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Abstract— Multimedia applications usually have throughput a technique is presented to compute the trade-offs betwesn t
constraints. An implementation must meet these constrails, throughput and buffer size for an SDFG. These trade-offs are
while it minimizes resource usage and energy consumptlor_l._h'lé Pareto points in the throughput/buffer size space. An exarop
compute intensive kernels of these applications are ofterpecified this trade-off space is shown in Fig. 2. Each point in the spac

as Cyclo-Static or Synchronous Dataflow Graphs. Communica- N
tion between nodes in these graphs requires storage space iaih represents a distribution of storage space over the chanrehd

influences throughput. We present an exact technique to char 3 in the SDFG of Fig. 1 that is optimal in terms of the trade-off
the Pareto space of throughput and storage trade-offs, whiccan between storage space and throughput. To explore this-tifide
be used to determine the minimal buffer space needed to exdeu space, an exact design-space exploration algorithm iepted in

a graph under a given throughput constraint. The feasibility [9] that prunes the search space without losing any Paretispo
of the exact technique is demonstrated with experiments on a Finding the minimal storage requirements for a deadloek-fr

set of realistic DSP and multimedia applications. To increae - . . . o
scalability of the approach, a fast approximation techniqe execution (i.e. an execution with positive, non-zero tigtgout)

is developed that guarantees both throughput and a, tight, for an SDFG is already known to be NP-complete [10]. Desgite o

bound on the maximal overestimation of buffer requirements the worst-case complexity, the experimental results irc[jfirm
The approximation technique allows to trade off worst-case that this algorithm can be used to explore the design space of

overestimation versus run-time. realistic DSP and multimedia applications.

Index Terms—cyclo-static dataflow, synchronous dataflow, ~An actor in an SDFG consumes and produces a fixed amount
buffering, throughput, optimization, Pareto analysis, trade-offs, Of tokens on each firing. The CSDF model relaxes this comdtrai
DSP and multimedia applications by allowing the consumption and production of tokens to vary
between subsequent actor firings. It requires that the ataafn
tokens consumed and produced by actor firings can be captured

[. INTRODUCTION
with a repeating finite sequence (as opposed to the constes r
YCLO-STATIC Dataflow Graphs (CSDFGs, [1]) and Syn yhe 5pF model). This makes CSDF more widely applicable in

chronou; Datgflow G_raphs (SDFGs, [2]) are used to moq‘ﬁlodeling dataflow applications than SDF.
DSP and multimedia applications [3]-[7]. The main reasarilie This paper generalizes the techniques from [9] to Cycltiesta

growipg .popularity. of these mOd?'S Is that .they al]ow anialﬁ Dataflow Graphs. The result is the first technique to compute t
their .t|n_1|ng beha\{lor (71, [8]. Th',s makes It p055|blle to ‘m,i complete, optimal trade-off space between the throughpudt a
the timing behavior of an application when realized using Buffer size for a CSDEG. The design-space exploration dtgar

multiprocessor. systgm-on-chip. uses an improved termination condition when compared to the
A (C)SDFG is a directed graph where the nodes (Caledr  spr yersion presented in [9]. As a result, it completes trzzcte

repr((ja_sent (éjomp()jutatlons thaft gommlunlcate with each other QXrlier, while it is still exact. Proofs for the correctneasd
sending ordere streams of data-elements (caliigeng OVE  termination of the algorithm, omitted in [9], are provided this
their edges (called(:jhannel&;} An (Iexampl.e th an S,DF(,B with paper. Experimental results are reported on a larger setatitic

3 actorsa, ,b’ ¢ and two ¢ annelsy, ﬂ,,'s shown in F|g.. 1 applications than used in [9], including not only SDF modals
The executllon O.f an actor |s.callled faing. Actor execut|.on also CSDF models. As the buffer minimization problem is NP-
times are given inside actors in Fig. 1. When an actor_flres,HBrd, the analysis can occasionally become too time comgumi
consumes tokens from its input channels, performs a comipata ¢, the evaluated models, the technique completes witltionsks

on these tokens and outputs the result as tokens on its OUt%}élually milliseconds), except for one case. For an H.262der
channels. An - important property of an SDFG is that ac.tc.) hich has 3255 throughput-buffering Pareto points, then-tec
consume and produce a fixed amount of tokens on each f"”?ﬁ’que takes 53 minutes. To improve scalability, an appration
Per channel, these fixed amounts are called the COnsumptﬁ%hnique is presented that can be used to explore the design

and productionrates given as edge annotations in the graph'§,ace while trading off run-time of the algorithm with quglof
visualization. Channels may contain initial tokens deices b, opng result, in terms of buffer size overestimation. Wee gi

black dots annotated with their number. Storage SpRofers ,, anajvtical bound on the overestimation of our heuriskioe
must be allocated for the communicated tokens. The SIOREEES g its show that the approximation heuristic scales Wehen

influences the maximal throughput that can be achieved. Jin [%pplied to the two application models for which the exachtec
This work was supported by the Dutch Science Foundation Nw@idue has the longest run-time, it approximates the thrpugh

project 612.064.206, PROMES, and the EU, project IST-0404buffering trade-off space within a few milliseconds and ésd
Betsy. than half a second respectively. The minimal buffer sizesdad
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2 « 3@1 B2 ) have been proposed for minimizing buffer requirements unde
yps! Ml 1 7 1 a throughput constraint. In [14], a technique based on tinea
i i programming is proposed tlo galcglate a §c.he.dule that gsallz
the maximal throughput while it tries to minimize buffer &z
Fig. 1. Example SDFG. Hwang et al. propose a heuristic that can take resource redmtst
into account [15]. This method is targeted towards a-cyclic
graphs and it always maximizes throughput rather than uaing
throughput constraint. Thus, it could lead to additionaoce
requirements when a lower throughput is sufficient. In [briffer
06,30 | minimization for maximal throughput of a subclass of SDFGs
520 (homogeneous SDFGSs) is studied. The proposed algorithm is
] based on integer linear programming. Although SDFGs can be
transformed into homogeneous SDFGs. In general, the minima
buffer sizes obtained with this approach cannot be traed|ab
exact minimal buffer sizes for arbitrary SDFGs.
‘ ‘ ‘ ‘ A buffer minimization technique for CSDFGs is presented in
storage distrbutionsize [4]. The technique computes the minimal buffer requireradat
a CSDFG with a static-time schedule. This schedule detesran
Fig. 2. Pareto space for SDFG shown in Fig. 1. which moment in time actor firings are started. As such, itroefi
the life-time of the tokens sent over the channels of the lgrap
) ) ) The buffer requirements follow directly from the token Hfienes.
for maximal throughput are approximated with less than 0.2%,¢ technique guarantees that the minimal buffer requingsnare
and 0.5% overgstimation respectivgly. On three artifiyiaibat.ed. found for the given schedule, and is similar to life-time lgais
models, for which the exact technique does not compIetelrWlth[echniqueS used in [14] and [17] for more restricted dataflow
several hours, it approximates the throughput-bufferiragie-off models. However, a schedule of the CSDFG may exist that

space within seconds. The analytical bound guaranteeshess (qjjizes the same throughput with smaller buffer requiresie
1% in overestimation in the buffer sizes needed for maximal In [7], a heuristic algorithm is presented that tries to miizie

throughput for all three models. buffer requirements for a throughput-constrained CSDFGe T

The remainder of this paper is organized as follows. Th:% orithm is fast but it cannot guarantee bounds on the buffe

next section discusses related work in the area of SDFG a&&e overestimation. The reported overestimation varetsvéen

CSDFG buffer sizing. Sec. Il formalizes the CSDF model,rsucs% and 28%

that it generalizes the SDF modelThe operational semantics We propose, in contrast to the existing work, an exact tech-

is defined in Sec. IV. The storage requirements for edges of a - i .
CSDFG are discussed in Sec. V. The throughput of a CSDFGSH¢ to determine a.” trade gﬁs (Pareto points) betwee t
. . . ; throughput and buffering requirements for a (C)SDFG, ad wel
defined in Sec. VI. Sec. VII explains how this throughput can baS an approximation technique to approximate this spacie wh
computed from an execution of the graph and Sec. VIII explain PP d PP P

how dependencies on storage space between actor firingsecat? rt())wdlng guarantees on throughput and worst-case bufie s

. o : - : - Ooverestimation. An interesting observation is that both éxact
identified from this execution. The dependencies are etquloi S . .
. - . . ; and the approximation technique can also be applied afeer th
in the design-space exploration algorithm presented in Béc L . .
. . search space has been pruned by a heuristic, which may inagene
Experimental results on the performance of the algorithm aJ . . .
. . . . .. “lead to reduced buffering requirements for the given thihpurd
discussed in Sec. X. Sec. Xl investigates the approximation i .
minimal buffer capacities and Sec. XII concludes this paber compared to the heuristic and lower run-times compared to ou
P ) pap exact method. For the mentioned heuristic of [7], one of our
experiments shows that our technique can compute the eeqdt r
Il. RELATED WORK within a second when starting from the result of the heuristhis

