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Abstract— Multimedia applications usually have throughput
constraints. An implementation must meet these constraints,
while it minimizes resource usage and energy consumption. The
compute intensive kernels of these applications are often specified
as Cyclo-Static or Synchronous Dataflow Graphs. Communica-
tion between nodes in these graphs requires storage space which
influences throughput. We present an exact technique to chart
the Pareto space of throughput and storage trade-offs, which can
be used to determine the minimal buffer space needed to execute
a graph under a given throughput constraint. The feasibility
of the exact technique is demonstrated with experiments on a
set of realistic DSP and multimedia applications. To increase
scalability of the approach, a fast approximation technique
is developed that guarantees both throughput and a, tight,
bound on the maximal overestimation of buffer requirements.
The approximation technique allows to trade off worst-case
overestimation versus run-time.

Index Terms— cyclo-static dataflow, synchronous dataflow,
buffering, throughput, optimization, Pareto analysis, trade-offs,
DSP and multimedia applications

I. I NTRODUCTION

CYCLO-STATIC Dataflow Graphs (CSDFGs, [1]) and Syn-
chronous Dataflow Graphs (SDFGs, [2]) are used to model

DSP and multimedia applications [3]–[7]. The main reason for the
growing popularity of these models is that they allow analysis of
their timing behavior [7], [8]. This makes it possible to predict
the timing behavior of an application when realized using a
multiprocessor system-on-chip.

A (C)SDFG is a directed graph where the nodes (calledactors)
represent computations that communicate with each other by
sending ordered streams of data-elements (calledtokens) over
their edges (calledchannels). An example of an SDFG with
3 actors a, b, c and two channelsα, β is shown in Fig. 1.
The execution of an actor is called afiring. Actor execution
times are given inside actors in Fig. 1. When an actor fires, it
consumes tokens from its input channels, performs a computation
on these tokens and outputs the result as tokens on its output
channels. An important property of an SDFG is that actors
consume and produce a fixed amount of tokens on each firing.
Per channel, these fixed amounts are called the consumption
and productionrates, given as edge annotations in the graph’s
visualization. Channels may contain initial tokens depicted as
black dots annotated with their number. Storage space,buffers,
must be allocated for the communicated tokens. The storage space
influences the maximal throughput that can be achieved. In [9],
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a technique is presented to compute the trade-offs between the
throughput and buffer size for an SDFG. These trade-offs are
Pareto points in the throughput/buffer size space. An example of
this trade-off space is shown in Fig. 2. Each point in the space
represents a distribution of storage space over the channels α and
β in the SDFG of Fig. 1 that is optimal in terms of the trade-off
between storage space and throughput. To explore this trade-off
space, an exact design-space exploration algorithm is presented in
[9] that prunes the search space without losing any Pareto points.
Finding the minimal storage requirements for a deadlock-free
execution (i.e. an execution with positive, non-zero throughput)
for an SDFG is already known to be NP-complete [10]. Despite of
the worst-case complexity, the experimental results in [9]confirm
that this algorithm can be used to explore the design space of
realistic DSP and multimedia applications.

An actor in an SDFG consumes and produces a fixed amount
of tokens on each firing. The CSDF model relaxes this constraint
by allowing the consumption and production of tokens to vary
between subsequent actor firings. It requires that the amounts of
tokens consumed and produced by actor firings can be captured
with a repeating finite sequence (as opposed to the constant rates
of the SDF model). This makes CSDF more widely applicable in
modeling dataflow applications than SDF.

This paper generalizes the techniques from [9] to Cyclo-static
Dataflow Graphs. The result is the first technique to compute the
complete, optimal trade-off space between the throughput and
buffer size for a CSDFG. The design-space exploration algorithm
uses an improved termination condition when compared to the
SDF version presented in [9]. As a result, it completes the search
earlier, while it is still exact. Proofs for the correctnessand
termination of the algorithm, omitted in [9], are provided in this
paper. Experimental results are reported on a larger set of realistic
applications than used in [9], including not only SDF modelsbut
also CSDF models. As the buffer minimization problem is NP-
hard, the analysis can occasionally become too time consuming.
For the evaluated models, the technique completes within seconds
(usually milliseconds), except for one case. For an H.263 decoder,
which has 3255 throughput-buffering Pareto points, the tech-
nique takes 53 minutes. To improve scalability, an approximation
technique is presented that can be used to explore the design
space while trading off run-time of the algorithm with quality of
the end result, in terms of buffer size overestimation. We give
an analytical bound on the overestimation of our heuristic.The
results show that the approximation heuristic scales well.When
applied to the two application models for which the exact tech-
nique has the longest run-time, it approximates the throughput-
buffering trade-off space within a few milliseconds and in less
than half a second respectively. The minimal buffer sizes needed
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Fig. 1. Example SDFG.
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Fig. 2. Pareto space for SDFG shown in Fig. 1.

for maximal throughput are approximated with less than 0.2%
and 0.5% overestimation respectively. On three artificially created
models, for which the exact technique does not complete within
several hours, it approximates the throughput-buffering trade-off
space within seconds. The analytical bound guarantees lessthan
1% in overestimation in the buffer sizes needed for maximal
throughput for all three models.

The remainder of this paper is organized as follows. The
next section discusses related work in the area of SDFG and
CSDFG buffer sizing. Sec. III formalizes the CSDF model, such
that it generalizes the SDF model.1 The operational semantics
is defined in Sec. IV. The storage requirements for edges of a
CSDFG are discussed in Sec. V. The throughput of a CSDFG is
defined in Sec. VI. Sec. VII explains how this throughput can be
computed from an execution of the graph and Sec. VIII explains
how dependencies on storage space between actor firings can be
identified from this execution. The dependencies are exploited
in the design-space exploration algorithm presented in Sec. IX.
Experimental results on the performance of the algorithm are
discussed in Sec. X. Sec. XI investigates the approximationof
minimal buffer capacities and Sec. XII concludes this paper.

II. RELATED WORK

Minimization of buffer requirements in SDFGs has been stud-
ied before, see for example [3], [11]–[18]. The proposed solutions
target mainly single-processor systems. Modern media applica-
tions, however, often target multi-processor systems withdifferent
approaches to scheduling and resource allocation. Furthermore,
they have timing constraints expressed asthroughputor latency
constraints. Only looking for the minimal buffer size whichgives
a deadlock-free schedule as done in [3], [11]–[13], [16], [18] may
result in an implementation that cannot be executed within these
timing constraints. It is necessary to take the timing constraints
into account while minimizing the buffers. Several approaches

1The original definition of a CSDFG in [1] excludes the simultaneous
execution of multiple instances of the same actor, which means that according
to the original definitions CSDFGs and SDFGs are not directlycomparable.
We present a formalization of CSDF that allows the simultaneous execution
of multiple instances of the same actor.

have been proposed for minimizing buffer requirements under
a throughput constraint. In [14], a technique based on linear
programming is proposed to calculate a schedule that realizes
the maximal throughput while it tries to minimize buffer sizes.
Hwang et al. propose a heuristic that can take resource constraints
into account [15]. This method is targeted towards a-cyclic
graphs and it always maximizes throughput rather than usinga
throughput constraint. Thus, it could lead to additional resource
requirements when a lower throughput is sufficient. In [17],buffer
minimization for maximal throughput of a subclass of SDFGs
(homogeneous SDFGs) is studied. The proposed algorithm is
based on integer linear programming. Although SDFGs can be
transformed into homogeneous SDFGs. In general, the minimal
buffer sizes obtained with this approach cannot be translated to
exact minimal buffer sizes for arbitrary SDFGs.

