
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 1

Buffer Sizing for Rate-optimal Single-rate Dataflow
Scheduling Revisited

Orlando Moreira1, Twan Basten2,3, Marc Geilen2 and Sander Stuijk2

1ST-Ericsson, Eindhoven, Netherlands
orlando.moreira@stericsson.com

2Eindhoven University of Technology, Eindhoven, Netherlands
{a.a.basten,m.c.w.geilen,s.stuijk}@tue.nl

3Embedded Systems Institute, Eindhoven, Netherlands

Abstract— Single-Rate Dataflow (SRDF) graphs, also known as
Homogeneous Synchronous Dataflow (HSDF) graphs or Marked
Graphs, are often used to model the implementation and do tem-
poral analysis of concurrent DSP and multimedia applications.
An important problem in implementing applications expressed
as SRDF graphs is the computation of the minimal amount of
buffering needed to implement a static periodic schedule that is
optimal in terms of execution rate, or throughput. Ning and Gao
propose in [1] a linear-programming-based polynomial algorithm
to compute this minimal storage amount, claiming optimality. We
show via a counter-example that the proposed algorithm is not
optimal. We prove that the problem is in fact NP-complete. We
give an exact solution, and experimentally evaluate the degree of
inaccuracy of the algorithm of Ning and Gao.

Index Terms— Scheduling, Single-rate Dataflow, Homogeneous
Synchronous Dataflow, Buffer Minimization, Throughput Opti-
mization.

I. INTRODUCTION

MANY flavors of dataflow formalisms are used to ex-
press, model, analyse, and map signal processing and

multimedia streaming applications. Dataflow paradigms fit
well with these application domains, as they can represent
the inherent concurrency, the pipelined behavior, and data-
oriented style of streaming algorithms, while at the same time
allowing analysis and synthesis. One of the simplest but still
rather expressive dataflow models is the Single-Rate DataFlow
(SRDF) model, also referred to as Homogeneous Synchronous
DataFlow (HSDF) or Marked Graphs. SRDF describes an
application as a graph where nodes – typically referred to as
actors – represent computation functions and edges represent
first-in-first-out (FIFO) communication channels.

SRDF graphs have strong analytical properties. If a worst-
case execution time is known for every actor, polynomial
algorithms [2] can be used to derive the maximum guaranteed
rate of output production (the throughput) that the iterative
execution of the graph may achieve. This allows to verify
real-time requirements. It is furthermore possible to use the
abstract concepts of actors and edges to model properties
of communication channels, memory mapping, and scheduler
settings [3]–[5], therefore allowing for the analysis of dataflow
graph implementations onto specific architectures.

When implementing an application described as an SRDF
graph onto an architecture, finite sizes for the implementation

of FIFO buffers need to be determined. Several variants of
the buffer-size minimization problem exist. The most ele-
mentary one is the problem of finding minimal buffer sizes
that guarantee a deadlock-free execution. However, in signal
and multimedia processing, deadlock-free execution is often
insufficient. It is often important to maximize the throughput,
i.e., the rate of execution and output production. In that
context, a very relevant variant of the buffer sizing problem
for SRDF is the one described by Ning and Gao in a paper
of 1993 [1], the Optimal Scheduling and Buffer Allocation
(OSBA) problem. The goal in this problem formulation is to
find a periodic rate-optimal schedule of execution for an SRDF
graph with minimal buffer requirements, i.e., buffer sizes
whose sum is minimal among all those buffer allocations that
allow periodic rate-optimal graph execution. The restriction to
periodic execution schedules is advantageous from the code-
size point of view. The authors claim a linear-programming-
based solution of polynomial complexity for this problem.

The complexity result of Ning and Gao has been un-
challenged until now, and based on the results presented in
[1] it has been widely accepted that the problem of finding
the minimum buffer capacity that allows an SRDF graph to
execute at its maximum throughput is a problem of polynomial
complexity (see, for instance, [3], [6]–[10]). This is incorrect.

With a counter-example we show in this paper that the
algorithm proposed in [1] is not optimal. We in fact prove that
(the decision variant of) the OSBA problem is NP-complete.
Based on the buffer sizing technique for multi-rate dataflow
graphs of [11], [12], we provide an exact solution to the OSBA
problem, that is efficient in practice. We estimate the difference
between the results of the algorithm of [1] and the exact
solution. The NP-completeness proof for the original OSBA
formulation goes via a generalization of OSBA in which non-
periodic schedules are allowed, while making assumptions
on required buffer space that are more conservative than in
[1]. We argue that in this generalized setting an SRDF graph
always has a static periodic schedule that combines maximum
throughput with buffer sizes that are minimal among all rate-
optimal, not necessarily periodic, schedules. We show that this
generalized OSBA variant is NP-complete, and use this result
in the NP-completeness proof for the original OSBA problem.

The next section introduces the SRDF model and some
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Fig. 1. An example SRDF graph.

of its properties. Section III defines the OSBA problem, and
Section IV presents the solution proposed in [1]. Section V
gives the counter-example that shows the sub-optimality of
the OSBA solution of [1]. Section VI studies the mentioned
generalization of the OSBA problem, and Section VII proves
the NP-completeness of OSBA. Section VIII presents an exact
solution, and experimentally evaluates the degree of sub-
optimality of the approach of [1]. Section IX concludes.

II. THE MODEL AND ITS PROPERTIES

A. Notations and Terminology

Let N and Z be the sets of natural numbers and integers, and
N0 and N∞

0 the natural numbers plus 0 resp. 0 and infinity. A
directed graph G is a pair (V,E), with V the set of vertices, or
nodes, and E ⊆ V 2 the set of directed edges. For (i, j) ∈ E,
i is the source and j the sink of the edge. A (directed) path in
the graph is simple if the source nodes of all edges on the path
are all different. A path is a cycle if and only if it is simple
and the source of the first edge equals the sink of the last edge.
An undirected path is a path that ignores edge directions. A
graph is connected if and only if there is an undirected path
between any pair of nodes; it is strongly connected if and only
if there is a directed path between any pair of nodes.

B. Single-rate Dataflow Graphs

A Single-Rate DataFlow (SRDF) graph – also known as Ho-
mogeneous Synchronous Dataflow graph [13] – is a directed
graph, where nodes are referred to as actors and represent data
transformation or control entities, and edges represent FIFO
queues that direct values from an actor output to an actor
input. Data is transported in discrete chunks, called tokens.
When an actor is activated by data availability it is said to
be fired. The firing rule defines what happens upon firing an
actor. SRDF prescribes that the number of tokens produced
(consumed) by an actor on each output (from each input) per
firing is always one. We assume SRDF graphs to be connected
(but not necessarily strongly connected). Assumptions made
throughout this section are listed in Table I.

For performance analysis, actors in an SRDF graph (V,E)
have a valuation e : V → N0; e(i) is the execution time of
actor i. Edges have a valuation d : E → N0; d(i, j) is called
the delay of edge (i, j) and represents the number of initial
tokens in (i, j). An SRDF is completely defined by the tuple
(V,E, e, d). Figure 1 illustrates an example SRDF graph, with
tokens shown as black dots on the edges and execution time

TABLE I
OVERVIEW OF ASSUMPTIONS (ALL CONSISTENT WITH [1]).

SRDF - graphs are connected and live
- positive cycle means, integer MCM

Scheduling - non-negative integer firing start and end times
- actor firings may not overlap in time

(actors have implicit self-edges with 1 initial token)

Buffering - all output edges of an actor share one buffer
- input space is released at firing start and

output space is claimed at firing start
- buffers can be read and written simultaneously
- implicit self-edges do not require buffering

annotations inside the actors. (Note that an actor execution
time of zero is allowed. This will not occur for any realistic
data transformation entities, but it is sometimes convenient to
model certain (control) aspects.)

We are interested in applications that process data streams,
which typically involve computations on indefinitely long data
sequences. Therefore, we are only interested in SRDF graphs
that can execute in a non-terminating fashion. We want sched-
ules that execute all actors indefinitely within a finite amount
of memory. An SRDF graph that allows to fire all actors
infinitely often is called live. It follows from the results in [14,
Sec. 3] for multi-rate dataflow graphs that a live SRDF graph
can always be scheduled using a finite amount of memory,
and that an SRDF graph is live if and only if all cycles
contain at least one initial token. A consequence of the latter
is that liveness of an SRDF graph can be verified efficiently
by performing e.g. an all-pairs shortest path algorithm on the
SRDF graph with the initial delays as edge weights or a cycle-
detection via a depth-first search on the graph with all edges
with initial tokens removed. Therefore, in the remainder, we
limit ourselves to live SRDF graphs1.

C. Throughput

The cycle mean µ(c) of a cycle c in an SRDF graph G =
(V,E, e, d) is defined as:

µ(c) =

∑
i∈N(c) e(i)∑

(i,j)∈E(c) d(i, j)
, (1)

where N(c) is the set of all nodes traversed by cycle c and
E(c) is the set of all edges traversed by cycle c.