Minimization of buffer requirements in SDFGs has been studnakes our work nicely complementary to fast heuristics.
ied before, see for example [3], [11]-[18]. The proposedisohs In [10], it is shown that the buffer minimization problem
target mainly single-processor systems. Modern mediaigppl of homogeneous SDFGs is NP-complete. Any homogeneous
tions, however, often target multi-processor systems diffierent SDFG is also a CSDFG and the throughput-buffer trade-off is
approaches to scheduling and resource allocation. Fumthre; a generalization of buffer minimization, which implies tralso
they have timing constraints expressedtlm®ughputor latency the buffer minimization problem for CSDFGs is NP-hard. Both
constraints. Only looking for the minimal buffer size whiglves our exact and our approximation technique are based on- state
a deadlock-free schedule as done in [3], [11]-[13], [168][may space exploration. Explicit state-space exploration rigpkes
result in an implementation that cannot be executed withasé are frequently applied successfully to solve NP-completed
timing constraints. It is necessary to take the timing camsts sometimes worse) scheduling problems [19]-[21]. For buffe
into account while minimizing the buffers. Several applwes minimization, [13] proposed a state-space exploratiomrigpie

to find minimal buffer requirements to execute an SDFG with
1The original definition of a CSDFG in [1] excludes the simoiaus g deadlock-free schedule. This motivated the investigatib

execution of multiple instances of the same actor, whichma¢hat according i . ; ; ; .
to the original definitions CSDFGs and SDFGs are not directignparable. explicit state-space exploration techniques in [9] and paper.

We present a formalization of CSDF that allows the simulbaiseexecution 11€ teChnique_s develqp_ed in[9] and in tl’_ne current paperqm_]ﬂ
of multiple instances of the same actor. search space in an efficient way, as confirmed by the expetainen

0.3

o
N
a

throughput
IS)
o o o
[ o )
N
N
=]

o
o
a

o
o
o



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 3

3,1 o [4 21/\[2,4] 8 1[6,6] in the graph. Doing so for all sequences gives a CSDFG in which
a,[1,3] '@ ¢ (2,3] all sequences are of equal length.

Definition 3: (SDFG)An SDFG is a CSDFG with the length
Fig. 3. Example CSDFG. of execution time and rate sequendg€sequal to one.

For certain rates in a (C)SDFG, the (C)SDFG deadlocks om®ke
accumulate on the channels. In the latter case, a (C)SDFG can
only execute in unbounded memory. Consistency (CSDF [1F SD
[2]) is known to be a necessary condition to allow an executio
l1l. CYCLO-STATIC DATAFLOW GRAPHS within bounded memory in which no actors deadlock [22].

An example of a Cyclo-Static Dataflow graph (CSDFG) is pefinition 4: (CONSISTENCY REPETITION VECTOR A repe-
depicted in Fig. 3. Every time an actor fires it consumes a@®rt tition vector ¢ of a CSDFG (A,C) is a function in4 — N
amount of tokens from its input ports and produces a Ce”?’(riﬁ\/en byg(a) = N - r(a) for all « € A wherer is a function in
amount of tokens on its output ports. These amounts aredcallg _, n, such that for each channgb,i) € C' from actora € A
the portrates Every actora models a periodic execution sequenceg j, ¢ 4, 7(a)-Yg<nen Rate(o,k) = (b)Y g<pon Rate(i, k).
[£(0), f(1),---, f(N —1)] of length V> 1. The meaning of this A repetition vector is called non-trivial if and only i(a) > 0
sequence is as follows. Theth time that the actor is fired, for all o € A. A CSDFG is called consistent if and only if it has
it executes the functiori(i mod N). As a consequence, the porta non-trivial repetition vector. For a consistent grapheth is a

rates and execution time of actors are also a sequence. ThgsRue smallest non-trivial repetition vector which is igemted
sequences are visualized as port and actor annotationg=i@ee 55 the repetition vector of the CSDFG.

3). The channels in the graph may contain tokens. The stora'&;e - h ber of firi
space of a channel is in principle unbounded, i.e., it cartaion h rept))e_tmon r\]/ector th l:)S rEpresr(]antds_ a rgum erfo ;(nngsg?grac
arbitrarily many tokens. that brings the graph back to the distribution of tokens e

Formally, a CSDFG is defined as follows. LEt denote the firings. The repetiTtion ve(_:tor of our example graph (see BDg..
is equal to[6 4 2]*, ordering the actors from left to right. This

shows that the graph is consistent. Since inconsistenhgrape

typically not useful and consistency is straightforwardctueck

results, without losing any Pareto points.

positive natural numbers, ari¥,, the natural numbers including
0. Assume a seP of ports. With each porp € P, a sequence of

rates(ro, 71, -- ,7n_1] With r;, € Ng and N € N is associated. . . .
The rEC?nLler of t;ﬁenli consslmed gr produced by a part? on [12], we restrict our attention to consistent CSDFGs. Fenrtfore,

its i-th access is given byate(p,i) — r; moa v (Wherei starts we assume connectedness. For unconnected graphs, amralysis
from 0) ’ ¢ me be done per connected subgraph.

Definition 1: (ACTOR) An actora is a tuple (I,O,T) con- IV. OPERATIONAL SEMANTICS OFCSDFGs
sisting of a setl C P of input ports (denoted byn(a)), a set

O C P of output ports (denoted witbut(a)) with INO = @
and a sequencq = [to,t1, -+ ,tny—1] Of execution times with
t; € Np.

To describe and study the methods introduced in this pajgr, C
DFG execution is formalized through a labeled transitiostem.
This requires appropriate notions of states and of traosti

As explained, an actor consumes input tokens at the start of a

Definition 2: (CSDFG)A CSDFG is a tuplé A, C) consisting f?ring, and produces.ogtput at the end of the filring. In the sema
of a finite set of actors and a finite sef C P x P of channels, [icS: channels have infinite storage space, which meansttew

The channel source is an output port of some actor, the deiin 'S @lways sufficient space available for output. Physicatage
is an input port of some actor. All ports of all actors are cented constraints are modeled by additional channels. The sérsant

to precisely one channel. For every acter= (1,0, T) € A, we abstracts from the actual data that is being communicated or
denote the set of all channels that are connected to the jiortsProcessed by actors and treats all data elements equallyein t
1 (0) by InC(a) (OutC(a)). form of tokens. This is possible as we are interested in theng

behavior and memory usage, and not for example in functional

In the original CSDF definition [1], no assumptions are made Qnajysis. In order to capture the timed behavior of a CSDFE, w
the execution time of actors. The example CSDFG presented jga o keep track of the distribution of tokens over the obim

[1] suggests that fixed actor execution times are used. &Miith  4f the start and end of actor firings, and the progress of time.
[4] and [7], this paper generalizes the fixed actor execulimes 15 measure the number of tokens present in, read from or

to a sequence of execution times for each actor. N written to channels, we define the following concept.
As mentioned, actor execution is defined in termsfiohgs.

The execution time of theth firing of an actora is denoted as
7(a,i). When actora starts itsi-th firing, it removesRate(q, 1)
tokens from all(p,q) € InC(a). The execution continues for ) ; )
7(a,4) time units and when it ends, it produc&&te(p, i) tokens C1 S C2. We write 1 = 42 if and only if for every channel
on every(p,q) € OutC(a). In this paper, it is assumed that all® € C1: 71() < 72(a). Channel quantities;, + 2 and v1 — 2
port rate sequences and execution time sequences in a CsC¥gdefined by pointwise addition resp. subtractionypfand
are of the same lengtty. This assumption is only made for ®SP-72 from y1; 71 — 72 is only defined ify; < 1.

readability. The presented techniques are also valid whah pThe amount of tokens read at the start of iké firing of some
rate and/or execution time sequences of different lengthsised. actora can be described by a channel quantity(a,:) such that
Every sequence can always be concatenated till its lengiyual Rd(a,i)(p,q) = Rate(q,%) if ¢ € In(a) and Rd(a,i)(p,q) = 0
to the least common multiple of the lengths of all sequenseslu otherwise. Similarly, the amount of tokens produced at the &f

Definition 5: (CHANNEL QUANTITY) A channel quantity on
the setC of channels is a mapping : C — Ny. If 1 is a
channel quantity orC; and v is a channel quantity oy with
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Fig. 4.

Limited auto-concurrency.

the i-th firing is given by a channel quanti§f'r(a,4) such that
Wr(a,i)(p,q) = Rate(p,1) if p € Out(a) and Rd(a,i)(p,q) =0
otherwise.

Definition 6: (STATE) The state of a CSDFGA,C) is a 3-

tuple (v, v,n). Channel quantityy associates with each channel
the amount of tokens in that channel in that state. To keegktr

of time progress, an actor status: A — N?“XN“ associates with

each actora € A a multiset of pairs of numbers representing th
remaining times of different firings afand the index in the actor

execution sequence corresponding to the firing startA — Ny
associates with each actare A its current position in the actor

execution sequence. The initial state of a CSDFG is detemuinin
by initial token distributiony, which means that the initial state

equals(vy,{(a,{}) | a € A},{(a,0) | a € A}) (with {} denoting
the empty multiset).

infinite alternating sequence of states and transiti@@g—‘i s1 Ay
... starting from the designated initial statg.