A buffer minimization technique for CSDFGs is presented in
[4]. The technique computes the minimal buffer requirements for
a CSDFG with a static-time schedule. This schedule determines at
which moment in time actor firings are started. As such, it defines
the life-time of the tokens sent over the channels of the graph.
The buffer requirements follow directly from the token life-times.
The technique guarantees that the minimal buffer requirements are
found for the given schedule, and is similar to life-time analysis
techniques used in [14] and [17] for more restricted dataflow
models. However, a schedule of the CSDFG may exist that
realizes the same throughput with smaller buffer requirements.

In [7], a heuristic algorithm is presented that tries to minimize
buffer requirements for a throughput-constrained CSDFG. The
algorithm is fast but it cannot guarantee bounds on the buffer
size overestimation. The reported overestimation varies between
5% and 28%.

We propose, in contrast to the existing work, an exact tech-
nique to determine all trade-offs (Pareto points) between the
throughput and buffering requirements for a (C)SDFG, as well
as an approximation technique to approximate this space, while
providing guarantees on throughput and worst-case buffer size
overestimation. An interesting observation is that both the exact
and the approximation technique can also be applied after the
search space has been pruned by a heuristic, which may in general
lead to reduced buffering requirements for the given throughput
compared to the heuristic and lower run-times compared to our
exact method. For the mentioned heuristic of [7], one of our
experiments shows that our technique can compute the exact result
within a second when starting from the result of the heuristic. This
makes our work nicely complementary to fast heuristics.

In [10], it is shown that the buffer minimization problem
of homogeneous SDFGs is NP-complete. Any homogeneous
SDFG is also a CSDFG and the throughput-buffer trade-off is
a generalization of buffer minimization, which implies that also
the buffer minimization problem for CSDFGs is NP-hard. Both
our exact and our approximation technique are based on state-
space exploration. Explicit state-space exploration techniques
are frequently applied successfully to solve NP-complete (and
sometimes worse) scheduling problems [19]–[21]. For buffer
minimization, [13] proposed a state-space exploration technique
to find minimal buffer requirements to execute an SDFG with
a deadlock-free schedule. This motivated the investigation of
explicit state-space exploration techniques in [9] and this paper.
The techniques developed in [9] and in the current paper prune the
search space in an efficient way, as confirmed by the experimental
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Fig. 3. Example CSDFG.

results, without losing any Pareto points.

III. C YCLO-STATIC DATAFLOW GRAPHS

An example of a Cyclo-Static Dataflow graph (CSDFG) is
depicted in Fig. 3. Every time an actor fires it consumes a certain
amount of tokens from its input ports and produces a certain
amount of tokens on its output ports. These amounts are called
the portrates. Every actora models a periodic execution sequence
[f(0), f(1), · · · , f(N − 1)] of lengthN ≥ 1. The meaning of this
sequence is as follows. Thei-th time that the actora is fired,
it executes the functionf(i mod N). As a consequence, the port
rates and execution time of actors are also a sequence. These
sequences are visualized as port and actor annotations (seeFig.
3). The channels in the graph may contain tokens. The storage
space of a channel is in principle unbounded, i.e., it can contain
arbitrarily many tokens.

Formally, a CSDFG is defined as follows. LetN denote the
positive natural numbers, andN0 the natural numbers including
0. Assume a setP of ports. With each portp ∈ P , a sequence of
rates[r0, r1, · · · , rN−1] with ri ∈ N0 and N ∈ N is associated.
The number of tokens consumed or produced by a portp ∈ P on
its i-th access is given byRate(p, i) = ri mod N (where i starts
from 0).

Definition 1: (ACTOR) An actor a is a tuple (I,O, T ) con-
sisting of a setI ⊆ P of input ports (denoted byIn(a)), a set
O ⊆ P of output ports (denoted withOut(a)) with I ∩ O = ∅
and a sequenceT = [t0, t1, · · · , tN−1] of execution times with
ti ∈ N0.

Definition 2: (CSDFG)A CSDFG is a tuple(A,C) consisting
of a finite setA of actors and a finite setC ⊆ P ×P of channels.
The channel source is an output port of some actor, the destination
is an input port of some actor. All ports of all actors are connected
to precisely one channel. For every actora = (I,O, T ) ∈ A, we
denote the set of all channels that are connected to the portsin
I (O) by InC(a) (OutC(a)).

In the original CSDF definition [1], no assumptions are made on
the execution time of actors. The example CSDFG presented in
[1] suggests that fixed actor execution times are used. In line with
[4] and [7], this paper generalizes the fixed actor executiontimes
to a sequence of execution times for each actor.

As mentioned, actor execution is defined in terms offirings.
The execution time of thei-th firing of an actora is denoted as
τ (a, i). When actora starts itsi-th firing, it removesRate(q, i)

tokens from all(p, q) ∈ InC(a). The execution continues for
τ (a, i) time units and when it ends, it producesRate(p, i) tokens
on every(p, q) ∈ OutC(a). In this paper, it is assumed that all
port rate sequences and execution time sequences in a CSDFG
are of the same lengthN . This assumption is only made for
readability. The presented techniques are also valid when port
rate and/or execution time sequences of different lengths are used.
Every sequence can always be concatenated till its length isequal
to the least common multiple of the lengths of all sequences used

in the graph. Doing so for all sequences gives a CSDFG in which
all sequences are of equal length.

Definition 3: (SDFG)An SDFG is a CSDFG with the length
of execution time and rate sequencesN equal to one.

For certain rates in a (C)SDFG, the (C)SDFG deadlocks or tokens
accumulate on the channels. In the latter case, a (C)SDFG can
only execute in unbounded memory. Consistency (CSDF [1], SDF
[2]) is known to be a necessary condition to allow an execution
within bounded memory in which no actors deadlock [22].

Definition 4: (CONSISTENCY, REPETITION VECTOR) A repe-
tition vector q of a CSDFG(A, C) is a function inA → N0

given byq(a) = N · r(a) for all a ∈ A wherer is a function in
A→ N0 such that for each channel(o, i) ∈ C from actor a ∈ A

to b ∈ A, r(a) ·
P

0≤k<N Rate(o, k) = r(b) ·
P

0≤k<N Rate(i, k).
A repetition vector is called non-trivial if and only ifq(a) > 0

for all a ∈ A. A CSDFG is called consistent if and only if it has
a non-trivial repetition vector. For a consistent graph, there is a
unique smallest non-trivial repetition vector which is designated
as the repetition vector of the CSDFG.