The Maximum Cycle Mean (MCM) µ(G) of SRDF graph
G, with set of cycles C(G), is defined as:

µ(G) = max
c∈C(G)

µ(c). (2)

The inverse of the MCM of an SRDF graph provides a
fundamental upperbound to its maximal attainable throughput,
and it is known that every SRDF graph has at least one
execution that achieves this maximal attainable throughput
[15]. Many algorithms of polynomial complexity have been

1Note that liveness corresponds to deadlock-freeness for strongly connected
SRDF graphs; for arbitrary (connected) graphs, liveness is a stronger property
than deadlock-freeness, and the latter is insufficient to always allow execution
within bounded memory.
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proposed to find the MCM (see [2] for an overview). The
MCM of the SRDF graph of Figure 1 is 5, resulting from the
cycle through actors A, F , G, and E. The maximum attainable
throughput is therefore 1/5 firings per time unit.

An MCM may be a fractionary value. The original OSBA
formulation of [1] assumes that the MCM of an SRDF graph
is a positive integer, as it is always possible to unroll a given
SRDF graph to a graph with an integer MCM. We keep
the assumption of [1] of a positive integer MCM, although
this is not strictly necessary. We furthermore exclude cycles
with cycle mean zero (i.e., with execution time zero) because
such cycles are not meaningful from a practical point of view
whereas they complicate the reasoning in the remainder.

D. Schedule Functions and Buffer Capacities

Since actors are supposed to fire indefinitely, we can per
actor index firings using the natural numbers, starting from 0.
A schedule function is a function s : V × N0 → N0, where
s(i, k) represents the time at which instance k of actor i is
fired. We denote the finishing time of firing k of actor i by
f(i, k) = s(i, k) + e(i). As in [1], we assume that scheduling
times are non-negative integer values, although this could be
relaxed to non-negative fractional values.

Not all schedule functions can be realized. A schedule is
admissible if and only if all actor firing start times satisfy
the firing rule. This means that all input edges of an actor
must always have sufficient tokens to accommodate the firings.
In [15], necessary and sufficient conditions for an admissible
schedule are given. For notational convenience, assume that for
any schedule s and actor i, s(i, k) = −e(i) if k is negative,
which allows us to see initial tokens as being produced at
time 0 by a firing with negative start time. A schedule s is
admissible if and only if, for every (i, j) ∈ E and any k ∈ N0,

s(j, k) ≥ s(i, k − d(i, j)) + e(i). (3)

Consider the example of Figure 1. Schedule s with
s(A, k) = s(G, k) = 5k, s(B, k) = s(C, k) = s(F, k) =
1+5k, s(D, k) = 2+5k, and s(E, k) = 3+5k is an admissible
schedule that realizes the maximal throughput of 1/5 firings
per time unit. All actors fire as soon as they are enabled.

Equation (3) assumes that tokens are consumed at the
beginning of a firing and produced at the end of a firing.
An admissible schedule allows multiple firings of the same
actor to overlap in time (so-called auto-concurrency). This
is consistent with the general interpretation of SRDF graph
execution, but in [1], it is assumed that firings of the same
actor in a graph cannot overlap in time. We adhere to this
assumption, excluding schedules in which firings of the same
actor overlap. It is possible to enforce the restriction to non-
auto-concurrent schedules in an SRDF graph, by introducing
a self-edge for every actor in the graph with a single initial
token for each of these edges. We implicitly assume that such
self-edges are present when referring to the MCM of a graph
and/or the maximal throughput that can be obtained. (This
implies that the MCM is always at least the maximum actor
execution time.) However, in line with [1], these implicit self-
edges are not considered for buffer minimization.

In an implementation of a dataflow application, data may be
consumed from input edges and produced on output edges at
arbitrary points in time during an actor firing. To guarantee
that buffers are sufficiently large, we need to make some
assumptions. The most conservative buffer sizes are obtained
when assuming that each SRDF edge needs its own buffer, that
output space needed by actors is claimed at a firing start, and
that input space is freed at the end of a firing. Claimed input
and output space can then be used as working memory during
actor execution. This type of behavior may typically be seen
in multimedia applications in which an actor communicates
substantial amounts of different data to different actors. Ning
and Gao, however, assume that all output edges of an actor
share buffer space and that input data is read at a firing start
and stored internally, releasing input space at that point in time.
They do assume that output space is claimed at the firing start.
This type of behavior may be seen in DSP applications where
actors reflect simple scalar operations of which the outcome is
communicated to several successor actors simultaneously. We
adhere to the choices made by Ning and Gao, but as part of
our NP-completeness proof for OSBA we also study OSBA
with the most conservative buffering assumptions in Section
VI. Ning and Gao moreover assume that buffer space can be
read and written simultaneously when actors i and j connected
via edge (i, j) start their firings at the same time. The space
released by the start of j can then be claimed as output space
with the start of i. We also follow this assumption.

Minimum buffer sizes required to execute an admissible
schedule can be derived from the schedule. We introduce
an auxiliary notion, namely the token count c(i, j, t) on an
edge (i, j) after the occurrence of all firing starts and endings
scheduled at time t. Given the initial tokens d in an SRDF
graph and a schedule s, c(i, j, t) is defined inductively as
follows. Since execution times may be zero, the inductive
computation starts at ‘time’ -1.

c(i, j,−1) = d(i, j), and, for t ∈ N0,
c(i, j, t) = c(i, j, t− 1)

−|{s(j, k) = t | k ∈ N0}|
+|{f(i, k) = t | k ∈ N0}|.

(4)

The buffer space needed by an SRDF graph to execute a
schedule is defined by a buffer-capacity distribution function.
The buffering assumptions imply that buffer space can be
assigned on a per-actor basis. Hence, a buffer-capacity distri-
bution function b : V → N∞

0 is a function that assigns to each
actor i ∈ V the buffer capacity b(i) required for the data on its
output edges to implement a given schedule s. The basic idea
is to take per actor per time point, including the artificial time
point -1, the maximum of all token counts for all the actor’s
output edges and furthermore the maximum of all these values
over time, while accommodating for actor firings that are in
progress, because these firings imply the reservation of output
space. At any point in time at most one firing of an actor can
be in progress due to the restriction to non-auto-concurrent
schedules. Assume c(i, j, t) = 0 if (i, j) 6∈ E.

b(i) = maxt∈N0∪{−1}
(maxj∈V c(i, j, t)

+|{k ∈ N0 | s(i, k) ≤ t < f(i, k)}|).
(5)
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Fig. 2. Buffer requirements for tokens on edge (D, E) in the example graph.

For example, to execute schedule s for the running example
introduced above, a buffer size of 1 token for every actor in
the graph of Figure 1 is sufficient except for actor D, which
needs a buffer of size 2 to store tokens on edge (D,E). This
yields a total buffer requirement of 8. Figure 2 visualizes the
buffer requirements of actor D. Initially, one token is present
in channel (D,E), which is consumed by the first firing of E
at time 3. Furthermore, space for a token produced by D is
needed from the start of firing k of D at time 2 + 5k till the
start of corresponding firing k + 1 of E at time 8 + 5k that
consumes the token. This leads to a maximal presence of two
tokens in the channel, during intervals [2 + 5k, 3 + 5k].

The definition of Equation (5) does typically not properly
reflect the buffer capacity needed by an actor with execution
time zero. However, as already explained, it is reasonable
to assume that actor execution times are non-zero for any
reasonable operation or data transformation. We only use
actors with execution time zero later in various proofs, where
an artificial (but precisely defined) number for certain buffer
sizes is acceptable. We therefore prefer the simple definition
of Equation (5) over a more involved definition that would be
correct for actors with execution time zero. Such a definition
would for example be possible using an operational semantics
for SRDF graphs that makes all firing starts and endings at a
single point in time explicit, as given in [11] and [12].

E. Static Periodic Schedules

A Static Periodic Schedule (SPS) of an SRDF graph is a
schedule such that, for all nodes i ∈ V :

s(i, k) = s(i, 0) + P · k, (6)

where P is the period of the SPS. Given P , an SPS is defined
by the values s(i, 0), for all i ∈ V . We use s(i) as an
abbreviation for s(i, 0) for an SPS s. The example schedule
given above is an SPS with period 5. An important observation
is that firing all actors the same number of times preserves
the token distribution over the edges. Therefore, the minimal
buffer sizes needed to execute an SPS can be computed from
a prefix of an SPS consisting of one period plus any transient
part that may be present. It is sufficient to consider an SPS s
up to time point maxi∈V s(i) + P (i.e., the latest start time
of any actor plus one period). For the example schedule, it is
sufficient to consider the execution up to time point 8.

The following theorem re-establishes, in a somewhat dif-
ferent form, a relation between SPSs and the MCM, first
presented in [16].

Theorem 1: A live SRDF graph G has an SPS with period
P if and only if P ≥ µ(G).