Note that all CSDFG (even a deadlocked one, in which no actor
is firing or ready to fire) has an infinite execution as time gisva
progresses.

V. STORAGEREQUIREMENTS

As mentioned in Sec. lll, channels have unbounded storage
space in the semantics. However, in practice storage spasé m
be bounded. Bounded storage space for channels can beedealiz
in different ways. One option is to use a memory that is shared
between all channels. The required storage space for tlueiéoe
of a CSDFG is then determined by the maximum number of

Gokens stored at the same time during the execution of the

raph. Murthy et al. use this assumption to schedule SDF@s wi

inimal storage space [16]. This is a logical choice for Eng
processor systems in which actors can always share the mpemor
space. A second option is to use a separate memory for each
channel, so empty space in one cannot be used for another. Thi
assumption is logical in the context of multiprocessor ey,
as memories are not always shared between all processags. Th
channel capacity must be determined per channel over the ent
schedule, and the total amount of memory required is oldaine

The use of a multiset of pairs of numbers to keep track of actby adding them up. Minimization of the memory space with this

progress instead of a single (pair of) number(s) allows iplelt
simultaneous firings of the same actor (auto-concurrenthjs

is a generalization of the original CSDF semantics of [1], ibu
is in line with the standard SDF semantics (see, e.g., [B)).
allowing auto-concurrency, we achieve that our CSDF dédbimit
is a true generalization of the SDF model of computation.
desirable, auto-concurrency can always be limited or ebedu

variant is considered in [3] and [11]. Hybrid forms of bothtiops

can be used [13]. In this paper, we assume channels cannet sha

memory space. This gives a conservative bound on the rehuire

memory space when the CSDFG is implemented using shared

memory. In that case, the CSDFG may require less memoryt but i

Will never require more memory than determined by our method
The maximum number of tokens that can be stored in a channel

by adding self-loops to actors with a number of initial token(channel capacityis captured by atorage distribution

equivalent to the desired maximal auto-concurrency dedree

our running example, we disallow auto-concurrency by agdinign, of 4 CSDFG(4, ()

self-loops (channels,, ¢, and ¢.) with a single token to all
actors as shown in Fig. 4.

The dynamic behavior of the CSDFG is described by tran

tions. Three different types are distinguished: start edafirings,
end of firings, or time progress in the form of clock ticks.

Definition 7: (TRANSITION) A transition of CSDFG(A, C)
from state (y1,v1,m1) to state (y2,v2,7m2) is denoted by

(v1,v1,m1) A (y2,v2,m2) Where labels € (A x {start,end}) U
{clk} denotes the type of transition.

o Label 3 = (a, start) corresponds to the firing start of actor

a € A. This transition may occur iRRd(a,n1(a)) < 11 and
results iny2 = v1 — Rd(a,n(a)), n2 = mla — (m(a) +
1) mod NJ, i.e.,n; with the value for replaced by(n; (a)+
1) mod N, andvy = vifa +— vi(a) W{(7(a,n1(a)),n(a))}]
(wherew denotes multiset union).

o Label 8 = (a,end) corresponds to the firing end afe A.
This transition can occur if0,i) € v1(a) for somei and
results invy = vifa — v1(a)\{(0,%)}] (where\ denotes
multiset difference), angs = v; + Wr(a, i), n2 = n1.

o Label 3 = clk denotes a clock transition. It is enabled if no

end transition is enabled and results 48 = 1, 72 = 71,
and vy with for all actorsa € A, va(a) = {(m — 1,n) |
(m,n) € vi(a)}.

Definition 9: (STORAGE DISTRIBUTION) A storage distribu-
is a channel quantity that associates
with everya € C, the capacity of the channel.

S‘|’_he storage space required for a storage distribution Iseddhe

distribution size

Definition 10: (DISTRIBUTION SIZE) The size of a storage
distribution ¢ is given by:|d] = >~ o 0(a).

A possible storage distribution for the CSDFG shown in Fig. 3
would beé(a) = 8 and §(8) = 6, denoted aga, 3) — (8,6).
It has a distribution size of 14 tokens. Note that if tokens on
different channels represent different amounts of datis, ¢an
easily be accounted for in the definition of distributionesiin
the remainder, we assume that all tokens are of equal size.
Let (p,q) be a channel from actof to actorb. Assume that
the channel contains in the initial state of the executidnkens.
The number of tokens in the channel aftefirings of a andm
firings of b is given by the following equation:

d+ Y Rate(p,i)— > Rate(q,y)
0<i<n 0<j<m
This is equal to:

d+ z Rate(p,1) — z Rate(q, j)

0<i<n 0<j<m -8+ d mod S,

s
with s = gecd{Rate(p, 1), Rate(q,j) | 0 <i < N,0 < j < N}.

Definition 8: (EXEcUTION) An execution of a CSDFG is an The number of tokens that may ever appear in a channel, and
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4,2) 2,4] 6P 6, 6] VI. THROUGHPUT

Throughput is an important design constraint for embedded
multi-media systems. The throughput of a graph refers to how
often an actor produces an output token. There exists ecpkati
type of execution for SDFGs, namely self-timed executiohich
Fig. 5. CSDFG with storage distributiofg, 6). gives maximal throughput [23]. In a self-timed executiolyck

transitions occur only when no start transitions are erthble

requires that each actor fires as soon as it is enabled. This

execution guarantees that all actor firings occur as early as
hence the storage space which can be effectively used, depgpossible. So, this execution guarantees that at any moment i
on the gcd of all possible combinations of rates at which thigme the maximal number of actor firings possible has occlrre
actorsa and b produce and consume tokens. This gedn the since the start of the execution. Hence, the self-timed i@t
above formula, is called thstep sizeof the channel. It follows of an SDFG achieves maximal throughput. It is obvious that fo
furthermore that it is not meaningful to have a number ofiahit the same reason also the self-timed execution of a CSDFG wiill
tokensd in a channel such that mod s # 0. These tokens will give its maximal throughpuit.
never disappear. Thus, in the remainder, we assume forbiitgla
that also the number of initial tokens in a channel is a migtqf
its step size. If this assumption is not valid, computeddiusizes
can be corrected by increasing the storage space of a chizwael
containsd initial tokens byd mod s tokens.

The bound on the storage space of each channel can be modDg¢ that some actors in some graphs can only achieve their
in a CSDFG(A, C) by adding for channe(p,q) € C from an maximum throughput with unboun(.ied channels [22]. In .thI.S
actora € A to an actorb € A a channel(gs, ps) from b to a, paper, we focus on throughput which can be_ac_h|e_v_ed within
where ps and ¢; are fresh ports not yet in use in the CSDFGpounded storage space; throughput_ach|eved with mﬂrmn_age
with Rate(ps, i) = Rate(p,i) and Rate(qs,i) = Rate(q,i). The space ca_nnot _be implemented and is therefore not considéred
number of initial tokens on the chanriel, ;) equals the storage CSDFG in which all actors are connected through sequences of

space of the channéb, ¢) minus its own initial tokens. data depe.nd(.enci.es and that incorporates a.(by definitiote)fini
storage distribution for all data channels is always stipng

connected. In that situation, the fixed rate sequences chdta

used to model storage space. The CSDFG which models 6o ensure that the number of times actors fire with respect
storage distributiony in a CSDFG(4,C) is denoted(As, Cs). 15 each other (repetition vector) is constant. In other wotte

Fig. 5 shows the CSDFG which encodes the storage distributlfhroughput of each pair of actors in a graph is related to each

8,6) for our running example. Note that no storage space &ther via a constant. This allows us to define a normalizetbnot

gllocated for the self-loops on the actors. These selfdoape of throughput for a CSDFG, in line with the definition for SDF
introduced to model absence of auto-concurrency and will n%

. ; ) , ven in [8]. Thus, in the remainder we assume that a CSDFG
require storage space in a real implementation and can @us,4e|ing a storage distribution is strongly connected.
ignored. In fact, our technique allows in general to spewihich
channels should be considered buffers, and which chanredglim  Definition 12: (THROUGHPUT) The throughput of a CSDFG
other dependencies. The self-loop dependencies addedni [iG = (4,C) is defined asTh(G) = Tq}éff;) for an arbitrarya € A,
auto-concurrency are just one example of this flexibilitgeTonly Whereg is the repetition vector of:.

requirement is that the CSDFG modeling the storage digidbu T, compute the throughput of our example SDFG with the given
is strongly connected, as explained below. This means that®D storage distribution (see Fig. 5), we first look at the tréosi
can be relaxed to assign channel capacities to a subsetmielsa system of the self-timed execution as shown in Fig. 6. States
only. are represented by dots. Sequences of state transitiosssting

At the start of a firing, an actor consumes its input tokenss Thof all enabled start transitions, followed by a maximal nemb
includes the tokens it consumes from the channels which modé¢ time steps, followed by all possible end transitions lezhl
the storage space of channels to which the actor will writee T macro-steps) are indicated by single arrows. The label ith
consumption of these tokens can be seen as allocation afgstortransition indicates which actors start their firing in thignsition
space for writing the results of the computation. At the efid @nd the elapsed time till the next depicted state is reacheidrs
the firing, the actor produces its output tokens. This inetuthe that continue their firings in a transition are labeled witkilde.
production of tokens on channels which model the storageespahe transition system consists of a finite sequence of statds
of channels from which the actor has read tokens at the biegjnntransitions, called thdransient phasgefollowed by a sequence
of the firing. The production of these tokens can be seen as tifestates and transitions which is repeated infinitely oftew
release of the space of the input tokens. In other words, théein is called theperiodic phase (The next section shows that this
assumes that space to produce output tokens is available avhe is always the case.) Actof in our example is considered to
actor starts firing and that space used for input tokens &aseld determine the throughput of the example graph. This actds éa
at the end of the firing. The chosen abstraction is conseevatifiring for the first time afterl0 clock transitions. At that moment,
with respect to storage and throughput if in a real impleragon  the graph is in the periodic phase of the schedule. The subséq
space is claimed later, or released earlier or data tokemsead firings of ¢ are then repeatedly executé@nd6 clock transitions
later or written earlier. apart. The periodic phase is repeated indefinitely. Henloe, t

[1,1] , [1,1]
1 Pa 1 @b 1 e

Definition 11: (ACTOR THROUGHPUTY The throughput of an
actor a for the self-timed execution of a CSDFG is defined as the
average number of firings of per time unit in the execution. It
is denoted withTh(a).