A repetition vector thus represents a number of firings per actor
that brings the graph back to the distribution of tokens before the
firings. The repetition vector of our example graph (see Fig.3)
is equal to[6 4 2]T , ordering the actors from left to right. This
shows that the graph is consistent. Since inconsistent graphs are
typically not useful and consistency is straightforward tocheck
[12], we restrict our attention to consistent CSDFGs. Furthermore,
we assume connectedness. For unconnected graphs, analysiscan
be done per connected subgraph.

IV. OPERATIONAL SEMANTICS OF CSDFGS

To describe and study the methods introduced in this paper, CS-
DFG execution is formalized through a labeled transition system.
This requires appropriate notions of states and of transitions.

As explained, an actor consumes input tokens at the start of a
firing, and produces output at the end of the firing. In the seman-
tics, channels have infinite storage space, which means thatthere
is always sufficient space available for output. Physical storage
constraints are modeled by additional channels. The semantics
abstracts from the actual data that is being communicated or
processed by actors and treats all data elements equally in the
form of tokens. This is possible as we are interested in the timing
behavior and memory usage, and not for example in functional
analysis. In order to capture the timed behavior of a CSDFG, we
need to keep track of the distribution of tokens over the channels,
of the start and end of actor firings, and the progress of time.

To measure the number of tokens present in, read from or
written to channels, we define the following concept.

Definition 5: (CHANNEL QUANTITY ) A channel quantity on
the setC of channels is a mappingγ : C → N0. If γ1 is a
channel quantity onC1 and γ2 is a channel quantity onC2 with
C1 ⊆ C2, we write γ1 � γ2 if and only if for every channel
α ∈ C1, γ1(α) ≤ γ2(α). Channel quantitiesγ1 + γ2 and γ1 − γ2

are defined by pointwise addition resp. subtraction ofγ1 and γ2

resp.γ2 from γ1; γ1 − γ2 is only defined ifγ2 � γ1.

The amount of tokens read at the start of thei-th firing of some
actora can be described by a channel quantityRd(a, i) such that
Rd(a, i)(p, q) = Rate(q, i) if q ∈ In(a) and Rd(a, i)(p, q) = 0

otherwise. Similarly, the amount of tokens produced at the end of
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Fig. 4. Limited auto-concurrency.

the i-th firing is given by a channel quantityWr(a, i) such that
Wr(a, i)(p, q) = Rate(p, i) if p ∈ Out(a) andRd(a, i)(p, q) = 0

otherwise.

Definition 6: (STATE) The state of a CSDFG(A, C) is a 3-
tuple (γ, υ, η). Channel quantityγ associates with each channel
the amount of tokens in that channel in that state. To keep track
of time progress, an actor statusυ : A→ N

N0×N0

0 associates with
each actora ∈ A a multiset of pairs of numbers representing the
remaining times of different firings ofa and the index in the actor
execution sequence corresponding to the firing start.η : A→ N0

associates with each actora ∈ A its current position in the actor
execution sequence. The initial state of a CSDFG is determined
by initial token distributionγ, which means that the initial state
equals(γ, {(a, {}) | a ∈ A}, {(a, 0) | a ∈ A}) (with {} denoting
the empty multiset).

The use of a multiset of pairs of numbers to keep track of actor
progress instead of a single (pair of) number(s) allows multiple
simultaneous firings of the same actor (auto-concurrency).This
is a generalization of the original CSDF semantics of [1], but it
is in line with the standard SDF semantics (see, e.g., [23]).By
allowing auto-concurrency, we achieve that our CSDF definition
is a true generalization of the SDF model of computation. If
desirable, auto-concurrency can always be limited or excluded
by adding self-loops to actors with a number of initial tokens
equivalent to the desired maximal auto-concurrency degree. For
our running example, we disallow auto-concurrency by adding
self-loops (channelsϕa, ϕb and ϕc) with a single token to all
actors as shown in Fig. 4.

The dynamic behavior of the CSDFG is described by transi-
tions. Three different types are distinguished: start of actor firings,
end of firings, or time progress in the form of clock ticks.

Definition 7: (TRANSITION) A transition of CSDFG(A,C)

from state (γ1, υ1, η1) to state (γ2, υ2, η2) is denoted by

(γ1, υ1, η1)
β
→ (γ2, υ2, η2) where labelβ ∈ (A× {start, end}) ∪

{clk} denotes the type of transition.

• Label β = (a, start) corresponds to the firing start of actor
a ∈ A. This transition may occur ifRd(a, η1(a)) � γ1 and
results inγ2 = γ1 − Rd(a, η1(a)), η2 = η1[a 7→ (η1(a) +

1) mod N ], i.e.,η1 with the value fora replaced by(η1(a)+

1) mod N , andυ2 = υ1[a 7→ υ1(a)⊎{(τ (a, η1(a)), η1(a))}]

(where⊎ denotes multiset union).
• Label β = (a, end) corresponds to the firing end ofa ∈ A.

This transition can occur if(0, i) ∈ υ1(a) for somei and
results in υ2 = υ1[a 7→ υ1(a)\{(0, i)}] (where \ denotes
multiset difference), andγ2 = γ1 + Wr(a, i), η2 = η1.

• Label β = clk denotes a clock transition. It is enabled if no
end transition is enabled and results inγ2 = γ1, η2 = η1,
and υ2 with for all actors a ∈ A, υ2(a) = {(m − 1, n) |
(m, n) ∈ υ1(a)}.

Definition 8: (EXECUTION) An execution of a CSDFG is an

infinite alternating sequence of states and transitionss0
β0

→ s1
β1

→

. . . starting from the designated initial states0.

Note that all CSDFG (even a deadlocked one, in which no actor
is firing or ready to fire) has an infinite execution as time always
progresses.

V. STORAGE REQUIREMENTS

As mentioned in Sec. III, channels have unbounded storage
space in the semantics. However, in practice storage space must
be bounded. Bounded storage space for channels can be realized
in different ways. One option is to use a memory that is shared
between all channels. The required storage space for the execution
of a CSDFG is then determined by the maximum number of
tokens stored at the same time during the execution of the
graph. Murthy et al. use this assumption to schedule SDFGs with
minimal storage space [16]. This is a logical choice for single-
processor systems in which actors can always share the memory
space. A second option is to use a separate memory for each
channel, so empty space in one cannot be used for another. This
assumption is logical in the context of multiprocessor systems,
as memories are not always shared between all processors. The
channel capacity must be determined per channel over the entire
schedule, and the total amount of memory required is obtained
by adding them up. Minimization of the memory space with this
variant is considered in [3] and [11]. Hybrid forms of both options
can be used [13]. In this paper, we assume channels cannot share
memory space. This gives a conservative bound on the required
memory space when the CSDFG is implemented using shared
memory. In that case, the CSDFG may require less memory, but it
will never require more memory than determined by our method.

The maximum number of tokens that can be stored in a channel
(channel capacity) is captured by astorage distribution.

Definition 9: (STORAGE DISTRIBUTION) A storage distribu-
tion of a CSDFG(A,C) is a channel quantityδ that associates
with everyα ∈ C, the capacity of the channel.

The storage space required for a storage distribution is called the
distribution size.

Definition 10: (DISTRIBUTION SIZE) The size of a storage
distribution δ is given by:|δ| =

P

α∈C δ(α).