Proof: Let G = (V,E, e, d). According to Equation (3),
every edge (i, j) in G imposes a constraint s(j, k) ≥ s(i, k−

d(i, j)) + e(i) to any admissible schedule. For an SPS, from
Equation (6), we obtain for every (i, j) ∈ E a constraint s(j)+
P · k ≥ s(i) + P · (k− d(i, j)) + e(i), which is equivalent to:

s(i)− s(j) ≤ P · d(i, j)− e(i). (7)

These inequalities define a system of linear constraints.
Since Equation (3) defines necessary and sufficient conditions,
G has an SPS if and only if the system of constraints of
Equation (7) has a solution. The system consists of so-called
difference constraints [17], that can be turned into a constraint
graph (V,E), with edge weights w(i, j) = P · d(i, j) − e(i).
According to [17], the system of constraints has a solution if
and only if the constraint graph does not contain any cycles
with negative accumulative weight, which implies that G has
an SPS if and only if the constraint graph does not have any
cycles with negative accumulative weight.

Recall Equation (2), defining the MCM. It follows that:

P ≥ µ(G)

⇔ P ≥ maxc∈C(G)

P
i∈N(c) e(i)

P
(i,j)∈E(c) d(i,j)

⇔ 0 ≥ maxc∈C(G)(
∑

i∈N(c) e(i)−
∑

(i,j)∈E(c) P · d(i, j))
⇔ minc∈C(G)(

∑
(i,j)∈E(c) P · d(i, j)−

∑
i∈N(c) e(i)) ≥ 0.

The last condition is equivalent to the condition that the
constraint graph introduced above does not have any cycles
with negative accumulative weight. Thus, G has an SPS if
and only if P ≥ µ(G).

Given an SRDF graph G with MCM µ(G), 1/µ(G) is the
fastest possible firing rate of any actor in G [15]. A schedule
realizing this maximal throughput is rate optimal, where the
throughput of a schedule is defined as the average number of
firings of any actor over time. If an SPS has a period P equal to
the MCM µ(G), we say that this SPS is a Static Periodic Rate-
Optimal Schedule (SPROS). The example schedule given in the
previous subsection for our running example is an SPROS.
Theorem 1 means that an SPROS always exists. An SPS for
graph G can be constructed for any given period P ≥ µ(G) by
solving the system of constraints of Equation (7) in the proof
of Theorem 1. A straightforward algorithm uses a shortest-
path algorithm that can cope with negative weights, such as
Bellman-Ford [15]. Thus, it is possible to construct an SPROS
in polynomial time.

Corollary 1: A live SRDF graph has an SPROS, that can
be constructed in polynomial time.

III. THE OSBA PROBLEM

Ning and Gao formalize the Optimal Scheduling and Buffer
Allocation (OSBA) problem in [1] as an Integer Programming
(IP) problem. The following definition formalizes OSBA as an
optimization problem.

OSBA

Given a live SRDF graph G = (V,E, e, d), construct
an SPROS for G that has a buffer-capacity distribution
function b such that Σi∈V b(i) is minimal among all
buffer-capacity distribution functions for all SPROSs.
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IV. NING AND GAO’S APPROACH TO SOLVE OSBA

As mentioned, Ning and Gao formalize OSBA in [1] as an
IP problem. The IP formulation includes the sum of buffer
capacities for a given schedule as an objective function, and
the constraints necessary for an admissible schedule as in
Equation (7) with period P equal to the MCM of the graph. It
furthermore contains a set of constraints implied by the limited
buffer capacities2. Given an actor i with buffer capacity b(i),
for every edge (i, j), we have the constraint that

P · b(i) + s(i)− s(j) ≥ P · (d(i, j) + 1)− 1. (8)

These buffer-capacity constraints are only valid if firings of the
same actor do not overlap. The derivation of these constraints
can be found in [1]. The free variables in the integer program
are the start times s(i) of the first firings of all actors for an
SPROS schedule s and the buffer capacities b(i).

OSBA-IP [1]

Let G = (V,E, e, d) and P = µ(G).
Minimize

∑
i∈V b(i)

subject to
∀(i, j) ∈ E, P · b(i) + s(i)− s(j) ≥

P · (d(i, j) + 1)− 1,
∀(i, j) ∈ E, s(j)− s(i) ≥ e(i)− P · d(i, j),
∀i ∈ V , s(i), b(i) integers.

In general, (the decision variant of) the Integer Program-
ming problem is NP-complete [18], [19]. The Linear Pro-
gramming (LP) problem, dropping the requirement that the
free variables should be integer, is known to be efficiently
solvable. There are special classes of IP problems that can be
solved as LP problems, because, for these classes, any solution
of the LP problem is guaranteed to be integral. Ning and Gao
transform the OSBA-IP problem into such a problem by means
of a simple variable substitution. For every i ∈ V ,

b′(i) = P · b(i). (9)

OSBA-LP [1]

Let G = (V,E, e, d) and P = µ(G).
Minimize

∑
i∈V b′(i)

subject to
(a) ∀(i, j) ∈ E, b′(i) + s(i)− s(j) ≥

P · (d(i, j) + 1)− 1,
(b) ∀(i, j) ∈ E, s(j)− s(i) ≥ e(i)− P · d(i, j).

The constraints are labeled to allow easy referencing.
Ning and Gao proceed to show that the constraint matrix

of the OSBA-LP problem is unimodular, and that, because of
this, the obtained solution is always integral. However, while

2Subsequent papers, also by one of the authors of the original paper (see,
e.g., [6], [7]), consider also a variant of OSBA in which every edge in an
SRDF graph has its own buffer. This does not significantly change the IP
formulation, and the counter-example for the optimality claim given in the
next section applies to both versions.

OSBA-LP returns all-integer solutions, the b(i) obtained by
dividing the b′(i) results by the period P may be fractional.
Ning and Gao solve this by discarding the b(i) results and
simply simulating the obtained SPROS (given by the values
of the s(i) variables obtained from OSBA-LP) to compute the
actual buffer-capacity distribution function b for s.

Since the MCM computation, needed as input for the
OSBA-LP problem, the LP problem itself, and the buffer-
capacity computation from the obtained SPROS can be solved
in polynomial time, the proposed approach has polynomial
complexity. Ning and Gao also claim optimality of the ap-
proach. However, their reasoning is flawed. OSBA-IP and
OSBA-LP are truly different problems: while OSBA-IP re-
quires the b(i) to be integer, OSBA-LP requires instead the
products P · b(i) to be integer. The next section shows that
there are cases where the values of s(i) for an optimal sum of
integer P ·b(i) (or, in other words, fractional b(i)) are different
from the values of s(i) for an optimal sum of integer b(i).

V. COUNTER-EXAMPLE FOR NING AND GAO’S
OPTIMALITY CLAIM

We first provide the counter-example, and then proceed to
show where the reasoning of Ning and Gao is flawed.

A. The Counter-example

OSBA-LP contains two sets of constraints, buffer con-
straints (a) and precedence constraints (b), both corresponding
to the set of edges. The b′(i) that should be minimized are
only constrained by the set of buffer constraints (a). A crucial
aspect of OSBA-LP is that it tries to maximize s(i)−s(j) for
all edges (i, j) under the set of buffer constraints (a), because
this leads to the minimal b′(i), while the set of precedence
constraints (b) constrains s(i) − s(j) from above (which is
clear when rewriting (b) into s(i)− s(j) ≤ P · d(i, j)− e(i)).

Consider again the example of Figure 1. This is a graph for
which Ning and Gao’s algorithm does not compute the optimal
buffer sizes for rate-optimal scheduling. Table II summarizes
the properties of the SRDF graph, the schedule s0 resulting
from OSBA-LP with corresponding buffer sizes b0, a buffer-
optimal schedule s1 with buffer sizes b1, and the minimum
values of the free variables b′0 and b′1 for the two schedules
computed from the buffer constraints of OSBA-LP, where the
corresponding constraint is given as well. Note that only actor
A has more than one output edge. However, each of these
edges results in the same constraint, which is only mentioned
once in the table (in the row with first entry (A, j)). As a
result, every actor has exactly one entry in the bottom part
of the table. The bottom line gives the values for the OSBA-
LP objective function and the total buffer requirements for
the schedule. The example shows that the OSBA-LP schedule
has a lower value for the objective function than the optimal
schedule, but a higher buffer requirement. Differences between
the OSBA-LP and optimal solutions are highlighted in italics.
The problem that the OSBA-LP approximation has with this
counter-example is caused by the scheduling freedom for actor
D within the SPROS, as the reasoning below clarifies.
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TABLE II
COUNTER-EXAMPLE FOR NING AND GAO’S OPTIMALITY CLAIM.

OSBA-LP Optimal
i e(i) s0(i), P = 5 s1(i), P = 5
A 1 0 0
B 1 1 1
C 1 1 1
D 1 2 4
E 2 3 3
F 4 1 1
G 3 0 0

(i, j) d(i, j) b′
0(i) b0(i) b′

1(i) b1(i)
(A, j) 0 5− 1 ≥ 4 1 5− 1 ≥ 4 1
(B, D) 0 5 − 1 ≥ 4 1 7 − 3 ≥ 4 1
(C, D) 0 5 − 1 ≥ 4 1 7 − 3 ≥ 4 1
(D, E) 1 10 − 1 ≥ 9 2 8 + 1 ≥ 9 1
(E, A) 1 6 + 3 ≥ 9 1 6 + 3 ≥ 9 1
(F, G) 1 8 + 1 ≥ 9 1 8 + 1 ≥ 9 1
(G, E) 0 7− 3 ≥ 4 1 7− 3 ≥ 4 1

sum 46 8 48 7

First, two observations imply that schedule s1 of Table II
is indeed a solution to the OSBA optimization problem.