In the remainder, subscripty” is used to denote elements
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a,1l a3 ab1 a,~b,1 ~a,b,2 a,cl a~cl ~ab?2 a,bl

: —‘x - Nb,l N CL,Nb,l
- ((3,0,5,6), ({}, {},{}). (1,0,0)) U |
((0,0,8,6), ({},{},{}), (0,0,0)) ~a,b,1 a,b,2 a,~c,1 ~a,c,2

state vector (4,v,n) is encoded via a 3-tuple where § corresponds to edges «, 3, a, Bs resp., the tuple v defines the multiset
for a, b, c resp. and the tuple 1 defines the sequence position of a, b, ¢ resp.; for readability, the self-edges connecting an actor
to itself are omitted from the state vector.

Fig. 6. CSDF state space of the example CSDFG.

average time between firings over the whole schedule coeserdhe throughput of a CSDFG can be computed by executing the
to the average time between firings in the periodic phase. SBSDFG in a self-timed manner while remembering visitedestat
the throughput ofc is Th(c) = 2/(7 + 6). Actor ¢ fires two until a state is revisited. At that point, the periodic phase
times according to the repetition vector of the graph. Hetlte reached and the throughput of an actor can be computed using
throughput of the graph is equal 19'13. Essentially, this states Prop. 1. The throughput of the graph can then be computed usin
that the self-timed execution of the graph performs onewi@e Def. 12. The number of states that must be remembered can be
of the repetition vector every 13 time units. kept small. We can enforce deterministic execution by cimgps
a fixed order among simultaneously enabled transitions & th
VII. THROUGHPUTCALCULATION transition system without affecting the throughput. Foemactor
The throughput of a CSDFG can be computed from its staiteholds that the number of actor firings in the cycle is a nulétiof
space. The following result is a straightforward genesdlan of its repetition vector entry [8]. Thus to detect a cycle, alitaary
a similar result for SDFGs given in [8]. actor a (with repetition vector entry(a)) can be selected, and

Theorem 1:(PERIODIC BEHAVIOR) The state space for any ©Nce every;(a) times the state in which an end-of-firing transition

CSDFG (4, C) with storage distributions contains always ex- ©f ¢ occurs must be stored. To detect deadlock, it must also be
actly one cycle if we consider macro-steps. checked whether a clock transition remains in the same. dtase

not necessary to store this state. To compute the throughgut

Proof: The CSDFG (As,Cs) modeling § in (A,C) is must additionally store the number of clock transitionswesn
strongly connected. This means that every actor depends each two stored states. For our example CSDFG (see Fig. 6) and
tokens from every other actor, which limits the differenetvieeen assuming that actor with g(c) = 2 is selected, only the gray
the number of firings of actors wrt each other. This implieatth state must be stored.
there exists a bound on the number of simultaneous actogdirin The CSDF model of Sec. lll assumes that all execution time and
and the number of tokens in any channel, and hence, thererdate sequences are of equal length. When sequences ogdiffer
only a finite number of different reachable states. Furthrethe lengths are used, a sequence can always be concatenatés till
transition system, there is always at least one transitimabled length is equal to the least common multiple of the lengthallof
(even in a deadlock state, there is still a clock transitinalbded), sequences used in the graph. Alternatively, the differengths
which implies that the number of transitions that will ocdar can be taken into account in the definitions of states (Def. 6)
infinite. By the pigeon hole principle, at least one of thetéini and transitions (Def. 7). The state should then store théipos
number of reachable states is visited infinitely often. 8itite of an actor in the execution sequence that is the least common
self-timed execution is deterministic (if we consider tlxe@ution multiple of all sequences of that actor and the definitiontafts
in macro-steps as explained above, because simultanemus sand end transitions should be adapted to use appropriatelonod
and ends can be arbitrarily interleaved in the semantibgygetis operations to determine the correct execution times ancecor
only one transition to leave any (recurrent) state. Hertweretis numbers of consumed and produced tokens. It is importardt® n
exactly one cycle in the state space (in terms of macro-stams that when either the length of sequences is taken into atcoun

The theorem states that the state space of any CSDFG v\mhthe definitio_n of states and tr_a_nsitions or the concaienat
bounded storage space for all channels consists of a transidl S€quences is used, the repetition vectors and the nuniber o
phase followed by a periodic phase. Def. 11 defines the theou isited state_s in the throughput computation are identidahce,

put of an actor over an execution which contains infinitelyngna the complexity and the run-time of both approaches are thesa
transitions. The periodic phase is repeated indefiniteligjlen
the states in the transient phase are visited only once. éfenc ) o
the average time between two firings over the whole execution The maximal throughput of a CSDFG may be limited by
converges to the average time between two firings in the gierio channel capacities. In the self-timed execution of the CSDF
phase. So, the throughput can be computed from the periof actor may, for example, be waiting for tokens on a changel

phase while ignoring the transient phase. (modeling the storage space of chanagl Adding tokens taxs
(i.e. increasing the storage spaceddfmay enable the actor to

Proposition 1: (THROUGHPUT) The throughput of an actai  fire earier and possibly increase the throughput of the OSDF

in a CSDFG_ with spme stora_ge distributio_h is_ equal to_the The immediate dependency of an actor firing on tokens pratiuce
number of firings of: in one period of the periodic phase d|V|dedby the end of another firing is called a causal dependency.
by the number of clock transitions in the period.

VIIl. STORAGEDEPENDENCIES

Definition 13: (CAUSAL DEPENDENCY) A firing of an actor
Proof: Follows from Def. 11 and Theorem 1. B ¢ causally depends on the firing of an actowvia a channelx if
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Fig. 8. Abstract causal dependency graph of the example GSDF

Fig. 7. Causal dependency graph of the example CSDFG.

deadlocks, the causal dependency graph is empty and psovide

and only if the firing ofz consumes a token from produced by N information about which channel capacities to enlargee- S
the firing of b on o without a clock transition between the startond, having a node for every firing of every actor, the causal

of the firing ofa and the end of the firing of. dependency graph may become prohibitively large (a meltgdl
the sum of entries in the repetition vector). We solve théetat

issue first and subsequently the deadlock case.
Cycle detection in the causal dependency graph can become
y time consuming. To solve this, an abstract version ef th

If a causal dependency appears in the periodic phase of taxecu
the actor will repeatedly (infinitely often) not be able teefearlier
which on its turn may influence the throughput. Throughpt{}e

may Increase it these dependenc[e.s are resolved.. A.” caulzdlisal dependency graph can be constructed in which theerumb
dependencies between the actor firings of the periodic ph nodes is equal to the number of actors in the CSDFG

can be captured in a causal dependency graph. It is sufficient
if only the dependencies between actor firings in one period o Definition 17: (ABSTRACT CAUSAL DEPENDENCY GRAPH

the periodic phase are considered as the dependenciesuak dgiven a CSDFG(As, Cs) incorporating a storage distribution
in all periods. § and its causal dependency gragh, F). The abstract causal

Definition 14: (CAUSAL DEPENDENCYGRAPH) Given a CS- dependency graphDa, Fa) contains an abstract dependency
noded, € D, for each actora € Aj. For each dependency

DFG (A, Cs) incorporating a storage distributiod and a se- . .
quencep of states and transitions corresponding to a period of th%dge(ak’ bi) € B, there is an edgeda, d;) in Ea.
self-timed execution afds, Cs) (starting at some arbitrary state Fig. 8 shows the abstract causal dependency graph corisgon

in the period). The causal dependency grajih ) contains a to the causal dependency graph of Fig. 7. As for the causal
node a;, for the k-th firing in p of actor a € As;. The set of dependency graph, each dependency edge in the abstraat caus
dependency edgds contains an edge if and only if there existglependency graph is associated with the set of channeléngaus
a causal dependency between the corresponding firings. this dependency. In practice, the abstract causal depeydeaph

The causal dependency graph for the CSDFG of Fig. 5 is shownOfna CSDFG can be constructed by traversing through the écle

Fig. 7, assuming the gray state as the start state. The edges i :hg itr?éirslpiice:;jzzl%SeDgr?dg:ge Itr: on]e?risiignt? ndnse:[
causal dependency graph represent causal dependencieebet ying P y grapn. P ptop

- . of the abstract causal dependency graph is that it inclutiesst
actor firings. A causal dependency goes via a set of channels | . -
all storage dependencies present in the full causal depepde

the corresponding CSDFG (see Def. 13). This associatiomof a L .
edge in the causal dependency graph to a set of channels in%‘?h' (The definition of a storage dependency carries o
abstract causal dependency graph.)