A possible storage distribution for the CSDFG shown in Fig. 3
would be δ(α) = 8 and δ(β) = 6, denoted as〈α, β〉 7→ 〈8, 6〉.
It has a distribution size of 14 tokens. Note that if tokens on
different channels represent different amounts of data, this can
easily be accounted for in the definition of distribution size. In
the remainder, we assume that all tokens are of equal size.

Let (p, q) be a channel from actora to actor b. Assume that
the channel contains in the initial state of the executiond tokens.
The number of tokens in the channel aftern firings of a andm

firings of b is given by the following equation:

d +
X

0≤i<n

Rate(p, i)−
X

0≤j<m

Rate(q, j)

This is equal to:
6

6

6

4

d +
X

0≤i<n

Rate(p, i) −
X

0≤j<m

Rate(q, j)

s

7

7

7

5 · s + d mod s,

with s = gcd{Rate(p, i), Rate(q, j) | 0 ≤ i < N, 0 ≤ j < N}.
The number of tokens that may ever appear in a channel, and
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Fig. 5. CSDFG with storage distribution〈8, 6〉.

hence the storage space which can be effectively used, depends
on the gcd of all possible combinations of rates at which the
actorsa and b produce and consume tokens. This gcd,s in the
above formula, is called thestep sizeof the channel. It follows
furthermore that it is not meaningful to have a number of initial
tokensd in a channel such thatd mod s 6= 0. These tokens will
never disappear. Thus, in the remainder, we assume for readability
that also the number of initial tokens in a channel is a multiple of
its step size. If this assumption is not valid, computed buffer sizes
can be corrected by increasing the storage space of a channelthat
containsd initial tokens byd mod s tokens.

The bound on the storage space of each channel can be modeled
in a CSDFG(A, C) by adding for channel(p, q) ∈ C from an
actor a ∈ A to an actorb ∈ A a channel(qδ , pδ) from b to a,
where pδ and qδ are fresh ports not yet in use in the CSDFG,
with Rate(pδ, i) = Rate(p, i) and Rate(qδ, i) = Rate(q, i). The
number of initial tokens on the channel(qδ, pδ) equals the storage
space of the channel(p, q) minus its own initial tokens.

In the remainder, subscript ‘δ’ is used to denote elements
used to model storage space. The CSDFG which models the
storage distributionδ in a CSDFG(A,C) is denoted(Aδ, Cδ).
Fig. 5 shows the CSDFG which encodes the storage distribution
〈8, 6〉 for our running example. Note that no storage space is
allocated for the self-loops on the actors. These self-loops are
introduced to model absence of auto-concurrency and will not
require storage space in a real implementation and can thus be
ignored. In fact, our technique allows in general to specifywhich
channels should be considered buffers, and which channels model
other dependencies. The self-loop dependencies added to limit
auto-concurrency are just one example of this flexibility. The only
requirement is that the CSDFG modeling the storage distribution
is strongly connected, as explained below. This means that Def. 9
can be relaxed to assign channel capacities to a subset of channels
only.

At the start of a firing, an actor consumes its input tokens. This
includes the tokens it consumes from the channels which model
the storage space of channels to which the actor will write. The
consumption of these tokens can be seen as allocation of storage
space for writing the results of the computation. At the end of
the firing, the actor produces its output tokens. This includes the
production of tokens on channels which model the storage space
of channels from which the actor has read tokens at the beginning
of the firing. The production of these tokens can be seen as the
release of the space of the input tokens. In other words, the model
assumes that space to produce output tokens is available when an
actor starts firing and that space used for input tokens is released
at the end of the firing. The chosen abstraction is conservative
with respect to storage and throughput if in a real implementation
space is claimed later, or released earlier or data tokens are read
later or written earlier.

VI. T HROUGHPUT

Throughput is an important design constraint for embedded
multi-media systems. The throughput of a graph refers to how
often an actor produces an output token. There exists a particular
type of execution for SDFGs, namely self-timed execution, which
gives maximal throughput [23]. In a self-timed execution, clock
transitions occur only when no start transitions are enabled. It
requires that each actor fires as soon as it is enabled. This
execution guarantees that all actor firings occur as early as
possible. So, this execution guarantees that at any moment in
time the maximal number of actor firings possible has occurred
since the start of the execution. Hence, the self-timed execution
of an SDFG achieves maximal throughput. It is obvious that for
the same reason also the self-timed execution of a CSDFG will
give its maximal throughput.

Definition 11: (ACTOR THROUGHPUT) The throughput of an
actor a for the self-timed execution of a CSDFG is defined as the
average number of firings ofa per time unit in the execution. It
is denoted withTh(a).

Note that some actors in some graphs can only achieve their
maximum throughput with unbounded channels [22]. In this
paper, we focus on throughput which can be achieved within
bounded storage space; throughput achieved with infinite storage
space cannot be implemented and is therefore not considered. A
CSDFG in which all actors are connected through sequences of
data dependencies and that incorporates a (by definition finite)
storage distribution for all data channels is always strongly
connected. In that situation, the fixed rate sequences of theactor
ports ensure that the number of times actors fire with respect
to each other (repetition vector) is constant. In other words, the
throughput of each pair of actors in a graph is related to each
other via a constant. This allows us to define a normalized notion
of throughput for a CSDFG, in line with the definition for SDF
given in [8]. Thus, in the remainder we assume that a CSDFG
modeling a storage distribution is strongly connected.

Definition 12: (THROUGHPUT) The throughput of a CSDFG
G = (A, C) is defined asTh(G) =

Th(a)
q(a)

, for an arbitrarya ∈ A,
whereq is the repetition vector ofG.

To compute the throughput of our example SDFG with the given
storage distribution (see Fig. 5), we first look at the transition
system of the self-timed execution as shown in Fig. 6. States
are represented by dots. Sequences of state transitions consisting
of all enabled start transitions, followed by a maximal number
of time steps, followed by all possible end transitions (called
macro-steps) are indicated by single arrows. The label witha
transition indicates which actors start their firing in thistransition
and the elapsed time till the next depicted state is reached.Actors
that continue their firings in a transition are labeled with atilde.
The transition system consists of a finite sequence of statesand
transitions, called thetransient phase, followed by a sequence
of states and transitions which is repeated infinitely oftenand
is called theperiodic phase. (The next section shows that this
is always the case.) Actorc in our example is considered to
determine the throughput of the example graph. This actor ends its
firing for the first time after10 clock transitions. At that moment,
the graph is in the periodic phase of the schedule. The subsequent
firings of c are then repeatedly executed7 and6 clock transitions
apart. The periodic phase is repeated indefinitely. Hence, the
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state vector (δ, υ, η) is encoded via a 3-tuple where δ corresponds to edges α, β, αδ , βδ resp., the tuple υ defines the multiset
for a, b, c resp. and the tuple η defines the sequence position of a, b, c resp.; for readability, the self-edges connecting an actor
to itself are omitted from the state vector.

Fig. 6. CSDF state space of the example CSDFG.

average time between firings over the whole schedule converges
to the average time between firings in the periodic phase. So,
the throughput ofc is Th(c) = 2/(7 + 6). Actor c fires two
times according to the repetition vector of the graph. Hence, the
throughput of the graph is equal to1/13. Essentially, this states
that the self-timed execution of the graph performs one execution
of the repetition vector every 13 time units.