1) The example graph has an MCM of 5, resulting from
the (A,F ), (F,G), (G, E), (E,A) cycle. Since schedule
s1 has a period of 5, it is rate optimal.

2) It is straightforward to verify the buffer sizes for s1.
Consider for example actor D. Schedule s1 results in a
buffer size of 1. Initially, edge (D,E) has one token,
which is consumed by the first firing of E at time 3.
Furthermore, space for a token produced by D is needed
from the start of firing k of D at time 4 + 5k, till the
start of firing k + 1 of E at time 8 + 5k that consumes
that token. So space for one token is needed in interval
[0, 3] and in intervals [4 + 5k, 8 + 5k], which do not
overlap for different k. Hence, buffer size 1 suffices for
actor D. Since buffer-capacity distribution function b1

yields buffer sizes of 1 for all actors and size 1 is always
minimal3, b1 gives the minimal buffer sizes among all
rate-optimal schedules.

Second, it can be argued that OSBA-LP yields schedule s0

as a solution.
3) Schedule s0 is the schedule already given in Section II-

D, where it was already mentioned that all actors fire as
soon as they are enabled. This follows in a straight-
forward way from the precedence constraints in the
example SRDF graph, corresponding to constraint set
(b) in the OSBA-LP formulation.

4) An important consequence of the previous observation
is that actor firings can only be delayed with respect to
schedule s0. Let us consider the effect of delaying an
actor firing in s0 on the values of b′(i) in the OSBA-
LP formulation. Consider for example a delay of 2 time
units of firings of actor D, which in fact turns schedule
s0 into schedule s1. Since D has two input edges (B,D)
and (C,D), the effect of this delay on the sum of the
b′(i) values is on the one hand a decrease of 2 for the
(D,E) edge and on the other hand an increase of 2 · 2

3This is, in fact, only true for actors with non-zero execution times.

for the (B,D) and (C,D) edges, as illustrated by the
italics constraints in the bottom part of Table II.

5) Reconsidering the example graph shows that there is no
freedom in scheduling actors A, F , G, and E without
affecting the throughput (excluding a shift in time of the
entire schedule, which is not meaningful); B and/or C
can be delayed but only if D is also delayed. A crucial
observation now is that any group of actors from B, C,
and D whose firings might be delayed thus has only one
outgoing edge, whereas it has two incoming edges. This
means that the net effect of any delay of actor firings on
the b′(i) in OSBA-LP is always an increase, just as in
the example given for delaying D only. But this means
that no delay of actor firings in s0 can result in a better
value of the objective function in OSBA-LP, and hence
that s0 is the optimal schedule according to OSBA-LP.

Finally, we compare the buffer requirements of s0 and s1.
6) Observation 2) above argues that the buffer sizes de-

fined by b1 are correct. In Section II-D and Figure 2,
the buffer-capacity distribution function b0 was already
explained, and in particular it was already argued that
the buffer space needed by schedule s0 to store the data
on edge (D,E) is 2. This shows that s0 needs a larger
buffer size for actor D than s1 and, hence, has larger
total buffering requirements than s1.

The above reasoning shows that schedule s1 is a solution
to OSBA for the SRDF graph of Figure 1. It also shows that
s0 is the solution to OSBA for this graph according to the
solution method proposed by Ning and Gao in [1], but that it
is in fact not a solution to OSBA.

B. Analysis of the Counter-example

It is interesting to consider potential causes for the sub-
optimality of Ning and Gao’s approach to solve OSBA. A first
observation is that Ning and Gao observe in their paper that
the buffer constraints b(i) ≥ (s(j)− s(i)− 1)/P + d(i, j) + 1
obtained from Equation (8) are conservative approximations,
in the sense that buffer capacities that satisfy those constraints
are guaranteed to be sufficiently large. This suggests that it
might be possible that an obtained SPROS uses less buffer
capacity than the constraints specify. Schedules s0 and s1 with
their buffer-capacity distribution functions b0 and b1 show that
this is indeed possible. Consider for example edge (F,G) of
the SRDF graph. The start times of F and G and the buffer
capacity assigned to F are equal in both schedules. However,
for these values, the above constraint on the buffer capacity
yields 1 ≥ 1 3

5 , which is obviously not true. Thus, the buffer
constraints of OSBA-IP exclude the solution to the OSBA
optimization problem for the example graph of Figure 1, as
well as the solution obtained via the LP approach of Ning
and Gao themselves. In fact, also the obtained result for the
running example that Ning and Gao use in [1] to illustrate
their approach is excluded by the IP formulation of OSBA.

These observations may suggest that the IP formulation is
the root cause of the sub-optimality of the approach of Ning
and Gao. However, this is not the case. Ning and Gao do
not further comment on the fact that their buffer constraints
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are not exact but only conservative, nor on the consequences
for their approach. However, it is not difficult to derive exact
constraints for the required buffer capacities, and study the
consequences of using exact constraints.

Consider an actor i of an SRDF graph with buffer capacity
b(i) and output edge (i, j) with d(i, j) initial tokens. The
buffer has then, at most, b(i)−d(i, j) empty places. (Note that,
in line with [1], we do not assume that all output edges of an
actor have the same number of initial tokens; some space in the
buffer may be occupied by tokens still needed by other actors
than j consuming data produced by i.) Consider firing k+1 of
actor i, which in an SPS with period P starts at time s(i)+P ·k.
Due to the limited buffer capacity, this firing can only take
place if actor j has started sufficiently many firings to provide
space, i.e., actor j should start firing (k+1)− (b(i)−d(i, j)),
which occurs at time s(j) + P · (k− (b(i)− d(i, j))), no later
than the start of firing k + 1 of actor i. Thus,

s(j) + P · (k − (b(i)− d(i, j))) ≤ s(i) + P · k
⇔ P · b(i) + s(i)− s(j) ≥ P · d(i, j). (10)

This last inequality differs in its right-hand side from the
constraint of Equation (8). This right-hand side is never greater
than the right-hand side in Equation (8). Thus, the following IP
formulation of OSBA, combining the precedence constraints
of OSBA-IP with the exact buffer constraints, allows strictly
more solutions than OSBA-IP.

OSBA-eIP

Let G = (V,E, e, d) and P = µ(G).
Minimize

∑
i∈V b(i)

subject to
∀(i, j) ∈ E, P · b(i) + s(i)− s(j) ≥ P · d(i, j),
∀(i, j) ∈ E, s(j)− s(i) ≥ e(i)− P · d(i, j),
∀i ∈ V , s(i), b(i) integers.

We can now investigate what happens if we follow the
approach of [1], turning OSBA-eIP into an LP via the variable
substitution of Equation (9), and computing buffer capacities
from the SPROS obtained from that LP. Consider the example
of Table II. The crucial observation is that, when using the
exact buffer constraints, the right-hand sides of the constraints
in the bottom half of the table are all reduced by four.
This implies that also the b′0(i) and b′1(i) are all reduced
by four. Thus, essentially, nothing has changed. SPROS s0,
with buffer capacities b0, is still the solution found by the
LP-based approach, whereas the optimal solution is s1, with
buffer capacities b1 (which now satisfy the IP constraints). This
leads to the already mentioned conclusion that the reasoning of
Ning and Gao is flawed in the assumption that the schedule
corresponding to an optimal sum of integer P · b(i) always
results in an optimal sum of integer b(i). This assumption is
not correct, neither for the original approximate IP formulation
nor for the exact IP formulation given in this subsection.

VI. THE GENERALIZED OSBA PROBLEM

This section introduces a generalized version of OSBA,
referred to as gOSBA, which is not only interesting in itself,

but also forms the basis for the NP-completeness proof for
the original OSBA formulation. After defining gOSBA and
showing that it always has a solution, we proceed with proving
NP-completeness of gOSBA.

A. Problem Definition

Our generalized OSBA problem makes more conservative
buffering assumptions than the original formulation. The fol-
lowing definition of a buffer-capacity distribution function
differs from the one given in Equation (5) in that it assigns a
separate buffer to each edge, and that it reserves space in each
buffer for an active firing of the consuming actor. This def-
inition captures the most conservative buffering requirements
that are possible.

B(i, j) = maxt∈N0∪{−1}
(c(i, j, t)

+|{k ∈ N0 | s(i, k) ≤ t < f(i, k)}|
+|{k ∈ N0 | s(j, k) ≤ t < f(j, k)}|).