CSDFG is left implicit in Def. 14, but it is visualized in Fig.

by labeling the edges in the graph. Note that the set of climnne Theorem 2:(PRESERVATION OF STORAGE DEPENDENCIBS

associated to a dependency edge may contain only more tiean dhe set of storage dependencies of an abstract causal depeyd

channel when the CSDFG is a multigraph. graph contains all storage dependencies of the correspandi
The throughput of a CSDFG is limited by an infinite sequenggausal dependency graph.

of causal dependencies between the actor firings, captyread b

causal dependency cycle in the causal dependency graph. Proof: Given a causal dependency gragh = (D, E)
and its corresponding abstract causal dependency gfaphk-

Definition 15: .(CAU.SAL DEPENI?ENCYCYCLE) A causal de- (Da, Eq). Any dependency edg@;, b;) € E from a node which
pendency cycle is a simple cycle in the causal dependen@hgracorresponds to theth firing of actora to the j-th firing of actor
A causal dependency cycle is a sequence of actor firings thamaps inA, to an edge from the abstract causal dependency
causally depend on each other, starting and ending with thede of actors to the abstract causal dependency node of actor
same actor firing. Causal dependencies caused by chanagls &hAny cycle of dependencies ia is a sequence of dependency
model storage space are of interest as adding tokens to thedges which in the abstract causal dependency graph (uséng t
channels (i.e., increasing their storage space) may resmusal mapping of causal dependency nodesAnto nodes inA,) is

dependency cycles and increase throughput. also a sequence starting and ending in one node, i.e., isdsaal
Definition 16: (STORAGE DEPENDENCY) Given a CSDFG cycle in Aq. Hence, the edge is also on some cyclenip and
thus also on some simple cycle. [ ]

(As,Cs) incorporating a storage distributio and its causal
dependency graph. A channek € C; has astorage dependency In the case that the CSDFG deadlocks (because of a shortage of
in A if and only if there exists a causal dependency in sonstorage space or an inherent deadlock due to the specified dat
dependency cycle af via channelag. and control dependencies), the regular causal dependeaph g

Storage dependencies can be used to determine which storjggpéﬂpty by definition. To find out which channel capacitiesthe

capacities can be enlarged to increase throughput of thazhgrato be increased, if any, the following alternative defimsoare

However, two issues remain to be solved. First, if the gragfs€d in that case.
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example of this Pareto space, for the SDFG shown in Fig. 1.
An interesting observation is that distributiors, 2) and (5, 3)
are both minimal, while having the same size. This example
shows that in general multiple minimal storage distribasionay
860 ®so_ | exist with the same distribution size. Also note that thenepie
weo T80 Pareto spaces illustrate that the throughput is monottyica
60 ] non-decreasing with the distribution size. Increasing anciel
capacity can only lead to the earlier production of data neke
and hence it can never lead to a decrease in throughput.

o o
o o e
® [ )

throughput

o
o
&

Algorithm 1 Find all minimal storage distributions

10 11 12 13 14 15 16 17 Input: A CSDFGG with maximal throughputl? mqx
storage distribution size Result: A set P of pairs (storage distribution, throughput), contain-
ing precisely all minimal storage distributions
1: procedure FINDMINSTORAGEDIST(G, Thimax)

Fig. 9. Pareto space for CSDFG shown in Fig. 3.

2: Let U be a list of unexplored storage distributions,
L ordered by size
Definition 18: (CAUSAL DEPENDENCY INDEADLOCK) Ina 3. U« [0, ...,0)]
deadlocked state, an actar causally depends on an actérvia  4: P~
a channela from b to « if and only if firing ofa is prohibited by 5:  while no (6, Th) € P with Th = Thma. O, when a
a lack of tokens on channel. 6: (0, Thimaz) € P, there is some’ € U with |6'| = [5] do
) o ) 7: 0 — removeFirst(U)
Based on this definition, we can also define a causal dependeng: Create CSDFGYs which modelss in G
graph for the deadlock case, which via Definitions 15 and 16: Compute throughput’
defines the storage dependencies for the deadlock case. and dependency graph of G5
_— . 10: P — PU{(5, Th)}
Definition 19: (CAUSAL DEPENDENCY GRAPH IN DEAD- ;. Let S be the set of storage dependencieshin
LocK) Given a CSDFG(A;, Cs) incorporating a storage dis- 12 for each channek in S do
tribution ¢, with throughput zero (i.e., self-timed execution (even:3: )
tually) deadlocks). The causal dependency gréphE) contains  14: 6n(ar) — 6(a) + step(a)
a nodea for every actora € As. The set of dependency edges 1% U—Uu{dn}

contains an edge from to b if and only if o causally depends 16: ~ Remove non-minimal storage distributions frafh
on b in the deadlock state.

In the remainder, ‘dependency graph’ refers to either tretrabt Algorithm 1 presents the exploration algorithm for finding
causal dependency graph in case of CSDFGs with positiagh minimal storage distributions, given a connected CSDFG
throughput and the causal dependency graph in deadlock agihd its maximal throughpuZhmaz. This maximal throughput
erwise. can be computed as the minimum throughput of all strongly
connected components of the CSDFG, computed using the tech-
IX. DESIGN-SPACE EXPLORATION nigue explained in Sec. VII. The algorithm uses a Bewhich

Sec. VI presents a technique to find the throughput for argivé;ontains all storage distributions that it needs to explordered
storage distribution and Sec. VIII provides the means tedet PY their distribution size. Initially, the sel contains only the
which channels are potentially limiting the graph's thrbpgt. storage distribution(0, ..., 0). The algorithm explores all storage

Using these techniques, it is possible to find the tradeksfareen distributions inU with smallest size first. A smallest storage
the distribution size an,d the throughput, i.e., fRareto space distribution § is removed from it and the algorithm computes the

Fig. 9 shows this Pareto space for our example CSDFG. It shoffgPendency grapi and throughputl’: for this distribution. The
that storage distributior(5,6) is the smallest distribution with distribution-throughput pairs are kept in a et The algorithm

a throughput larger than zero. The throughput of the graph c§ontinues by constructing a new storage distributinfor each

never go abovel/12, as actora always has, according to its channekx which has a storage dependencyinin 4, the storage
entry in the repetition vector, to fire six times which regsirl2 SPace ok is increased by the step size of the channel as explamed
time steps. With a distribution size df tokens, the maximal N Sec. V. All other channels have the same storage spateas
throughput can be achieved. iné. 6n is then added to the s&t The main loop qf Fhe alggrlthm
The following definition defines the minimal storage distrib t€rminates when some storage distribution realizing theimi
tions that we are interested in. through.put has .been found and no other storage pl@rlkmtlﬁ)n
o equal size remain to be explored. Finally, all non-minimatrage
Definition 20: (MINIMAL STORAGE DISTRIBUTION) A Stor-  gigtributions are removed fror. Observe that this can be done
age distributions with throughput 7% is minimal if and only if i 3 single traversal through all the explored storageitiigions
there is no storage distributiod’ with throughputTh’ such that stored inP by keeping this set sorted according to throughput. It
0] < 6] and Th > Th, or |¢'| < |é] and Th > Th. is shown below that the algorithm returns precisely all miai
Distributions (0,0), (5,6), (6,6), (7,6), (8,6) and (8,8) in the storage distributions.
CSDFG of Fig. 3 are minimal, as shown in Fig. 9 (except To illustrate the workings of Algorithm 1, we discuss one
for (0,0)), but distribution (8,7) is not, because it yields theiteration of the loop (line 5-15) while computing the thrdug
same throughput as configuratids, 6). Fig. 2 shows another put/storage trade-off space of the CSDFG of Fig. 3. Condiuer
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situation in which the algorithm is executing and it has hest
line 5 while U contains the storage distributids, 6) and P con-
tains the storage distribution/throughput pairs that halready
been explored (e.g(0, 0),0), ({5,6),0.059), ({(6,6),0.067) and
((7,6),0.071)). The maximal throughpufh,,q. Of the graph is
equal t00.083. The condition at lines 5-6 is true, sinéecontains
no storage distribution/throughput pair that reacli@s;,q.. At
line 7, the storage distributiof8, 6) is removed fromU. This
storage distribution is modeled in the CSDFG of Fig. 3. Thg_ 10. Distribufi hed by Algorithm 1.
resulting CSDFGG; is shown in Fig. 5. Next(Gs is executed 9. 18 Listribuions reached By Adorihm 1.
to find its throughput and dependency graph. This dependency

graph is the abstract dependency graph of Fig. 8. On linehE), t
storage distribution/throughput pa((8, 6),0.77) is added toP.
From the dependency graph, it follows that both the chanaels
and 3 have a storage dependency. Since the step sizei®ne

and the step size of is two, lines 12-15 add the new storage  pyoof: Let S; be the set of storage dependencies,ofFrom

distributions (9, 6) and (8, 8) to U. The algorithm then continues | emma 1, it follows that there exists a channek S; for which

with the next iteration of the loop. In this iteration, it Wéxplore 5;(a) < 8;(c). So, the capacity of can be enlarged with at least

the newly added storage distributig, 6). one step before the storage space becomes equal to theestorag
A few lemmas are needed to prove that the result of Algorithephace assigned to it ify. Becausen € ;, Algorithm 1 does