VII. T HROUGHPUTCALCULATION

The throughput of a CSDFG can be computed from its state
space. The following result is a straightforward generalization of
a similar result for SDFGs given in [8].

Theorem 1:(PERIODIC BEHAVIOR) The state space for any
CSDFG (A, C) with storage distributionδ contains always ex-
actly one cycle if we consider macro-steps.

Proof: The CSDFG (Aδ, Cδ) modeling δ in (A,C) is
strongly connected. This means that every actor depends on
tokens from every other actor, which limits the difference between
the number of firings of actors wrt each other. This implies that
there exists a bound on the number of simultaneous actor firings
and the number of tokens in any channel, and hence, there is
only a finite number of different reachable states. Further,in the
transition system, there is always at least one transition enabled
(even in a deadlock state, there is still a clock transition enabled),
which implies that the number of transitions that will occuris
infinite. By the pigeon hole principle, at least one of the finite
number of reachable states is visited infinitely often. Since the
self-timed execution is deterministic (if we consider the execution
in macro-steps as explained above, because simultaneous starts
and ends can be arbitrarily interleaved in the semantics), there is
only one transition to leave any (recurrent) state. Hence, there is
exactly one cycle in the state space (in terms of macro-steps).

The theorem states that the state space of any CSDFG with
bounded storage space for all channels consists of a transient
phase followed by a periodic phase. Def. 11 defines the through-
put of an actor over an execution which contains infinitely many
transitions. The periodic phase is repeated indefinitely, while
the states in the transient phase are visited only once. Hence,
the average time between two firings over the whole execution
converges to the average time between two firings in the periodic
phase. So, the throughput can be computed from the periodic
phase while ignoring the transient phase.

Proposition 1: (THROUGHPUT) The throughput of an actora
in a CSDFG with some storage distributionδ is equal to the
number of firings ofa in one period of the periodic phase divided
by the number of clock transitions in the period.

Proof: Follows from Def. 11 and Theorem 1.

The throughput of a CSDFG can be computed by executing the
CSDFG in a self-timed manner while remembering visited states
until a state is revisited. At that point, the periodic phaseis
reached and the throughput of an actor can be computed using
Prop. 1. The throughput of the graph can then be computed using
Def. 12. The number of states that must be remembered can be
kept small. We can enforce deterministic execution by choosing
a fixed order among simultaneously enabled transitions in the
transition system without affecting the throughput. For every actor
it holds that the number of actor firings in the cycle is a multiple of
its repetition vector entry [8]. Thus to detect a cycle, an arbitrary
actor a (with repetition vector entryq(a)) can be selected, and
once everyq(a) times the state in which an end-of-firing transition
of a occurs must be stored. To detect deadlock, it must also be
checked whether a clock transition remains in the same state. It is
not necessary to store this state. To compute the throughput, we
must additionally store the number of clock transitions between
each two stored states. For our example CSDFG (see Fig. 6) and
assuming that actorc with q(c) = 2 is selected, only the gray
state must be stored.

The CSDF model of Sec. III assumes that all execution time and
rate sequences are of equal length. When sequences of different
lengths are used, a sequence can always be concatenated tillits
length is equal to the least common multiple of the lengths ofall
sequences used in the graph. Alternatively, the different lengths
can be taken into account in the definitions of states (Def. 6)
and transitions (Def. 7). The state should then store the position
of an actor in the execution sequence that is the least common
multiple of all sequences of that actor and the definition of start
and end transitions should be adapted to use appropriate modulo
operations to determine the correct execution times and correct
numbers of consumed and produced tokens. It is important to note
that when either the length of sequences is taken into account
in the definition of states and transitions or the concatenation
of sequences is used, the repetition vectors and the number of
visited states in the throughput computation are identical. Hence,
the complexity and the run-time of both approaches are the same.

VIII. STORAGE DEPENDENCIES

The maximal throughput of a CSDFG may be limited by
channel capacities. In the self-timed execution of the CSDFG,
an actor may, for example, be waiting for tokens on a channelαδ

(modeling the storage space of channelα). Adding tokens toαδ

(i.e. increasing the storage space ofα) may enable the actor to
fire earlier and possibly increase the throughput of the CSDFG.
The immediate dependency of an actor firing on tokens produced
by the end of another firing is called a causal dependency.

Definition 13: (CAUSAL DEPENDENCY) A firing of an actor
a causally depends on the firing of an actorb via a channelα if



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 7

a0

a1 a2 a3 a4 a5

c1

b1 b2

b3
c0

b0

α

β

αδ

βδ

βδ

β

αδ

ϕa

ϕb ϕb

ϕa

ϕa

ϕa

Fig. 7. Causal dependency graph of the example CSDFG.

and only if the firing ofa consumes a token fromα produced by
the firing of b on α without a clock transition between the start
of the firing ofa and the end of the firing ofb.

If a causal dependency appears in the periodic phase of execution,
the actor will repeatedly (infinitely often) not be able to fire earlier
which on its turn may influence the throughput. Throughput
may increase if these dependencies are resolved. All causal
dependencies between the actor firings of the periodic phase
can be captured in a causal dependency graph. It is sufficient
if only the dependencies between actor firings in one period of
the periodic phase are considered as the dependencies are equal
in all periods.

Definition 14: (CAUSAL DEPENDENCYGRAPH) Given a CS-
DFG (Aδ, Cδ) incorporating a storage distributionδ and a se-
quencep of states and transitions corresponding to a period of the
self-timed execution of(Aδ, Cδ) (starting at some arbitrary state
in the period). The causal dependency graph(D, E) contains a
node ak for the k-th firing in p of actor a ∈ Aδ. The set of
dependency edgesE contains an edge if and only if there exists
a causal dependency between the corresponding firings.

The causal dependency graph for the CSDFG of Fig. 5 is shown in
Fig. 7, assuming the gray state as the start state. The edges in the
causal dependency graph represent causal dependencies between
actor firings. A causal dependency goes via a set of channels in
the corresponding CSDFG (see Def. 13). This association of an
edge in the causal dependency graph to a set of channels in the
CSDFG is left implicit in Def. 14, but it is visualized in Fig.7
by labeling the edges in the graph. Note that the set of channels
associated to a dependency edge may contain only more than one
channel when the CSDFG is a multigraph.

The throughput of a CSDFG is limited by an infinite sequence
of causal dependencies between the actor firings, captured by a
causal dependency cycle in the causal dependency graph.

Definition 15: (CAUSAL DEPENDENCYCYCLE) A causal de-
pendency cycle is a simple cycle in the causal dependency graph.

A causal dependency cycle is a sequence of actor firings that
causally depend on each other, starting and ending with the
same actor firing. Causal dependencies caused by channels that
model storage space are of interest as adding tokens to these
channels (i.e., increasing their storage space) may resolve causal
dependency cycles and increase throughput.

Definition 16: (STORAGE DEPENDENCY) Given a CSDFG
(Aδ, Cδ) incorporating a storage distributionδ and its causal
dependency graph∆. A channelα ∈ Cδ has astorage dependency
in ∆ if and only if there exists a causal dependency in some
dependency cycle of∆ via channelαδ .