(11)

The generalized OSBA problem now differs from the orig-
inal OSBA problem in the sense that it assumes these most
conservative buffer requirements, but also in the sense that
it requests a total buffer size that is minimal among all
rate-optimal schedules, not necessarily only among periodic
ones. This version of OSBA is interesting in, for example,
multiprocessor applications in which sharing of buffers among
multiple data edges in an SRDF graph may not be possible
and in situations where an actor produces different data for
different successor actors. This makes it a relevant problem for,
for example, modern multimedia applications implemented on
multiprocessor systems-on-chip (see, e.g., [3]).

gOSBA

Given a live SRDF graph G = (V,E, e, d), construct
an SPROS for G that has a buffer-capacity distribution
function B such that Σ(i,j)∈EB(i, j) is minimal among
all buffer-capacity distribution functions for all rate-
optimal (not necessarily periodic) schedules.

Schedule s1 of Table II turns out to be a solution to gOSBA
for the running example. It requires a buffer of size one for
each of the edges in the graph, except for edge (F,G) which
needs a size of 2, leading to a total buffer requirement of
10. From the execution times of 4 and 3 for actors F and G
respectively, it follows that in any rate-optimal schedule with
period µ(G) = 5, firings of F and G must necessarily overlap.
This means that the conservative assumptions captured in
Equation (11) result in a minimal size of 2.

B. gOSBA always has a Solution

It is not entirely trivial that gOSBA always has a solu-
tion, i.e., that it is always possible to construct an SPROS
with buffer sizes that are minimal among all rate-optimal
schedules. In other words, is it possible to achieve periodicity
and buffer minimality simultaneously? Using the so-called
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capacity-constrained SRDF model of an SRDF graph with a
given buffer-capacity distribution function (see, e.g., [11]), it
can be proven that gOSBA always has a solution.

The capacity-constrained model Gccm of an SRDF graph G
with buffer-capacity distribution function B is itself an SRDF
graph that is obtained from G by adding, for every edge (i, j),
a reverse edge (j, i) with B(i, j)−d(i, j) initial tokens. (This
may in fact turn the graph into a multi-graph. All the results in
this paper generalize to multi-graphs in a trivial way.) Given
an edge (i, j), a reverse edge (j, i) in Gccm captures precisely
the remaining buffer space for edge (i, j). The start of a firing
of i claims space by consuming a token from edge (j, i);
the end of a firing of actor j releases space in the buffer of
(i, j) by producing a token on (j, i). This is in line with the
conservative buffer assumptions captured by buffer-capacity
distribution function B. As a result, any schedule of G that
never uses more buffer space on any edge than allowed by B,
is also a schedule of Gccm. Theorem 1 then yields the desired
result that gOSBA always has a solution.

Theorem 2: Consider a live SRDF graph G = (V,E, e, d)
with a buffer-capacity distribution function B such that
Σ(i,j)∈EB(i, j) is minimal among all buffer-capacity distri-
bution functions for all rate-optimal schedules. Then, G has
an SPROS with buffer-capacity distribution function B.

Proof: Since G allows a rate-optimal schedule with
buffer-capacity distribution function B, by Theorem 1, the
capacity-constrained model Gccm derived from G and B
has an SPROS. By the construction of Gccm, this SPROS
respects the buffer capacities specified by B. Since B is
such that Σ(i,j)∈EB(i, j) is minimal among all buffer-capacity
distribution functions for all rate-optimal schedules, it follows
that the SPROS has buffer-capacity distribution function B.

Corollary 2: gOSBA always has a solution.

The buffer-sizing techniques of [11] and [12], that are effi-
cient in practice, can be used to compute buffer sizes that are
minimal under the conservative assumptions of Equation (11)
while allowing a rate-optimal schedule of a given SRDF graph.
The capacity-constrained model can then be used to construct
an SPROS with these buffer sizes in the way explained in
Section II-E.

C. The Constraint Graph

Our NP-completeness proof for gOSBA uses a constraint
representation of gOSBA, which we introduce in this sub-
section. Corollary 2 shows that it is allowed to limit our
attention to SPROSs when solving gOSBA, making it in this
respect similar to OSBA. As we have seen, the OSBA problem
can be captured by two types of linear constraints, the data
precedence constraints introduced in Equation (7), and the
buffer constraints of Equation (10). (The buffer constraints
of Equation (8) cannot be used, because these are not exact.)
Also gOSBA can be captured via two sets of constraints, that
are very similar to the mentioned constraints. The precedence
constraints, labeled (b) below, are actually identical. The
buffer-capacity constraints can be derived in the same way as

those in Section V-B, while taking into account the separate
buffers per output edge of an actor and the fact that input
buffer space is only released at the end of a firing. These two
aspects explain the occurrence of the B(i, j) and the e(j) in
the right-hand side of the buffer constraints given as (a) below.
For any given SRDF graph G = (V,E, e, d), given period
P , and buffer-capacity distribution function B, the following
system of constraints captures gOSBA. For all (i, j) ∈ E,

(a) s(j)− s(i) ≤ P · (B(i, j)− d(i, j))− e(j),
(b) s(i)− s(j) ≤ P · d(i, j)− e(i). (12)

This system is a system of difference constraints [17],
i.e., a system of linear constraints where each constraint is
a maximum difference between two variables. As shown in
[17], a system of difference constraints can be turned into a
constraint graph that has a node for every variable and an
edge (u, v) with edge weight m for any constraint of the form
v − u ≤ m.4 As a consequence, it is possible to create a
constraint graph for any given SRDF graph G, period P , and
buffer-capacity distribution function B. Figure 3 shows the
constraint graph for our example SRDF graph of Figure 1,
period P = 5, and the optimal buffer-capacity distribution
function resulting from schedule s1 of Table II, as discussed
at the end of Section VI-A.

Before formally defining the constraint graph, it should be
noted that the set of constraints of Equation (12) may contain
redundant constraints. If actors i and j of the SRDF graph are
connected by edges (i, j) and (j, i), there are two constraints
of the form s(i) − s(j) ≤ m, one precedence constraint and
one buffer-capacity constraint, and two constraints of the form
s(j) − s(i) ≤ n, as well. In both cases, the constraint with
the largest right-hand side is redundant. The constraint graph
is constructed after removal of these redundant constraints.
Let cp(i, j) refer to any precedence constraint corresponding
to edge (i, j) in E, i.e., a constraint of type (b) above, and
let cb(i, j) refer to the buffer constraint (a) corresponding to
edge (i, j). We use wp(i, j) resp. wb(i, j) to refer to the right-
hand sides of cp(i, j) and cb(i, j), and assume that wp(i, j)
and wb(i, j) are ∞ if the corresponding constraint is not
present. Constraint graph C(G, P, B) is then the weighted
graph (VC , EC , wC), with wC : EC → Z, defined as follows:

VC = {s(i) | i ∈ V },
EC = {(s(i), s(j)) | (i, j) ∈ E ∨ (j, i) ∈ E}, (13)
wC = {(e, wb(i, j) minwp(j, i)) | e = (s(i), s(j)) ∈ EC}.

The following proposition is important later.

Proposition 1 ([17]): A set of difference constraints has a
solution if and only if the corresponding constraint graph has
no cycles with negative accumulative weight.

The constraint graph of Figure 3 does not have cycles
with negative accumulative weight. This conforms to the fact
that the system of difference constraints of Equation (12) has
solutions, schedule s1 of Table II being one of them.

4The constraint graph as defined in [17] has one extra auxiliary source
node and some extra edges originating from this source node, which are not
relevant for our purposes, and hence ignored in the remainder.
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Fig. 3. The constraint graph for our example SRDF graph, period P = 5,
and gOSBA-optimal buffer-capacity distribution function.

D. Minimal Buffering for Live Execution

In his dissertation [20], Murthy proves NP-completeness
of another buffer optimization problem for dataflow graphs.
Murthy’s graphs are equivalent to our SRDF graphs, except
that our actors have a time valuation. We re-formulate the
problem of [20] as a decision problem in the setting of this pa-
per, and refer to it as the Minimal Buffering for Live Execution
(MBLE) problem. We use MBLE to prove that gOSBA is NP-
complete. The NP-completeness proof for Murthy’s MBLE
formulation carries over trivially to the current setting. A
schedule is sequential if no two actor firings overlap in time.

MBLE

Given a live SRDF graph G = (V,E, e, d) with e(i) = 1
for all i ∈ V and a positive integer K, does G have
a sequential SPS that has a buffer-capacity distribution
function B such that Σ(i,j)∈EB(i, j) ≤ K?

Theorem 3 ([20]): MBLE is NP-complete.

Murthy gives a reduction from the feedback-arc-set (FAS)
problem [19], which for a given directed graph essentially asks
for a subset of edges of a given size that breaks all cycles in
the graph. Given a FAS graph, the reduction creates an SRDF
graph by, for the sake of reasoning, reversing the edges in the
FAS graph and by adding one initial token to each of these
edges. The crucial observation is then that a sequential SPS
for an SRDF graph with precisely one token on every edge
has a buffer size of 2 for any given edge if the source actor
of the edge is scheduled before the sink and 1 otherwise.

The following property is needed in our complexity proof.

Lemma 1: For any live SRDF graph G = (V,E, e, d) with
e(i) = 1 for all i ∈ V , MCM µ(G) ≤ |V |.