1 returns precisely all minimal storage distributions, orather jncrease the storage spacefwhich results in a new storage

words, all throughput-buffering Pareto points for a CSDFG.  (jstribution ;. As (only) the storage space afis increased, but
Lemma 1: Given a storage distributidpwith throughputTh,;. Not beyond its capacity in;, it must hold thats; < 5, =< 4

For any storage distributiors,; =< &; with throughputTh; < Th; @nd[d;| <[dx|. Fromé; < d; =< &, it also follows directly that

and dependency graph;, there is a channek with a storage %j = Thy < Thi. u

dependency im\; such thatd;(«) > d;(a).

Th; < Th;. Then, Algorithm 1, from distributiod;, explores a
storage distributions;, for which 6; < &5, =< 4;, |6;] < |d,| and
Thj < Thy, < Th;.

Theorem 3:(CORRECTNESS OFALGORITHM 1) The set of all
Proof: If &, is such that the graph deadlocks, the reSu;;ttorag_;e distributio_ns contgined g V\{hi_ch is construc_ted using
is straightfonNafd to prove using the dependency graph tier tAlgorithm 1 contains precisely all minimal storage distritons.
deadlock case. We present the case thaf is positive in more The proof of Theorem 3 is illustrated by Fig. 10.
detail. In a self-timed execution, each actor firing has asabhu
dependency with at least one earlier actor firing (unless @rie
of the first firings consuming the initial tokens). This giva®ins
of causal dependencies between all actor firings that oaoimgl
the execution. These chains of causal dependencies sthrthei
initial firings of the graph, and either end at some point, layt
are of infinite length. In a non-deadlocking self-timed exem,

Proof: For throughputo, 6o = (0,...,0) is the (only)
minimal storage distribution and it is always returned bg th
algorithm. Therefore, led; be some minimal storage distribution
with positive throughputTh,;. We must show thab; € P, i.e.,
that the algorithm will explore distributiod;. Initially, Algorithm
1 starts from the storage distributiofyy = (0,...,0) which

there must be at least one such chain of infinite length. (@fke, satisfies the conditions of Le_mma 2. Repeatedl_y using Lemma
we can show that the algorithm explores a sefjesf storage

the graph would have delayed some firing unnecessarily.h Su istributions Withd, < 61 < 6 < ... < 6m < &, and for each

infinite chains determine the throughput. =
ghe Ek, |0k < |0g+1]. From g, < §;, it follows that |6;| < |§;] and

There is a finite number of states in the periodic phase aﬂgnce after a finite number af steps it must be that Lemma 2
states in this phase are revisited each period. Hence,fassaime ’ . :
no longer applies. Thus, it follows thdth,, = Th; and, because

Paf.ljs.fl dr(]apendfenuesl?jre en(cjoun_tere.d algaln andlagall;.ga?, 1-ais minimal, that|é.»| = |6;|. For a distributiond,, < §; such
e o e ot 142 g JALonl 5, st bt — i, which shows

P y grap ! ! Nt ! gexplored by the algorithm. When the condition of the whiledo
Theorem 2 also in the abstract causal dependency graph.

) no longer holds, no more minimal storage distributions can b
To increase the throughput, each of the causal dependeng¥ noq from distributions i

cycles must be broken. Singg has a higher throughput than So far, we have shown that sEtcontains all minimal storage
dj, we know that every causal dependency cyclepincludes distributions. However, it may also contain non-minimadtdbu-

2 storage ?epentdeglqt/. m‘J}l (becz;t}llse gt.herwgerhj WOUI?h tions. The last line of the algorithm removes non-minimakage
e maximal, contradictingTh; < Th;). Since decreasing € distributions, completing the proof. u

capacity of channels can never increase throughput, tceaehi
throughput7h; > Thj’ at least one storage dependency of eadtfom the literature on dataflow graphs, lower bounds on the
causal dependency cycle in; has been resolved by increasingstorage space required for each channel to avoid deadlagk (i
the capacity of the corresponding channel. Hence, theret mtfyoughput equal to zero) are known [11], [16]. These boweats
be some channek with a Storage dependency mj such that be used to SpEEd up the initial phase of Algorlthm 1. Distidou
di(a) > d;(a). m (0,...,0) with all zero entries is by definition the only minimal
storage distribution realizing zero throughput. Thus, twlfall
Lemma 2: Given a storage distributidn with throughputTh; Pareto points with non-zero throughput, it is sufficient tarts
and a storage distributiod; such thats; < §; with throughput from the mentioned lower bounds.
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An important and relevant question that remains is wheth#rat all port rate and execution time sequences are of egogth.
Algorithm 1 terminates. We show that if at least one actor hd® satisfy this requirement, the sequences given in theinaig
a bounded throughput, then Algorithm 1 ends. If all actos ca€CSDFGs must be concatenated. All sequences in these graphs
increase their firing rate indefinitely, then there are indéilyi many have either a length 1 or a lengtN that is fixed for a given
minimal storage distributions, and the algorithm cannonteate. application (v = 99 in the H.263 encodery = 8 in the channel
equalizer andN = 39 in the MP3 playback application). The
fxecution times for the actors in all graphs were, when akg|
taken from the references. In other cases, they were olgtaine
by analyzing the application source code with the worsecas

Proof: Given a connected CSDF@, Thma: IS equal €xecution time analysis technique described in [27]. Fohest

to the minimum of the throughputs of all strongly connectethe graphs, the complete design space was explored. Thitets
components inG. As there is at least one actor with boundedn & Pareto space showing the trade-offs between the thpotigh
throughput, the throughput of the strongly connected carepo and distribution size for each graph.
containing that actor must be bounded, and hefitg.a. < co. The results of the experiments on the SDFGs are shown in
The throughputTh.,... is achievable within finite memory. This Tab. I. The results for the CSDFGs are summarized in Tab. II.
implies that there exists some storage distributign,.. of finite Both tables show the number of actors in each graph and the
size N that achieves throughputhmqz . number of channels for which the buffers are being sized, the

Algorithm 1 explores the storage distributions with inaieg minimal distribution size for the smallest positive thropgt, the
size. There is only a finite number of storage distributiohary ~maximum throughput that can be achieved and the distributio
sizen < N. This implies that only a finite number of differentsize needed to realize this throughput. They also show thebeu
storage distributions exist that have a size at ni@st..|. Within ~ of Pareto points and the number of minimal storage distiost
a finite number of steps, all distributions with size upXoare that were found during the design-space exploration. Thalte
explored and a storage distribution with throughpk.... is Show that each Pareto point contains a single storagetulitiomn.
found, causing the algorithm to terminate. [ ] For the SDFGs, an estimate on the number of storage distribu-

The algorithm presented in this section is a modified versi(ﬂ%)nS in the design space can be made. It IS possible to cemput
of the algorithm presented in [9]. These algorithms differ jan upper bound_on the storage space _re_quwed for each ch_e_mnel
the order in which storage distributions are explored anel tr%" achieve maximal throughput with finite channel capagitie

termination condition (line 5) that is used. Algorithm 1 &qes If(]' Tg'st ukpperf boun(iIGand theblowerdbc;und, mer:tlotnhed n SSC'
the storage distributions with increasing size. It ends &diately and taken from [16], can be used to compute the number

after it explored the storage distribution size of the miaim of different storage distributions in the design space (sme

storage distributions that realize the maximal throughpitie #Distr. 'g.stp.icf.’ of Tab.l - '(;'hbe ?ﬁXt rlow .?Eowﬁ_;he nur:ber of
algorithm in [9] searches the design space using a depth-fit?éoﬁ?]e IIS n _tuhlons e>|<p ore Iy € a:cgond_rP._b t'e rfrd(k)\W
search algorithm and it ends when the lisof unexplored storage a eFa gor T:é['):gres_ton yl very lew ":‘h” utions | te
distributions is empty. The algorithm from [9] explores inigt space. For most SPFLs, 1T only explores the minimal storage
way all storage distributions that are explored by Algarith. dIStI‘Ib.UFIOI']S (excludlng. the trivial "?'”'m"?" storage dlbu.tlon
However, it may also explore storage distributions thatlarger tcr(])rlt?r;nlng? aII.tiero entrles,f a”s explamet(:] |ndSe_c. 1X). Tﬂnz\gs;
than the size of the minimal storage distributions thatizeal at the aigorithm siccessiully prunes the design spacey
maximal throughput. In other words, the algorithm from [9&yn techmque is known to accurgtely upper-bound the storageesp
explore more (but never less) storage distributions thagoAthm rectl_u|retmentsbfor czannfetLS n abCSI?FtG. The(;_efto_rg ,t_nth)rEgood
1. Hence, the algorithm presented in this paper may tencfninagS Imate can be made of the number of storage distrioutiotisel
earlier than the algorithm from [9]. esign space of the .CS.DFGS. Howeyer, the results shqw teat th
As mentioned in Sec. Il, the problem of finding all minimal.number of storage distributions that is explored by the rligm

storage distributions of a CSDFG is NP-hard. Algorithm 1 hag also in this case limited.

