
a center wavelength of 760 nm. Again, predictions for the
pulse vector with the actual emission spectra of the LEDs

Fig. 7: Simulations RGB camera using dedicated LEDs. By selecting
LEDs with center wavelengths of 660 and 940 nm, an angle of more
than 18 degrees with respect to the motion vector can be achieved,
an improvement of more than 5 degrees compared to incandescent
light.
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are performed, which show an angle of more than 13◦ with
respect to the motion vector, similar to incandescent light.
The predicted pulse vector is validated by the measured pulse
vector obtained from recordings, which shows a deviation of
less than 1◦. These results confirm the idea that by selecting
specific light spectra with LEDs, enhanced motion robustness
for an RGB camera can be achieved and a considerable angle
is achievable even in full darkness.

D. System Framework

Let us now introduce the system framework, visualized
in Figure 8. The framework is a modified version of the
framework proposed by Wang et al. [11]. In this paper, we
will address the differences between our framework and the
framework proposed by [11].

Image Registration: When multiple cameras are employed
to capture the scene, image registration is required to align
the frames of the cameras. In order to register the three
monochrome channels, a 2D affine transformation involving
translation, rotation, scaling and shearing is employed. The
transformation matrix, M, is determined based on the first
100 frames of the recording and applied to the entire duration
of the recording. This transformation can be written as:

p′ = Mp⇔

x′y′
1

 =

a b tx
c d ty
0 0 1

xy
1

 , (9)

where
[
x
y

]
are the original pixels locations, and

[
x′

y′

]
are the

pixel locations after the 2D affine transformation. The ele-
ments (tx, ty) in the transformation matrix indicate translation,
and (a, b, c, d) indicate the product of rotation, scaling and
shearing operations.

Skin Classification: Skin classification is performed with an
one-class SVM classifier. Instead of using the intensity nor-
malized RGB and YCrCb as feature descriptors as proposed
by Wang et al. [11], the plain pixel values of the three channels
are adopted as feature description since they yield better results
in NIR.

Pulse Extraction: After skin classification, pulse-extraction
is performed for each of the multiple signals using the PBV-
method of De Haan et al. [10]. This method requires a
blood volume pulse vector, ~Pbv, which is obtained from the
large scale experiments as described earlier. Wang et al. [11]
employed the chrominance-based method [9] instead of the
PBV method for their experiments in visible light conditions.

E. Experiments

In this section the performed experiments are described,
together with a description of the adopted evaluation metrics
and details about the implementation of the algorithm.

1) Experimental Setup: A schematic representation of the
experimental setup is visualized in Figure 9. Participants
are asked to sit on a chair, looking into the cameras in
front of them, which are placed at a distance of 2.5 meters

from the head. The four cameras, three monochrome and
one RGB, record the scene simultaneously and their data
is transmitted over a FireWire connection to an acquisition
PC with LabView, where uncompressed video-data is stored.
The three monochrome cameras in the setup are the Marlin
F046B and the color camera is the Marlin F046C, all of
Allied Vision Technologies GmbH. All cameras have 25 mm
lenses, a frame rate of 15 fps, a resolution of 640x480 pixels
and 8 bits depth. Before recording, the cameras are focussed
and manually aligned. For reference, a Philips IntelliVue X2
patient monitor with pulse oximetry finger probe is attached
to the subject, where the reference pulse-signal is transmitted
to the connected acquisition PC.

Two light units consisting of incandescent light bulbs with
diffusers are placed at both sides of the chair at a distance of
1 meter. For the experiments with dedicated LEDs, the units
are placed at a distance of 60 cm. A diffuser is placed at
a distance of 2 cm from the LEDs to attain a homogeneous
light spectrum. We verified with a radiometer (type: LT1700
of International Light Technologies) that even at maximum
intensity the LED units remain a factor of 20 below the
irradiance safety limit in NIR.

2) Benchmark Dataset: To the best of our knowledge,
no dataset of rPPG recordings with ground truth data is
available. Therefore, we created our own benchmark dataset
with incandescent illumination to compare both camera se-
tups. Incandescent light is employed to prevent that potential
inhomogeneities in the light spectrum influence the results.
The 6 participants in the videos range in age between 22 and
30 years. The study is approved by the Internal Committee
Biomedical Experiments of Philips Research, and the informed
consent is obtained from each subject. The melanin content
of the skin is measured with a skin pigmentation analyzer
(model: Mexameter R© MX 18 MDD of Khazaka electronic
GmbH), with the measurement-probe located at the backside
of the fore-arm. The melanin indices are loosely linked to three
skin-types (II,III,V), according to the Fitzpatrick scale [14]. A
reference sensor is attached to a finger of the participant and
connected to the acquisition PC.