Proof: The sum of actor execution times is
∑

i∈V e(i) =
|V |. Thus, no cycle has a sum of execution times greater than
|V |. Since G is live, the minimal amount of tokens in any
cycle is one. The maximum possible cycle mean is from a
cycle with maximum execution time and minimum number of
initial tokens. This is thus bounded by |V |/1.

E. Complexity of gOSBA

To reason about the complexity of gOSBA, we first formu-
late it as a decision problem.

n,|V|x,1

G

Fig. 4. The reduction from MBLE to gOSBA-D.

gOSBA-D

Given a live SRDF graph G = (V,E, e, d) and a positive
integer K, does G have an SPROS with buffer-capacity
distribution function B such that Σ(i,j)∈EB(i, j) ≤ K?

To prove NP-completeness of gOSBA-D, we create an equiv-
alent instance of gOSBA-D from any instance of MBLE.
Assume an MBLE instance with G = (V,E, e, d) and positive
integer K. The equivalent gOSBA-D instance Gg = (Vg, Eg,
eg, dg) with positive integer Kg = K +2 is created by taking
G, choosing an arbitrary node x ∈ V , and adding a new node
n 6∈ V as illustrated in Figure 4 and formalized as follows:

Vg = V ∪ {n};
Eg = E ∪ {(x, n), (n, x)};
eg = e ∪ {(n, |V |)};
dg = d ∪ {((n, x), 1), ((x, n), 0)}.

The idea behind the transformation is that the new actor
creates a sufficiently long critical cycle, implying (1) that an
MBLE solution extended for the new actor is an SPROS of
the resulting gOSBA graph with, except for the new edges, the
same buffer capacities, and (2) that any SPROS of the gOSBA
graph can be sequentialized to form a solution to the original
MBLE instance. The reduction from MBLE to gOSBA-D
cannot be applied directly to the original OSBA formulation
because sequentializing an SPS may adversely affect the
required buffer capacities under the buffering assumptions
made by Ning and Gao, whereas it does not under the more
conservative gOSBA assumptions.

The fact that Kg = K+2 in the gOSBA-D instance follows
from the observation that the buffer capacity for edges (n, x)
and (x, n) is one in any admissible schedule of Gg .

Corollary 3: If Bg is a buffer-capacity distribution function
for an admissible schedule of gOSBA-D instance Gg , then
Bg(n, x) = Bg(x, n) = 1.

We proceed with two lemmas needed in the NP-
completeness proof.

Lemma 2: The MCM µ(Gg) of Gg is |V |+ 1.

Proof: Lemma 1 applies to MBLE graph G, implying
that µ(G) ≤ |V |. By construction, the critical cycle in Gg is
therefore the cycle (n, x), (x, n) with cycle mean |V |+ 1.

Lemma 3: If buffer-capacity distribution B results from
a solution of MBLE instance G, then constraint graph
C(G, P, B) does not have negative cycles for any P ≥ |V |.
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Proof: By definition of MBLE, G has a sequential SPS
that respects buffer capacities B. Since all actors of G have
an execution time of one, their sequential execution takes |V |
time units. Thus, an SPS respecting B with period |V | exists,
and therefore there exists also an SPS respecting B for any
P ≥ |V |. It follows that the system of difference constraints
of Equation (12) has a solution for such a P and B, which in
turn implies the desired result based on Proposition 1.

Theorem 4: gOSBA-D is NP-complete.

Proof: It is straightforward to see that gOSBA-D is in
NP: If we have a proposed solution B for gOSBA-D instance
G, we can build the constraint graph C(G, µ(G), B) of G with
period µ(G) and buffer-capacity distribution B. A search for
negative cycles in C(G, µ(G), B) can be done polynomially
[17]. If no negative cycles are found, then, according to
Proposition 1, the set of constraints of Equation (12) has a
solution, showing that B is a solution of gOSBA-D.

For the proof of NP-hardness, we show that MBLE is
reducible to gOSBA-D. Let G = (V,E, e, d), with positive
integer K be an MBLE instance. Let Gg with Kg = K + 2
be the corresponding gOSBA-D instance as defined above.

First, if buffer-capacity distribution function B with
Σ(i,j)∈EB(i, j) ≤ K is a solution of the MBLE instance, then
buffer-capacity distribution Bg = B∪{((n, x), 1), ((x, n), 1)}
is a solution of the corresponding gOSBA-D instance, as the
following shows. By Lemma 3, constraint graph C(G, |V |+1,
B) does not have negative cycles. Thus, by Proposition 1, there
is an SPS s for G with period µ(Gg) = |V |+ 1 that respects
B. As a consequence, sg = s ∪ {(n, s(x) + 1)} is an SPS
for Gg , that by Corollary 3 and Lemma 2 has buffer-capacity
distribution Bg and is rate-optimal, showing that sg and Bg

form a solution of the gOSBA-D instance Gg .
Second, if schedule s with buffer-capacity distribution func-

tion Bg with Σ(i,j)∈Eg
Bg(i, j) ≤ Kg is a solution of the

gOSBA-D instance, then buffer-capacity distribution function
B = Bg \ {((n, x), Bg(n, x)), ((x, n), Bg(x, n))} is a solu-
tion of the corresponding MBLE instance, as the following
shows. Observe that B respects the bound K of the MBLE
instance by Corollary 3. Since s and Bg are a solution of
the gOSBA-D instance, the system of constraints of Equation
(12) has s as a solution and by Proposition 1 constraint graph
C(Gg, µ(Gg), Bg) has no negative cycles. If we remove node
s(n) with its input and output edge from this graph, we obtain
constraint graph C(G, µ(Gg), B). Since we only removed a
node and two edges from C(Gg, µ(Gg), Bg), no new cycles
have been created, and so C(G, µ(Gg), B) does not have
negative cycles. Again using Proposition 1, this means that G
has an SPS with period µ(Gg) that respects buffer capacities
B. Since by Lemma 2 µ(Gg) = |V | + 1, and since all actor
execution times in G are one, this SPS can be sequentialized
without affecting the period and without negatively affecting
the required buffer capacities. The latter follows from a simple
inductive reasoning. Thus, the resulting sequential SPS is a
solution of the MBLE instance.

This shows that MBLE is reducible to gOSBA-D. Since
gOSBA-D is NP-hard and in NP, it is NP-complete.
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Fig. 5. Reduction from gOSBA to OSBA.

VII. COMPLEXITY OF OSBA
To prove the NP-completeness of the original OSBA for-

mulation, we first phrase OSBA as a decision problem.

OSBA-D

Given a live SRDF graph G = (V,E, e, d) and a positive
integer K, does G have an SPROS with buffer-capacity
distribution function b such that Σi∈V b(i) ≤ K?

We show that gOSBA-D can be reduced to OSBA-D, thus
showing that OSBA-D is NP-complete. Figure 5 illustrates the
reduction.

The basic idea is that any SPROS of the gOSBA-D instance,
say Gg , has a one-to-one correspondence with an SPROS of
the OSBA-D instance, say GO, while every buffer needed by
Gg has a one-to-one correspondence with a buffer of GO and
all other buffers in GO have a fixed size for all SPROSs.
Assume that Gg has MCM µ and consider some SPROS,
which thus has period µ.

First, consider actor A in the example of Figure 5. Actor
A has multiple output edges, which in gOSBA-D means that
the two edges have separate buffers whereas the two edges
in OSBA-D would share a buffer. To mimic gOSBA-D, we
have to create two separate buffers in the OSBA-D instance
GO. To this end, actor A with execution time 2 is replaced
by actor A with execution time 0, and any output edge (A, j)
(e.g., (A,B) in the figure) is replaced by two actors, actor Aj

that inherits the execution time, 2, from A, and actor PAj that
gets execution time µ−2, plus four edges (A,Aj), (Aj , PAj),
(PAj , A), and (Aj , j). In a rate-optimal schedule, which has
period µ, the cycle through A, Aj , and PAj enforces that
the firings of these three actors occur as soon as the firing
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of the preceding actor finishes. As a consequence, the buffers
of A and PAj in GO are 0 and (due to the initial token) 1
respectively5. As another consequence, the firing of Aj in GO

completes at the same point in time as the corresponding firing
of A completes in Gg . Edge (Aj , j) and the buffer of actor
Aj now take the role of edge (A, j) with its buffer in Gg .

Second, consider actor B with its input edge (A,B). In
gOSBA-D, actor B releases input space at the end of its firing.
In OSBA-D, B would release input space at the firing start. To
mimic the gOSBA-D behavior, actor B is embedded in a cycle
of length µ with actor RAB . As in the previous construct, the
firings of these two actors occur in a rate-optimal execution
as soon as the firing of the preceding actor finishes. Thus, in
a rate-optimal schedule, actor RAB starts at the same time as
actor B finishes. By adding now an edge (AB , RAB), which
in OSBA-D shares its buffer with edge (AB , B), space in this
buffer in GO is now only released at the start of a firing of
RAB , which corresponds exactly with the release of space in
Gg at the end of the corresponding firing of B.