in fact an exponential worst-case complexity. This is due to The algorithm computes the throughput for each storage dis-

the underlying throughput analysis technique that is udéds tribution it tries. This is done via a self-timed executiohtbe
technique has an exponential worst-case complexity. Eurtore, graph. The row ‘Max. #states visited’ shows the maximal nemb

the algorithm itself explores a set of storage distribugitimat can of different states that is visited during a throughput cataion.
potentially also be exponentially large. Only a selected number of states must be stored (see Sec. VII)

to compute the throughput of the graph. The maximal number of
states that is stored is shown in the row ‘Max. #states stored
All SDFGs, except the H.263 decoder, show a run-time in the
We performed a number of experiments on real DSP amdder of milliseconds to explore the complete design sp@be.
multimedia application models to evaluate how our approachn-time for the H.263 decoder is large due to the large nurabe
performs. The set of SDFG application models contains a modéareto points contained in the space. The results on the GSDF
[3], a satellite receiver [6], a sample-rate converter (8}, MP3- show that the complete Pareto space can be computed within
decoder [9] and an H.263 decoder [9]. We also included tiseconds for all applications. The MP3 playback CSDFG has the
often used bipartite SDFG from [3] in our SDFG benchmarkongest run-time due to the many Pareto points containedsin i
The set of applications modeled with a CSDFG contains an3.2roughput/storage trade-off space.
encoder [24], [25], a channel equalizer [26] and an MP3 @akb It is interesting to consider the MP3 playback model of [7] in
application [7]. The CSDFG model formalized in Sec. lll asss a bit more detail. In [7], a heuristic is presented that cotepu

Theorem 4:(TERMINATION) For any connected CSDFG;
that contains an actor with bounded throughput, Algorithm
terminates.

X. EXPERIMENTAL RESULTS
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TABLE |
EXPERIMENTAL RESULTS ONSDFGs.

Bipartite Sample Modem Satellte  MP3 H.263

rate decoder

#actors / #sized channels 4/4 6/5 16/19 22/26  13/12 4/3
Min. pos. throughput{ *)  4-10* 15-10*  3.10*  18-10*  7-10° 50
Distr. size 28 32 38 1542 12 4753
Max. throughput §~1) 6-10" 17.107  6.10" 23.107  8.10° 100
Distr. size 35 34 40 1544 16 8006
#Pareto points 9 4 4 3 4 3255
#Min. distr. 9 4 4 3 4 3255
#Distr. in space 1-108 9-10"%  1.10"°  2.10°® 4096  3-10%°
#Distr. checked 51 3 4 4 7 292-10%
Max. #states visited 652 6-10° 134 10377 33579  8-10°
Max. #states stored 20 5328 2 241 212 1124
Exec. time 1ms 1ms 2ms Tms 2ms 53min

TABLE Il

a storage space distribution under a throughput constraime EXPERIMENTAL RESULTS ONCSDFGs.

objective is to minimize the size of the storage distribatidhe

reported results state that the heuristic can compute nvithe H.263 Channel MP3
order of 10~2s a storage distribution which is 5% larger than encodet equalizer playback
the smallest storage distribution allowing maximal thriopgt. #actors / #sized channels 6/6 12/20 4/2
Using our algorithm, the optimal solution can be found in 26s Min. pos. throughput{™") ~ 8-10~~ 3 4.0
(see Tab. II). Depending on the context in which buffer gjzim _Distr. size 104 19 921
applied, this run-time may or may not be acceptable. In gener Max. throughput € 0.3 3 8.3
however, the exponential worst-case complexity of our e Distr. size 105 19 1842

. . . #Pareto points 3 2 829
could potentially lead to prohibitively large run-times those #Min. distr. 3 9 329
cases, our technique can be combined with any heuristiafife’® —zpisi checked 3 1 3596
sizing. For example, the heuristic from [7] can be used topa® \ax #states visited 12-10° 2298 14231
a storage distribution close to the optimum. A fraction oé th Max. #states stored 2 2 4
storage space computed for each channel by the heuristithean ~ Exec. time 10s 4dms 26s

be used as a starting distribution in (line 3 of) our algamitin 116 (ynexpectedly low) throughput values for this model ale
this way, our algorithm explores the trade-off space judowe tained when assuming a 500 Mhz processor and using the cycle
the storage distribution computed by the heuristic for alEma counts reported in [24] (which does not specify the usedfquia).
distribution that still satisfies the throughput consttaifo test
this approach, we ran our algorithm on the MP3 playback CSDFG
with the initial storage distribution equal to 90% of thersige use for our experimental evaluation later in this sectioe, sets
distribution requirements computed by the heuristic frafhfpr k7, for any numbem e N, defined agk € N | k = n- step(a)},
this CSDFG. Our algorithm was able to find the optimal storage:., only multiples of thestep(a) are considered for the given
distribution within 1s. This illustrates how our algorithoan be multiplication factorn.
combined with a heuristic, which will in general improve the Algorithm 1 is adapted as follows. Line 13 becomes:
results of the heuristic with little effort.
Sn(a) — [5(a) + 175,

Xl. APPROXIMATION OFBUFFERSIZES
A. A Generic Approximation Technique That is, the next smalle;t capacity in the givenisegtis chosep.
We can prove the following property of the adapted algorithm

se;?fhesf(pae;m;n;?;t:?sulﬂfngfi;hersi\gogf?icsisﬁﬂonbsﬁgwkftz?t tThe adapted algorithm finds all minimal storage distrilbngié
b P y by 109 among all distributions with channel capaciti®&sy) € K. for

storage dependencies. Nevertheless, the number of disbrils . .
. L all « € C. The property is proved using Lemmas 1 and 2 and

that need to be explored may still be large, potentially ilegudo . - . A .

, . . . Theorem 3, while restricting attention to distributionsthim the
long run-times of the algorithm. An approximation of the exa . .

) . o limited set.

result can be obtained by reducing the number of distringtio F the fact that the adapted alaorithm finds all minimal
that need to be explored, for instance by changing the step sit rom d'et 't?ct' at the a ;p € da gocr; mt inds a c:nd:?'mi
for increasing the channel capacities. We have shown thiaa fofsoﬁga\;\?iﬁ tlninrjlng :)onnfh:gg'g?e a?]creo?(t:i?e rzzdltv:‘/ri)rﬁﬂeim;e
channelx considering as sizes all multiples ©&p(a) guarantees it 9 pancy
that all minimal distributions are found. In this section;ewresu '
consider exploring only a sét,, of capacities for channel and Theorem 5:(OVERESTIMATION BOUND) For every minimal
for any capacityk, we use[k]*« to denote the smallest capacitystorage distributiors with throughputT#, found in the full search,
in K, which is at leastk. We require that setd<, be such there is a storage distributio’ with throughput 7o' that is
that such capacity always exists (i.e., that channel cipagian minimal in the reduced search space such thaf > 7h and
always be increased). Concrete examples of such sets, ¢halsw  |5'| <> . [6(c)]Xe.
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B. Experimental Results

®

—e—n=2,step=1| |

-~
=T

e edstope1 The experimental results presented in Sec. X show that lesig
——n=a,step=2| - space exploration of the H.263 decoder and the MP3 playback
T bstep=2 application take the most time from all the tested models. Fo
both applications, this is due to the large number of Paretotp
in the trade-off space. However, the throughput of most ef th
Pareto points is close to each other. In practice, it is nerésting
to find all these points. The approximation technique preeseim
the previous section can be used to reduce the number ofediffe
300 400 500 600 700 800 900 1000 storage distributions that is explored.
Fdge capacty Experiments have been performed with this approximation
Fig. 11. Worst-case overestimation for various channebciips, step sizes, algorithm on t.he _H'263 deC_Oder and MP3 PlaybaCk application
and multiplication factors. For both applications, a uniform multiplication factor hlasen
used for the different channels. The step size in the H.268dkx
was multiplied with a factor of 3, 9, and 27. For the MP3 plagiba
Proof: An increase in channel capacity cannot decreasgplication, a multiplication factor of 3, 5, and 15 has beead.
the throughput. If we round all channel capacitiesdirup to The results for these experiments are shown in Tab. Ill. (&ke
[6(c)]%=, we obtain a distribution with throughpufr’, at least column in the table is explained below.) The results show tha
throughput Th. If this distribution is minimal in the reduced the approximation technique drastically improves the tiore of
search space, the theorem is proved. If it is not minimalrethethe exploration at the cost of a reduced number of Paretagoin
exists a minimal one with the same throughput and smalltaund (but as already said, it is hard to imagine that hurslad
distribution size, or with a higher throughput and the saime.s thousands of Pareto points are practically meaningful).
In both cases, this distribution satisfies the theorem. [ ] The approximation algorithm may lead to an overestimatibn o
Note that the adapted algorithm still has an exponentialst/lvorthe required st_orage space fqr agien throyghput. The shigters
r{or each experiment the maximum overestimation observedrfo