Storage dependencies can be used to determine which storage
capacities can be enlarged to increase throughput of the graph.
However, two issues remain to be solved. First, if the graph

αa b
β

c

αδ
βδ

ϕa ϕb

Fig. 8. Abstract causal dependency graph of the example CSDFG.

deadlocks, the causal dependency graph is empty and provides
no information about which channel capacities to enlarge. Sec-
ond, having a node for every firing of every actor, the causal
dependency graph may become prohibitively large (a multiple of
the sum of entries in the repetition vector). We solve the latter
issue first and subsequently the deadlock case.

Cycle detection in the causal dependency graph can become
very time consuming. To solve this, an abstract version of the
causal dependency graph can be constructed in which the number
of nodes is equal to the number of actors in the CSDFG.

Definition 17: (ABSTRACT CAUSAL DEPENDENCY GRAPH)
Given a CSDFG(Aδ, Cδ) incorporating a storage distribution
δ and its causal dependency graph(D, E). The abstract causal
dependency graph(Da, Ea) contains an abstract dependency
node da ∈ Da for each actora ∈ Aδ. For each dependency
edge(ak, bl) ∈ E, there is an edge(da, db) in Ea.

Fig. 8 shows the abstract causal dependency graph corresponding
to the causal dependency graph of Fig. 7. As for the causal
dependency graph, each dependency edge in the abstract causal
dependency graph is associated with the set of channels causing
this dependency. In practice, the abstract causal dependency graph
of a CSDFG can be constructed by traversing through the cyclein
the state space of the CSDFG once. It is not necessary to construct
the underlying causal dependency graph. An important property
of the abstract causal dependency graph is that it includes at least
all storage dependencies present in the full causal dependency
graph. (The definition of a storage dependency carries over to the
abstract causal dependency graph.)

Theorem 2:(PRESERVATION OF STORAGE DEPENDENCIES)
The set of storage dependencies of an abstract causal dependency
graph contains all storage dependencies of the corresponding
causal dependency graph.

Proof: Given a causal dependency graph∆ = (D, E)

and its corresponding abstract causal dependency graph∆a =

(Da, Ea). Any dependency edge(ai, bj) ∈ E from a node which
corresponds to thei-th firing of actora to thej-th firing of actor
b maps in∆a to an edge from the abstract causal dependency
node of actora to the abstract causal dependency node of actor
b. Any cycle of dependencies in∆ is a sequence of dependency
edges which in the abstract causal dependency graph (using the
mapping of causal dependency nodes in∆ to nodes in∆a) is
also a sequence starting and ending in one node, i.e., it is also a
cycle in ∆a. Hence, the edge is also on some cycle in∆a and
thus also on some simple cycle.

In the case that the CSDFG deadlocks (because of a shortage of
storage space or an inherent deadlock due to the specified data
and control dependencies), the regular causal dependency graph
is empty by definition. To find out which channel capacities need
to be increased, if any, the following alternative definitions are
used in that case.
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Definition 18: (CAUSAL DEPENDENCY IN DEADLOCK) In a
deadlocked state, an actora causally depends on an actorb via
a channelα from b to a if and only if firing ofa is prohibited by
a lack of tokens on channelα.

Based on this definition, we can also define a causal dependency
graph for the deadlock case, which via Definitions 15 and 16
defines the storage dependencies for the deadlock case.

Definition 19: (CAUSAL DEPENDENCY GRAPH IN DEAD-
LOCK) Given a CSDFG(Aδ, Cδ) incorporating a storage dis-
tribution δ, with throughput zero (i.e., self-timed execution (even-
tually) deadlocks). The causal dependency graph(D, E) contains
a nodea for every actora ∈ Aδ. The set of dependency edgesE

contains an edge froma to b if and only if a causally depends
on b in the deadlock state.

In the remainder, ‘dependency graph’ refers to either the abstract
causal dependency graph in case of CSDFGs with positive
throughput and the causal dependency graph in deadlock oth-
erwise.

IX. D ESIGN-SPACE EXPLORATION

Sec. VII presents a technique to find the throughput for a given
storage distribution and Sec. VIII provides the means to detect
which channels are potentially limiting the graph’s throughput.
Using these techniques, it is possible to find the trade-offsbetween
the distribution size and the throughput, i.e., thePareto space.
Fig. 9 shows this Pareto space for our example CSDFG. It shows
that storage distribution〈5, 6〉 is the smallest distribution with
a throughput larger than zero. The throughput of the graph can
never go above1/12, as actora always has, according to its
entry in the repetition vector, to fire six times which requires 12
time steps. With a distribution size of16 tokens, the maximal
throughput can be achieved.

The following definition defines the minimal storage distribu-
tions that we are interested in.

Definition 20: (M INIMAL STORAGE DISTRIBUTION) A stor-
age distributionδ with throughputTh is minimal if and only if
there is no storage distributionδ′ with throughputTh ′ such that
|δ′| ≤ |δ| and Th ′ > Th, or |δ′| < |δ| and Th ′ ≥ Th.

Distributions 〈0, 0〉, 〈5, 6〉, 〈6, 6〉, 〈7, 6〉, 〈8, 6〉 and 〈8, 8〉 in the
CSDFG of Fig. 3 are minimal, as shown in Fig. 9 (except
for 〈0, 0〉), but distribution 〈8, 7〉 is not, because it yields the
same throughput as configuration〈8, 6〉. Fig. 2 shows another

example of this Pareto space, for the SDFG shown in Fig. 1.
An interesting observation is that distributions〈6, 2〉 and 〈5, 3〉

are both minimal, while having the same size. This example
shows that in general multiple minimal storage distributions may
exist with the same distribution size. Also note that the example
Pareto spaces illustrate that the throughput is monotonically
non-decreasing with the distribution size. Increasing a channel
capacity can only lead to the earlier production of data tokens,
and hence it can never lead to a decrease in throughput.

Algorithm 1 Find all minimal storage distributions
Input: A CSDFGG with maximal throughputThmax

Result: A set P of pairs (storage distribution, throughput), contain-
ing precisely all minimal storage distributions

1: procedure FINDM INSTORAGEDIST(G,Thmax)
2: Let U be a list of unexplored storage distributions,

ordered by size
3: U ← [〈0, ..., 0〉]
4: P ← ∅
5: while no (δ,Th) ∈ P with Th = Thmax or, when a
6: (δ,Thmax) ∈ P , there is someδ′ ∈ U with |δ′| = |δ| do
7: δ ← removeFirst(U)
8: Create CSDFGGδ which modelsδ in G
9: Compute throughputTh

and dependency graph∆ of Gδ

10: P ← P ∪ {(δ,Th)}
11: Let S be the set of storage dependencies in∆
12: for each channelα in S do
13: δn ← δ
14: δn(α)← δ(α) + step(α)
15: U ← U ∪ {δn}