In summary, the two sketched constructs address precisely
the two differences between gOSBA-D and OSBA-D. Of
course, they can also occur in combination, and edges may
contain initial tokens, as illustrated for actor C and edge
(A,C) in the figure. The initial token on (A,C) is copied
to both the corresponding (AC , C) and (AC , RACX) edges.
The remainder of this section gives a formal NP-completeness
proof for OSBA-D based on the sketched transformation.

Consider gOSBA-D instance Gg = (Vg, Eg, eg, dg) with
positive integer Kg . OSBA-D instance GO = (VO, EO, eO,
dO) with positive integer KO = Kg + |Eg|+ |{(i, j, k) | (i, j),
(j, k) ∈ Eg}| is created as follows. To simplify notations and
reasoning, we apply the first construct sketched above to all
edges in the graph, not only to those that are an output edge
of an actor with multiple output edges. This transformation
therefore affects all actors, except those without any output
edges. Assume that Vg is partitioned into actors with output
edges V +

g and actors without output edges V −
g .

VO = Vg ∪ ∪(i,j)∈Eg
{ij , Pij} ∪

{Rij | (i, j) ∈ Eg, j ∈ V −
g } ∪

{Rijk | (i, j), (j, k) ∈ Eg};
EO = ∪(i,j)∈Eg

{(i, ij), (ij , Pij), (Pij , i), (ij , j)} ∪
∪(i,j)∈Eg,j∈V −g

{(j, Rij), (Rij , j), (ij , Rij)} ∪
∪(i,j),(j,k)∈Eg

{(jk, Rijk), (Rijk, jk), (ij , Rijk)};
eO = {(i, 0) | i ∈ V +

g } ∪ {(i, eg(i)) | i ∈ V −
g } ∪

∪(i,j)∈Eg
{(ij , eg(i)), (Pij , µ(Gg)− eg(i))} ∪

{(Rij , µ(Gg)− eg(j)) | (i, j) ∈ Eg, j ∈ V −
g } ∪

{(Rijk, µ(Gg)− eg(j)) | (i, j), (j, k) ∈ Eg};
dO = ∪(i,j)∈Eg

{((i, ij), 0), ((ij , Pij), 0), ((Pij , i), 1),
((ij , j), dg(i, j))} ∪

∪(i,j)∈Eg,j∈V −g
{((j, Rij), 0), ((Rij , j), 1),

((ij , Rij), dg(i, j))} ∪

5Buffer size 0 may seem artificial, but it is caused by the fact that we only
consider buffer requirements after all firing starts and ends at a certain moment
in time have occurred. The size 0 is in fact convenient in the reduction.

∪(i,j),(j,k)∈Eg
{((jk, Rijk), 0), ((Rijk, jk), 1),

((ij , Rijk), dg(i, j))}.

In the remainder of this subsection, we assume for sim-
plicity that every actor has an output edge. The reasoning for
actors without an output edge is simpler and goes along the
same lines.

First, we observe that Gg and GO have the same MCM.

Lemma 4: µ(GO) = µ(Gg).

Proof: All the cycles of Gg are still present in GO with
the same total execution time and the same number of initial
tokens but with for any edge (i, j) ∈ Eg the extra ij actors
inserted. This means that µ(GO) ≥ µ(Gg). The transformation
from Gg to GO adds cycles (i, ij), (ij , Pij), (Pij , i) with
execution time µ(Gg) and one initial token. It furthermore
adds cycles (jk, Rijk), (Rijk, jk) with execution time µ(Gg)
and one initial token. None of these cycles causes µ(GO)
to be strictly larger than µ(Gg). Finally, for every cycle of
Gg going through edges (i, j), (j, k) ∈ Eg , the transformation
adds a cycle with extra actor Rijk through edges (ij , Rijk) and
(Rijk, jk). However, the additional execution time µ(Gg) −
eg(j) is compensated by one extra token, on the (Rijk, jk)
edge, which means that also these extra cycles do not increase
the MCM. Hence, µ(GO) = µ(Gg).

The following lemma shows that, given the actor firing times
of the actors in Vg in any SPROS of GO, the firing times of
all the additional actors are fixed. It also shows that, except
for the buffers needed for the ij actors, all buffer sizes are
fixed and independent of the particular SPROS.

Lemma 5: Let sO be an SPROS of GO with buffer-capacity
distribution function bO. For edges (i, j), (j, k) ∈ Eg ,

1) sO(ij) = sO(i) and sO(Pij) = sO(i) + eg(i);
2) sO(jk) = sO(j) and sO(Pjk) = sO(Rijk) = sO(j) +

eg(j);
3) bO(i) = bO(j) = 0 and bO(Pij) = bO(Pjk) =

bO(Rijk) = 1.

Proof: Properties 1 and 2 follow from the actor execution
times of GO and the observations that, by Lemma 4, sO has
period µ(Gg), that the i, ij , Pij actors are on a cycle of length
µ(Gg) with an initial token on edge (Pij , i), that the j, jk, Pjk

actors are on a cycle of length µ(Gg) with an initial token
on edge (Pjk, j), and that the jk and Rijk actors are on a
cycle of length µ(Gg) with an initial token on edge (Rijk, jk).
Property 3 then follows directly from Equation (5) and the
derived relations between the various actor start times.

The following two propositions prove a one-to-one corre-
spondence between SPROSs of Gg and GO and their buffer
sizes.

Proposition 2: A schedule sg is an SPROS of Gg if and
only if sO with, for all actors i ∈ Vg , sO(i) = sg(i) and the
start times of the other actors of GO as in Lemma 5, is an
SPROS of GO.

Proof: This result follows immediately from Lemma 5
and the observation that the finishing time fg(i) for any actor
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in Vg is identical to the finishing time fO(ij) for the extra
actors ij in GO. As a result, all tokens on edges (ij , j) in GO

become available at the same moment in time as corresponding
tokens on edges (i, j) in Gg .

Proposition 3: Consider two corresponding SPROSs sg of
Gg and sO of GO. If sg has buffer-capacity distribution
function Bg , then sO has buffer-capacity distribution function
bO with, for any edge (i, j) ∈ Eg , bO(ij) = Bg(i, j) and the
buffer capacities of the other actors of GO as in Lemma 5.

Proof: Given Lemma 5, the only remaining proof
obligation is to show that bO(ij) = Bg(i, j), for any edge
(i, j) ∈ Eg . First, the number of initial tokens on edge (i, j)
in Gg is the same as the maximal number of initial tokens on
any of the output edges of actor ij in GO. Second, because
the finishing time fg(i) for any actor in Vg is identical to the
finishing time fO(ij) for the ij actors in GO, tokens on edges
(ij , j) and (ij , Rijk) in GO become available at the same
moment in time as corresponding tokens on edge (i, j) in Gg .
Third, the latest consumption of any of the tokens produced by
a firing of ij on its output edges to actors Pij , Rijk, j, and any
actors Rhij for input edges (h, i) is performed by actors Rijk.
The Pij and Rhij actors consume the produced tokens at the
same time as they are produced; if actor j consumes the token
at time t, then all the Rijk actors consume the corresponding
tokens at time t+ eg(j). Thus, the tokens occupy space in the
buffer bO(ij) till time t + eg(j). Finally, since start times of
actors j in Gg and GO correspond and according to Equation
(11) the space for a token in buffer Bg(i, j) is released at
time t+ eg(j) if j starts a firing at time t, the correspondence
bO(ij) = Bg(i, j) follows.

Theorem 5: OSBA-D is NP-complete.

Proof: The transformation from Gg to GO is polynomial.
Furthermore, in line with the argument in the proof of Theorem
4, a proposed buffer-capacity distribution function for GO can
be verified in polynomial time by building a constraint graph
based on the OSBA precedence and buffer constraints as given
in the OSBA-eIP problem formulation. Finally, Propositions 2
and 3 show that gOSBA-D has a solution with total buffer
requirements Kg if and only if OSBA-D has a solution with
total buffer requirements Kg+|Eg|+|{(i, j, k) | (i, j), (j, k) ∈
Eg}|. The result then follows from Theorem 4.

VIII. AN EXACT SOLUTION

A. The Solution

Our exact solution to OSBA, with exponential complexity,
is based on the throughput-buffering trade-off analysis tech-
nique of [11], [12] for multi-rate and cyclo-static dataflow
graphs. SRDF graphs are a subclass of these graph types. The
technique explores the trade-off space between throughput and
buffer requirements by iteratively executing a dataflow graph
while computing throughput that can be obtained with given
buffer sizes. The exploration starts from buffers of size 0 and
then recursively increases buffers that potentially prevent a
throughput improvement. An actor is said to have a storage
dependency if its firing depends on the availability of space in

i,e(i)
Pi,µ(G)-e(i)

Fig. 6. An SPROS-preserving transformation.

some buffer. Such a buffer is then increased and the dataflow
graph is re-evaluated with the increased buffer. In this way, the
smallest buffers allowing a rate-optimal schedule are found.
In order to apply the technique in the current setting, two
small adaptations are needed. The technique as presented
in [11], [12] assumes separate buffers for all output edges
of an actor, whereas OSBA assumes a shared buffer. The
notion of a storage dependency and the computation of total
buffer requirements from a given execution need to be adapted
to reflect this. However, these adaptations do not affect the
correctness argument given in [12].