To evaluate the motion robustness of the algorithm, five
different motion scenarios are performed by the subjects:
stationary, translation, rotation, scaling and mixed. For the
stationary scenario, the head of the subject is fixed in a
head rest and he/she is asked to remain stationary during
the recording. The translation motion scenario consists of
repetitive horizontal and vertical head translations, where
repetitive horizontal and vertical head rotations are performed
for the rotation motion scenario. The scaling motion scenario
consists of repetitive head movements to and from the cameras,
where in the mixed motion scenario all previously described
motions are executed randomly. The length of each recording
is 120 seconds, where the recording starts 1 minute after the
participant entered the setup to ensure a stable heart rate.

3) Evaluation Metrics: This study adopts the performance
metrics used in [9], SNR and PERC. For a detailed description
of both metrics, we refer to [9]. Additionally, the corre-
spondence between the pulse-rate extracted from the rPPG
pulse-signal and the pulse-rate extracted from the reference
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Fig. 8: System framework for motion robust pulse-extraction in NIR. Image registration is only required for the multi-camera setup.

sensor is evaluated. The discrepancy is expressed in the mean-
absolute-error (MAE) and the root-mean-squared-error metrics
(RMSE):

MAE =
1

N

N∑
i=1

|PR(i)− PRref (i)|, (10)

RMSE =

√√√√ 1

N

N∑
i=1

(PR(i)− PRref (i))2, (11)

where PR and PRref are obtained by using a peak-detector
in the frequency domain using a sliding Fourier window. All
four metrics use a window of 150 samples (10 seconds) to
allow for a varying pulse-rate.

Furthermore, correlation and Bland-Altman plots are in-
cluded to show the agreements of the instantaneous pulse-
rate between the rPPG and reference PPG-sensor. Finally,
Analysis of Variance (ANOVA) is applied on SNRa (average
SNR) values to analyse the significance of difference between
methods under certain categories (i.e. camera setups and skin-
types).

Fig. 9: Schematic overview of the experimental setup. The subjects
are seated on an adjustable chair. Four cameras, three monochrome
and one color, capture the scene simultaneously and transmit their
data to the acquisition PC over FireWire, where video-data is
stored uncompressed. For the experiments with incandescent light,
illumination units are placed at a distance of 1 meter, where for the
experiments with LED illumination the illumination units are placed
at a distance of 60 cm. A reference pulse-signal is acquired by the
pulse oximetry finger probe, which is connected to a patient monitor.

4) Implementation: The proposed algorithm is imple-
mented in Java using the OpenCV 2.4.8 library and executed
on a laptop with a Intel Core i5 2.60 Ghz processor and 8
GB RAM. In the first frame, a rectangular ROI indicating the
face is initialized manually. For fair comparison, all system
parameters are identical for the evaluation of the entire dataset.
The values of the evaluation metrics are calculated offline
using Matlab.

III. RESULTS

The results of the two camera setups gained on the bench-
mark video sequences are summarised in Table III. The cor-
relation and Bland-Altman plots of both setups are displayed
in Figure 10. Plots of the performed one-way ANOVA are
visualized in Figure 11. As observed by Wang et al. [11] and
confirmed by the results of this dataset, gender is not the key
factor which needs to be investigated in the dataset, since the
differences between male and female from the same skin-type
are rather small. Therefore, the results are averaged over both
genders.

A. Stationary scenario

The results show that both camera setups perform similar in
scenarios without subject motion. Although a slightly higher
SNRa is achieved by the monochrome cameras, 11.2 dB versus
10.1 dB for the RGB camera, the differences between the
extracted pulse rates and corresponding metrics are negligible.
The correct pulse rate is extracted for almost 99.8 percent of
the duration of the recordings.

B. Motion scenarios

In videos with head motions, both camera setups perform
worse compared to the scenario without head motion. How-
ever, even for the most challenging mixed motion scenario,
worst-case, PERC is still 63%, with an SNRa of 2.3 dB. In
general, the RGB camera performs better in motion scenarios,
where the difference is most prominent in scenarios involving
scaling. Overall, no significant difference, p-value = 0.32 (>
0.05), in performance is observed between both camera setups.

C. Differences between skin-types

For both camera setups, no significant difference, p-value =
0.17 (> 0.05), in performance is observed between the three
skin-types.
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TABLE III: Results for both camera setups gained on benchmark video sequences (averaged over genders).