16: Remove non-minimal storage distributions fromP

Algorithm 1 presents the exploration algorithm for finding
all minimal storage distributions, given a connected CSDFGG

and its maximal throughputThmax. This maximal throughput
can be computed as the minimum throughput of all strongly
connected components of the CSDFG, computed using the tech-
nique explained in Sec. VII. The algorithm uses a setU which
contains all storage distributions that it needs to explore, ordered
by their distribution size. Initially, the setU contains only the
storage distribution〈0, . . . , 0〉. The algorithm explores all storage
distributions in U with smallest size first. A smallest storage
distributionδ is removed from it and the algorithm computes the
dependency graph∆ and throughputTh for this distribution. The
distribution-throughput pairs are kept in a setP . The algorithm
continues by constructing a new storage distributionδn for each
channelα which has a storage dependency in∆. In δn, the storage
space ofα is increased by the step size of the channel as explained
in Sec. V. All other channels have the same storage space inδn as
in δ. δn is then added to the setU . The main loop of the algorithm
terminates when some storage distribution realizing the maximal
throughput has been found and no other storage distributions of
equal size remain to be explored. Finally, all non-minimal storage
distributions are removed fromP . Observe that this can be done
via a single traversal through all the explored storage distributions
stored inP by keeping this set sorted according to throughput. It
is shown below that the algorithm returns precisely all minimal
storage distributions.

To illustrate the workings of Algorithm 1, we discuss one
iteration of the loop (line 5-15) while computing the through-
put/storage trade-off space of the CSDFG of Fig. 3. Considerthe
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situation in which the algorithm is executing and it has reached
line 5 whileU contains the storage distribution〈8, 6〉 andP con-
tains the storage distribution/throughput pairs that havealready
been explored (e.g.,(〈0, 0〉, 0), (〈5, 6〉, 0.059), (〈6, 6〉, 0.067) and
(〈7, 6〉, 0.071)). The maximal throughputThmax of the graph is
equal to0.083. The condition at lines 5-6 is true, sinceP contains
no storage distribution/throughput pair that reachesThmax. At
line 7, the storage distribution〈8, 6〉 is removed fromU . This
storage distribution is modeled in the CSDFG of Fig. 3. The
resulting CSDFGGδ is shown in Fig. 5. Next,Gδ is executed
to find its throughput and dependency graph. This dependency
graph is the abstract dependency graph of Fig. 8. On line 10, the
storage distribution/throughput pair(〈8, 6〉, 0.77) is added toP .
From the dependency graph, it follows that both the channelsα

andβ have a storage dependency. Since the step size ofα is one
and the step size ofβ is two, lines 12-15 add the new storage
distributions〈9, 6〉 and〈8, 8〉 to U . The algorithm then continues
with the next iteration of the loop. In this iteration, it will explore
the newly added storage distribution〈9, 6〉.

A few lemmas are needed to prove that the result of Algorithm
1 returns precisely all minimal storage distributions, or in other
words, all throughput-buffering Pareto points for a CSDFG.

Lemma 1: Given a storage distributionδi with throughputThi.
For any storage distributionδj � δi with throughputThj < Thi

and dependency graph∆j , there is a channelα with a storage
dependency in∆j such thatδi(α) > δj(α).

Proof: If δj is such that the graph deadlocks, the result
is straightforward to prove using the dependency graph for the
deadlock case. We present the case thatThj is positive in more
detail. In a self-timed execution, each actor firing has a causal
dependency with at least one earlier actor firing (unless it is one
of the first firings consuming the initial tokens). This giveschains
of causal dependencies between all actor firings that occur during
the execution. These chains of causal dependencies start with the
initial firings of the graph, and either end at some point, or they
are of infinite length. In a non-deadlocking self-timed execution,
there must be at least one such chain of infinite length. (Otherwise,
the graph would have delayed some firing unnecessarily.) Such
infinite chains determine the throughput.

There is a finite number of states in the periodic phase and
states in this phase are revisited each period. Hence, also the same
causal dependencies are encountered again and again. So, each
infinite chain of causal dependencies implies a cycle in the causal
dependency graph as defined in Definition 14 and according to
Theorem 2 also in the abstract causal dependency graph.

To increase the throughput, each of the causal dependency
cycles must be broken. Sinceδi has a higher throughput than
δj , we know that every causal dependency cycle ofδj includes
a storage dependency in∆j (because otherwiseThj would
be maximal, contradictingThj < Thi). Since decreasing the
capacity of channels can never increase throughput, to achieve
throughputThi > Thj , at least one storage dependency of each
causal dependency cycle in∆j has been resolved by increasing
the capacity of the corresponding channel. Hence, there must
be some channelα with a storage dependency in∆j such that
δi(α) > δj(α).

Lemma 2: Given a storage distributionδi with throughputThi

and a storage distributionδj such thatδj � δi with throughput

δ0

δj

δk

δi
P

Fig. 10. Distributions reached by Algorithm 1.

Thj < Thi. Then, Algorithm 1, from distributionδj , explores a
storage distributionδk for which δj � δk � δi, |δj | < |δk| and
Thj ≤ Thk ≤ Thi.

Proof: Let Sj be the set of storage dependencies ofδj . From
Lemma 1, it follows that there exists a channelα ∈ Sj for which
δj(α) < δi(α). So, the capacity ofα can be enlarged with at least
one step before the storage space becomes equal to the storage
space assigned to it inδi. Becauseα ∈ Sj, Algorithm 1 does
increase the storage space ofα, which results in a new storage
distributionδk. As (only) the storage space ofα is increased, but
not beyond its capacity inδi, it must hold thatδj � δk � δi

and |δj | < |δk|. From δj � δk � δi, it also follows directly that
Thj ≤ Thk ≤ Thi.

Theorem 3:(CORRECTNESS OFALGORITHM 1) The set of all
storage distributions contained inP which is constructed using
Algorithm 1 contains precisely all minimal storage distributions.

The proof of Theorem 3 is illustrated by Fig. 10.

Proof: For throughput0, δ0 = 〈0, . . . , 0〉 is the (only)
minimal storage distribution and it is always returned by the
algorithm. Therefore, letδi be some minimal storage distribution
with positive throughputThi. We must show thatδi ∈ P , i.e.,
that the algorithm will explore distributionδi. Initially, Algorithm
1 starts from the storage distributionδ0 = 〈0, . . . , 0〉 which
satisfies the conditions of Lemma 2. Repeatedly using Lemma
2, we can show that the algorithm explores a seriesδk of storage
distributions withδ0 � δ1 � δ2 � . . . � δm � δi and for each
k, |δk| < |δk+1|. From δk � δi, it follows that |δk| ≤ |δi| and
hence, after a finite number ofm steps it must be that Lemma 2
no longer applies. Thus, it follows thatThm = Thi and, because
δi is minimal, that|δm| = |δi|. For a distributionδm � δi such
that |δm| = |δi|, it must be thatδm = δi, which shows thatδi is
explored by the algorithm. When the condition of the while loop
no longer holds, no more minimal storage distributions can be
reached from distributions inU .

So far, we have shown that setP contains all minimal storage
distributions. However, it may also contain non-minimal distribu-
tions. The last line of the algorithm removes non-minimal storage
distributions, completing the proof.