Unfortunately, the result of the sketched analysis are the
minimal buffer sizes among all rate-optimal schedules, not
necessarily SPROSs. To the best of our knowledge, under the
buffering assumptions of OSBA, it is an open problem whether
the minimal buffer sizes among all rate-optimal schedules
can also be realized with an SPROS. Note that Section VI-
B, via Theorem 1 and a capacity-constrained model, shows
that buffer minimality and static periodicity can be obtained
simultaneously for gOSBA. However, we have not been able
to develop a similar capacity-constrained model for OSBA.
Nevertheless, the technique of [11], [12] forms the basis of
an exact solution to OSBA, by applying it on a transformed
graph that preserves SPROSs with their buffer requirements.

Given a graph G, let Gspros be the SRDF graph obtained
by adding for each actor i an actor Pi with execution time
µ(G)− e(i) and two edges (i, Pi) and (Pi, i), the latter with
one initial token. The transformation is illustrated in Figure 6.
Clearly, the MCM of Gspros is µ(G).

Consider now an SPROS s of G. Schedule sspros obtained
from s by defining sspros(i) = s(i) and sspros(Pi) = s(i) +
e(i) for all i is an SPROS of Gspros, because every actor is
forced in a periodic regime with period µ(G). Conversely, any
SPROS of Gspros can be turned into an equivalent SPROS of
G, by simply omitting the schedule times of actors Pi.

If an SPROS s of G has buffer-capacity distribution function
b, then sspros has buffer-capacity distribution function bspros

with, for all actors i, bspros(i) = b(i) and bspros(Pi) = 1. The
addition of an actor Pi does not affect the required buffer size
of actor i because Pi always immediately starts its firing when
i finishes its firing. The buffer for Pi is clearly 1 (even when
Pis execution time is 0, because of the initial token). Thus,
the buffer-optimal SPROSs of G and Gspros coincide, yielding
the same buffer sizes for the actors of G.

The technique of [11], [12] can now be used to solve OSBA
for a given SRDF graph G by applying it to the transformed
graph Gspros, as the following reasoning shows.

As shown in [21] and [12], the result of the buffer analysis is
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a periodic rate-optimal schedule with an initial transient part.
By the construction of Gspros, with every actor embedded in a
cycle of length µ(G), every actor is forced to fire in a strictly
periodic regime eventually in any rate-optimal execution of
Gspros. As a consequence, the result of the buffer analysis of
[11], [12] applied to Gspros is a schedule s such that for some
N ≥ 0, for all actors i in Gspros and all k ≥ N , s(i, k +1) =
s(i, k) + µ(G).

The technique of [11], [12] computes the buffer sizes from
the periodic part of schedule s. Assume that those buffer sizes
are given by the buffer-capacity distribution function bspros.
It turns out that schedule s can be turned into an SPROS
of Gspros with the same buffer-capacity distribution function
bspros. Since the total buffer size of bspros is minimal among
all rate-optimal schedules of Gspros, it is minimal among
all SPROSs of Gspros, and hence, because of the one-to-
one correspondence between SPROSs of G and Gspros and
ignoring the fixed-size buffers of the extra Pi actors, among
all SPROSs of G.

The proof that s can be turned into an SPROS of Gspros with
buffer-capacity distribution function bspros uses an inductive
argument on the length of the transient, i.e., the first N firings
of all actors. The key point is that, by the construction of
Gspros, all firings of one actor in s are at least µ(G) time units
apart. Maximally delaying the first N firings of all actors in s
yields the desired SPROS. If N = 0, then s is an SPROS. For
the inductive step, assume N > 0; consider the actor firings
in the transient in reverse order, ordered by their finishing
times, and assuming some arbitrary order for firings finishing
at the same point in time. The first actor in this sequence,
which is (one of) the last actor(s) to complete its N th firing,
can now be delayed as follows. Assume the considered actor
is actor i. The considered firing has index N − 1 and start
time s(i, N − 1). By construction of Gspros, s(i, N − 1) =
s(i, N)−µ(G)−δ for some non-negative integer δ ∈ N0. The
start time s(i,N−1) can now be delayed by δ to s(i, N−1)+δ,
at the same time setting the start time of the extra actor Pi to
s(i, N −1)+δ+e(i). Thus, these two firings are added to the
strictly periodic part of the schedule. Since all the required
input tokens for firing N − 1 of i are already available at
s(i, N−1), they are also available at s(i, N−1)+δ. Delaying
an actor firing delays the production of output tokens. The start
time of firing N − 1 of actor Pi is adapted appropriately. A
crucial point now is that no firings with index N or greater are
affected. Firing all actors the same number of times, as in one
period of the schedule, leaves the token distribution over the
edges of the graph unchanged. Since the periodic part of s has
period µ(G), this means that the production of output by firing
N − 1 of actor i at time s(i, N) − µ(G) is in time to allow
the start of all firings with index N of all the actors of Gspros.
Again using the fact that firing all actors the same number
of times does not affect the token distribution, the periodic
part of the new schedule still has buffer-capacity distribution
bspros. Assuming now that the first n firings in the considered
sequence, i.e., the last n firings in the transient of s, have been
delayed maximally, the same reasoning applies to firing n+1
in the sequence, completing the inductive argument.

In summary, given an SRDF graph G, OSBA can be solved

TABLE III
AVERAGE OVERESTIMATION OF BUFFER SIZES BY THE OSBA SOLUTION

OF NING AND GAO FOR TWO SYNTHETIC BENCHMARKS.

avg. overest. (%) subopt. sol. (%) avg. overest. subopt. (%)
set 1 2.7 17.2 6.0
set 2 1.7 48.9 2.1

by transforming G into Gspros and then apply the analysis of
[11], [12]. The periodic part of the computed schedule and the
derived buffer sizes form a solution to OSBA, when ignoring
the additional actors Pi. Both the number of investigated buffer
sizes and the length of the execution of an SRDF with a
given buffer size may be exponential in the size of the graph.
Nevertheless, the technique turns out to work well in practice,
as illustrated in [11] and [12] and the next subsection.

B. Error Quantification

To get some insight in the degree of inaccuracy of the OSBA
solution of [1], we used the SDF3 [22] toolset to construct a
benchmark of two sets of 10,000 synthetic SRDF graphs each.
The first set contains graphs with 7 nodes and on average 9.5
edges. The second set contains graphs with 40 nodes and on
average 57.6 edges. The graphs have been constructed with an
average in/out-degree of 1.5 edges per node and a maximum of
3 input/output edges per node. These characteristics are chosen
to reflect the characteristics of medium-sized and large models
one may expect in the DSP and multimedia domains. We use
synthetic examples to create a sufficiently large test set.

Experiments were performed on a 3.4 GHz Pentium 4
PC with 4 GB of internal memory. The run-time needed to
compute the buffer sizes and the SPROS with the method
presented in the previous subsection is on average 2.06 ms for
the first set with a maximum of 684 ms. The second set has
an average run-time of 156 ms with a maximum of 9786 ms.
The experiments never need more than a few MB of memory
at a time. These results indicate that the exact solution, despite
its theoretical complexity, is efficient in practice.

Table III compares the original and the exact OSBA so-
lutions. It shows the average overestimation in buffer sizes
of Ning and Gao’s approach for the two sets. This average
also takes into account those graphs for which the original
algorithm gives an optimal schedule. Table III also shows
how often Ning and Gao’s algorithm provides a sub-optimal
solution, and the average overestimation for those cases.

For the medium-sized graphs, set 1, Ning and Gao’s al-
gorithm gives a sub-optimal solution in about one out of
six cases. For the large graphs, set 2, the algorithm is sub-
optimal in about one out of two cases. This difference is
expected because the type of subgraphs for which Ning and
Gao’s approach is sub-optimal may occur more frequently in
larger graphs. If the result is sub-optimal, the overestimation
is larger for smaller graphs. Also this is as expected, since
smaller graphs typically have smaller absolute total buffer
sizes, which means that the relative overestimation is larger.
The overestimation is small in all cases, which may explain
in part why the sub-optimality of the approach remained
undetected up to now.
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IX. CONCLUSION

This paper revisits buffer sizing for rate-optimal single-
rate dataflow scheduling, in particular the Optimal Scheduling
and Buffer Allocation (OSBA) problem defined in [1]. We
have shown that the linear-programming-based polynomial
solution proposed in [1] is sub-optimal, in contrast to the
optimality claim made in [1]. We have proven that the problem
is in fact NP-complete. Along the way, we have shown that
also a generalized version of OSBA with commonly assumed
more conservative buffering assumptions is NP-complete as
well. We developed exact solutions to both OSBA variants
that are efficient in practice. These solutions have been
implemented in the tool SDF3 [22], that is available via
http://www.es.ele.tue.nl/sdf3.
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