Monochrome Cameras RGB Camera
Video SNRa (dB) PERC (%) MAE (BPM) RMSE (BPM) SNRa (dB) PERC (%) MAE (BPM) RMSE (BPM)
Skin-type II Stationary 11.8 100 0.22 0.68 9.38 100 0.26 0.69
Skin-type II Translation 6.77 94.0 1.00 2.05 9.17 93.9 0.71 1.72
Skin-type II Rotation 3.89 78.1 1.71 2.82 4.31 75.7 2.22 3.86
Skin-type II Scaling 3.48 73.7 3.22 5.00 4.79 81.6 1.82 3.24
Skin-type II Mixed 2.27 63.1 3.08 4.52 2.25 67.7 2.66 4.13
Skin-type III Stationary 10.4 99.3 0.52 1.43 9.72 99.3 0.53 1.18
Skin-type III Translation 6.46 86.6 1.83 2.53 7.87 89.4 1.23 1.83
Skin-type III Rotation 5.29 87.3 1.68 2.58 7.96 92.3 1.62 2.43
Skin-type III Scaling 5.03 84.9 1.33 2.52 6.87 88.0 1.24 2.23
Skin-type III Mixed 5.81 84.6 2.05 2.73 5.97 82.4 1.62 2.77
Skin-type V Stationary 11.4 100 0.19 0.52 11.1 100 0.21 0.53
Skin-type V Translation 8.03 96.8 0.47 1.02 9.01 95.4 0.32 0.73
Skin-type V Rotation 8.07 97.5 0.36 0.89 7.90 94.1 0.67 1.28
Skin-type V Scaling 3.60 73.8 2.68 4.90 6.48 83.8 1.24 2.28
Skin-type V Mixed 4.37 78.7 2.63 4.25 6.20 88.6 1.64 3.02
Average 6.45 86.6 1.53 2.56 7.26 88.8 1.20 2.13
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Fig. 10: Correlation and Blant-Altman plots for the setup with
the monochrome cameras (top) and RGB camera (bottom). Here r
indicates the Pearson correlation, SSE the sum of squared errors, y
the linear fit and SD the standard deviation.

IV. DISCUSSION

Both camera setups show the feasibility of rPPG in NIR,
regardless of the reduced PPG amplitude compared to visible
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Fig. 11: Statistical comparison using ANOVA. The plots display
the median (red bar), standard deviation (blue box), minimum and
maximum (black bar) of the SNRa values.

light. Despite the more advantageous angle between the pulse
vector and the motion vector in the monochrome cameras
setup, the RGB camera shows comparable performances for
challenging motion scenarios. For recordings containing scal-
ing movements, the RGB camera even slightly outperforms
the monochrome cameras, although the difference is not
significant (p-value = 0.22 (> 0.05) ). This can be explained by
the effects of parallax in the monochrome cameras setup. Here,
the cameras are registered by an affine transformation which
is determined based on the first 100 frames of the recording.
When head motions to and from the cameras are performed,
the transformation becomes inaccurate and the performance
drops.

Based on measurements on 40 subjects, the pulse vector
showed to be quite stable over the entire range of skin-
pigmentation levels. This was to be expected because of the
fairly uniform skin reflectance spectrum in NIR. The skin-tone
invariance of the algorithm is confirmed by ANOVA on the
SNRa values from both setups.

Performed simulations and experiments show that the an-
gle between the pulse and motion vector can be increased
when LEDs with different wavelengths are applied instead
of incandescent light. However, without a correct diffuser,
different skin locations are exposed to different illumination
spectra. Consequently, also different relative PPG amplitudes
may occur in the three color channels of the RGB camera.
Since the PBV pulse-extraction method assumes the same ratio
of relative PPG amplitudes in the color channels over the entire
skin area, the performance of the algorithm is expected to
reduce when inhomogeneities are introduced.

V. CONCLUSIONS

This paper shows the feasibility of motion robust (cardiac)
pulse detection in NIR. Current state-of-the-art methods de-
veloped for rPPG in visible light, are adopted for use in NIR.
Simulations verified by large scale experiments, show that a
setup consisting of three monochrome cameras with different
optical filters is favorable in terms of motion robustness com-
pared to a single RGB camera setup, where the IR-blocking
filter is replaced by a visible light blocking filter. Experimental
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results on 30 challenging benchmark video sequences with in-
candescent light show that both setups are capable of accurate
pulse-extraction and their performance is comparable for all
skin-types. In general, the RGB camera provides slightly better
results, a MAE of 1.20 compared to a MAE of 1.53 for the
monochrome cameras, where the difference is most prominent
in the scaling motion scenario, likely induced by the effects of
parallax. Since a single-optics setup is preferable, simulations
with dedicated LEDs are performed to further improve motion
robustness of the RGB camera, leading to a nearly similar
pulse vector in terms of motion robustness compared to the
monochrome cameras setup. When full darkness is desired, the
dedicated NIR illumination should result in similar motion-
robustness compared to incandescent light.
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