case complexity. However, it allows a trade-off between-ru bit Paret int in th lete trade-off
time and quality of the end result, by appropriately chogsinar itrary Pareto point in the complete trade-off space aherage

the K.,. One can choose, for example, the s&§ already :)r\]/eres?tlrnat;otr)l f(?ver the.entlretspaltl:e, .and the.ovelr;ehsnmatt]i
mentioned above, possibly with different multiplicatioacfors € minimaj buller requirements afiowing maximai trougip

per channel. Theorem 5 then gives a bound on the worst-case |'5h_e results show that th_e overestlmatlpn is very small iregein

in quality (buffer-size overestimation). Consider a senghannel which shows that dropping Pareto points for these models doe

o. Theorem 5 and the definition at™ imply that not have much impact in terms of storage requirements com-
. (0%

puted for a given throughput constraint. The peak in maximum
5'(@) < [5(a)]K3 < () + (n — 1)step(a). overestimation for the largest multiplication factor inettMP3
experiment is to be expected, because large overestimatiayn
occur for large multiplication factors in combination wittimall
§(a) — 8(a) _ (n— D)step(a) buffer sizes. Howeve_r, small buffers_ are the part of theeraff
, (1) space that our algorithm explores first. In those cases, sthete
8(ar) 8(ar) technique, an approximation with a smaller multiplicatfawctor,
which is the expected result that the overestimation penmméla or an approximation aiming to bound the relative overedtioma
can be at most — 1 times the step size. (as explained at the end of the previous subsection) candm us
Figure 11 shows the worst-case overestimation for a singie determine the appropriate buffer sizes satisfying theuhput
channel, for various channel capacities, step sizes, and- muconstraint.
plication factors. The channel capacities and step sizesirar  The experiments reported in Tab. lll use only one multiglara
line with those observed in the models of our benchmark. Thector, which is the same for all the sized channels. Theee ar
relative worst-case overestimation is small for incregsihannel several ways to improve the obtained results. One way is to
size, which is when the approximation algorithm is most ukef carefully select different multiplication factors for ttdifferent
because only for large distribution spaces the run-time wf ochannels. Another way is to apply our exact technique (ottero
exact technique may become problematic. Note that theivelatapproximation) on a designated part of the approximatedespa
worst-case overestimation does not change when congiderthe same way as the combination of our technique with héesist
multiple channels (assuming the same capacities, step, sind that we explained earlier. Given a throughput constraing can
multiplication factors). The likelihood that the worst eawill first make a coarse approximation of the trade-off space with
occur in fact decreases with increasing numbers of charinelslarge multiplication factor. Then, one can choose a distiin
the CSDFG. Another way to limit the over-estimation is torsha that comes close to satisfying the constraint as the stapgaint
the trade-off space with several multiplication factors gleannel, for a finer grain approximation or an exact exploration of the
as illustrated below. trade-off space up to the point that the throughput constrigi
It is also possible to try to bound the relative overestiomati satisfied.
via an appropriate choice aK,, by choosing forkK, the set A third way to improve approximation results is to simply
{[(1 4+ q)"step(e) | n € N}, for some appropriately smal. combine the results of two or more approximations of thedrad
Except for rounding effects, this choice for tté, limits the off space. This may lead to a reduced overestimation, agridited
overestimation tay - 100%. by the last column of Tab. Ill. Combining the approximatiasfs

o
T

&)
T

w
T

N
T

Worst-case overstimation (%)
S

[
T

{

It follows that the relative overestimation far is bounded as
follows:

<
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TABLE Il
RESULTS ON APPROXIMATION ALGORITHM

H.263 decoder MP3 playback

exact n=3 n=9 n=27T|exact n=3 n=5 n=15 n=3,5
Min. pos. throughput{ 1) 50 50 50 50 4.0 4.0 4.0 4.0 4.0
Distr. size 4753 4753 4753 4753 921 921 921 921 921
Max. throughput §~ 1) 100 100 100 100 8.3 8.3 8.3 8.3 8.3
Distr. size 8006 8006 8012 8021 1842 1842 1846 1851 1842
#Pareto points 3255 1087 365 124 829 278 186 43 336
#Min. distr. 3255 1087 365 124 829 278 186 43 336
#Distr. checked 202-10% 28720 3613 558 2296 357 185 42 542
Max. overest. - 0.07% 0.24% 0.69% - 3.72% 7.33% 26.91% 3.72%
Avg. overest. - 0.03% 0.10% 0.33% - 0.17%  1.51% 5.28% 0.14%
Min.buf. / max.thr. overest. - 0% 0.07% 0.19% - 0% 0.22%  0.49% 0%
Exec. time 53min 5min 36s Tms 26s 4s 2s 0.49s 6s

TABLE IV

the trade-off space obtained via multiplication factors gl &

. . . EXPERIMENTAL RESULTS ON SYNTHETICCSDFGs.
leads to an increased number of Pareto points found, regulti

in a reduced average overestimation when compared to the two n=23 n=4 n=5

approximations in isolation. We obtained the results regmbin graph 1 50s/0.38%  16s/0.38% 7s/0.37%
.. . . . 0, 0, 0,

Tab. Il by explicitly computing the two approximations,cathen graph 2 161s/091% 70s/0.91% 29s/0.91%

graph 3 271s/0.71% 45s/0.71% 28s/0.71%

combining the results. A more efficient implementation vebul
first compute the approximation with the largest multiplica

factor, and then use the information about distributiom@ay he approximation technique on these artificial models. ¥¥ted
explored while computing the approximation with the smallepe approximation with multiplication factors 3, 4 and 5 falt

multiplication factor. This would lead to an amount of chedk hannels in the graphs. These channels all have a step sine of
distributions and a run-time which are less than the sumbadfd 15, |v reports the results, showing run-times and, using. Bg

values for the individual approximations. The experimemoves he calculated upper bound on the overestimation for thémain
the versatility of the approximation technique. Note thadloes pfer sizes needed for maximal throughput. The resultsvshat
not make sense to combine approximations when one muéipliGhe approximation algorithm can successfully prune theigges

tion factor is a divisor of (one of) the other multiplicatidector(s) space, even for extremely large trade-off spaces, guamgtéhat
(which is why Tab. lll does not report any other combinatjons ha overestimation stays within very tight bounds.

C. Scalability XII. CONCLUSION

The experimental results presented so far show that it isipos We have presented a method to explore the trade-offs between
ble to explore the trade-off space for all the applicatiordeis in the throughput and buffering requirements for SDFGs and CS-
our benchmark within seconds, either via the exact teclenimju DFGs. It generalizes the techniques from [9] to CSDFGs. It
by approximation (with only very little overestimation).oWever, also improves the exploration algorithm from [9] allowingtter
both the exact algorithm and the approximation techniquee hapruning of the trade-off space. The experiments show tlestpite
an exponential worst-case complexity. The observed megifor the complexity of the problem, it is possible to perform amex
the exact exploration indicate that the run-times may beromdesign-space exploration for real application kernels. &l&o
problematic when models and/or Pareto spaces grow in siz@pw that our technique can be combined with existing hicsis
while the approximation technique is fast in the two testases. for buffer sizing. This makes it possible to compute sharper
To investigate scalability, we adapted the SDBolkit [28] to bounds on the buffer requirements than those found with the
generate three synthetic CSDFGs, for which the exact algori heuristic alone with limited run-time overhead. It may ictfaften
does not terminate in several hours, confirming that thetimes lead to optimal results if the applied heuristic yields disigntly
of the exact algorithm may become very large. However, it &ccurate estimate as the starting point for our algorithm.
important to note that these graphs differ in a number of eétspe In addition to the exact exploration algorithm, we presdnte
from the realistic application models in our benchmark. IRéa a generic and very versatile approximation technique based
applications are often a relatively straightforward pipel of the exact algorithm. The approximation provides throughpu
actors with only one or a few cycles. Furthermore, the numbguarantees, and it has a proven analytical upper bound on the
of branches in the graphs is limited. In the generated graplwerestimation in buffer sizes. Approximation of the traufe
there are many cycles and branches with complex interatiospace can be used when the run-times of the exact technique
As a result, the number of Pareto points in these generatgghgr would become problematic. The results for the approxinmatio
is very large. Consequently, many different storage distions technigue show that it can drastically improve the run-timeded
have to be explored, which causes the run-time of the exdot the exploration of the trade-off space with only very ilieal
algorithm to become very large. overestimation of the storage space.

Since the approximation technique yields a reduction of the The techniques presented in this paper are implementeckin th
explored space that is exponential in terms of the number féely available SDE toolkit [28]. We use the techniques in a
channels being sized, it is interesting to test the scétiplif predictable multiprocessor design flow [29] based on thaftiat
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