From the literature on dataflow graphs, lower bounds on the
storage space required for each channel to avoid deadlock (i.e.,
throughput equal to zero) are known [11], [16]. These boundscan
be used to speed up the initial phase of Algorithm 1. Distribution
〈0, . . . , 0〉 with all zero entries is by definition the only minimal
storage distribution realizing zero throughput. Thus, to find all
Pareto points with non-zero throughput, it is sufficient to start
from the mentioned lower bounds.
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An important and relevant question that remains is whether
Algorithm 1 terminates. We show that if at least one actor has
a bounded throughput, then Algorithm 1 ends. If all actors can
increase their firing rate indefinitely, then there are infinitely many
minimal storage distributions, and the algorithm cannot terminate.

Theorem 4:(TERMINATION) For any connected CSDFGG
that contains an actor with bounded throughput, Algorithm 1
terminates.

Proof: Given a connected CSDFGG, Thmax is equal
to the minimum of the throughputs of all strongly connected
components inG. As there is at least one actor with bounded
throughput, the throughput of the strongly connected component
containing that actor must be bounded, and henceThmax < ∞.
The throughputThmax is achievable within finite memory. This
implies that there exists some storage distributionδmax of finite
sizeN that achieves throughputThmax.

Algorithm 1 explores the storage distributions with increasing
size. There is only a finite number of storage distributions of any
size n ≤ N . This implies that only a finite number of different
storage distributions exist that have a size at most|δmax|. Within
a finite number of steps, all distributions with size up toN are
explored and a storage distribution with throughputThmax is
found, causing the algorithm to terminate.

The algorithm presented in this section is a modified version
of the algorithm presented in [9]. These algorithms differ in
the order in which storage distributions are explored and the
termination condition (line 5) that is used. Algorithm 1 explores
the storage distributions with increasing size. It ends immediately
after it explored the storage distribution size of the minimal
storage distributions that realize the maximal throughput. The
algorithm in [9] searches the design space using a depth-first
search algorithm and it ends when the listU of unexplored storage
distributions is empty. The algorithm from [9] explores in this
way all storage distributions that are explored by Algorithm 1.
However, it may also explore storage distributions that arelarger
than the size of the minimal storage distributions that realize
maximal throughput. In other words, the algorithm from [9] may
explore more (but never less) storage distributions than Algorithm
1. Hence, the algorithm presented in this paper may terminate
earlier than the algorithm from [9].

As mentioned in Sec. II, the problem of finding all minimal
storage distributions of a CSDFG is NP-hard. Algorithm 1 has
in fact an exponential worst-case complexity. This is due to
the underlying throughput analysis technique that is used.This
technique has an exponential worst-case complexity. Furthermore,
the algorithm itself explores a set of storage distributions that can
potentially also be exponentially large.

X. EXPERIMENTAL RESULTS

We performed a number of experiments on real DSP and
multimedia application models to evaluate how our approach
performs. The set of SDFG application models contains a modem
[3], a satellite receiver [6], a sample-rate converter [3],an MP3-
decoder [9] and an H.263 decoder [9]. We also included the
often used bipartite SDFG from [3] in our SDFG benchmark.
The set of applications modeled with a CSDFG contains an H.263
encoder [24], [25], a channel equalizer [26] and an MP3 playback
application [7]. The CSDFG model formalized in Sec. III assumes

that all port rate and execution time sequences are of equal length.
To satisfy this requirement, the sequences given in the original
CSDFGs must be concatenated. All sequences in these graphs
have either a length 1 or a lengthN that is fixed for a given
application (N = 99 in the H.263 encoder,N = 8 in the channel
equalizer andN = 39 in the MP3 playback application). The
execution times for the actors in all graphs were, when available,
taken from the references. In other cases, they were obtained
by analyzing the application source code with the worst-case
execution time analysis technique described in [27]. For each of
the graphs, the complete design space was explored. This resulted
in a Pareto space showing the trade-offs between the throughput
and distribution size for each graph.

The results of the experiments on the SDFGs are shown in
Tab. I. The results for the CSDFGs are summarized in Tab. II.
Both tables show the number of actors in each graph and the
number of channels for which the buffers are being sized, the
minimal distribution size for the smallest positive throughput, the
maximum throughput that can be achieved and the distribution
size needed to realize this throughput. They also show the number
of Pareto points and the number of minimal storage distributions
that were found during the design-space exploration. The results
show that each Pareto point contains a single storage distribution.

For the SDFGs, an estimate on the number of storage distribu-
tions in the design space can be made. It is possible to compute
an upper bound on the storage space required for each channel
to achieve maximal throughput with finite channel capacities
[2]. This upper bound and the lower bound, mentioned in Sec.
IX and taken from [16], can be used to compute the number
of different storage distributions in the design space (seerow
‘#Distr. in space’ of Tab. I). The next row shows the number of
storage distributions explored by the algorithm. The results show
that the algorithm explores only very few distributions from the
space. For most SDFGs, it only explores the minimal storage
distributions (excluding the trivial minimal storage distribution
containing all zero entries, as explained in Sec. IX). This shows
that the algorithm successfully prunes the design space. Nogood
technique is known to accurately upper-bound the storage space
requirements for channels in a CSDFG. Therefore, no good
estimate can be made of the number of storage distributions in the
design space of the CSDFGs. However, the results show that the
number of storage distributions that is explored by the algorithm
is also in this case limited.

The algorithm computes the throughput for each storage dis-
tribution it tries. This is done via a self-timed execution of the
graph. The row ‘Max. #states visited’ shows the maximal number
of different states that is visited during a throughput computation.
Only a selected number of states must be stored (see Sec. VII)
to compute the throughput of the graph. The maximal number of
states that is stored is shown in the row ‘Max. #states stored’.

All SDFGs, except the H.263 decoder, show a run-time in the
order of milliseconds to explore the complete design space.The
run-time for the H.263 decoder is large due to the large number of
Pareto points contained in the space. The results on the CSDFGs
show that the complete Pareto space can be computed within
seconds for all applications. The MP3 playback CSDFG has the
longest run-time due to the many Pareto points contained in its
throughput/storage trade-off space.

It is interesting to consider the MP3 playback model of [7] in
a bit more detail. In [7], a heuristic is presented that computes
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TABLE I

EXPERIMENTAL RESULTS ONSDFGS.

Bipartite Sample Modem Satellite MP3 H.263
rate decoder

#actors / #sized channels 4/4 6/5 16/19 22/26 13/12 4/3
Min. pos. throughput (s−1) 4·104 15·104 3·104 18·104 7·103 50
Distr. size 28 32 38 1542 12 4753
Max. throughput (s−1) 6·104 17·104 6·104 23·104 8·103 100
Distr. size 35 34 40 1544 16 8006
#Pareto points 9 4 4 3 4 3255
#Min. distr. 9 4 4 3 4 3255
#Distr. in space 1·108 9·1012 1·1010 2·1065 4096 3·1010

#Distr. checked 51 3 4 4 7 292·103

Max. #states visited 652 6·106 134 10377 33579 8·106

Max. #states stored 20 5328 2 241 212 1124
Exec. time 1ms 1ms 2ms 7ms 2ms 53min

a storage space distribution under a throughput constraint. The
objective is to minimize the size of the storage distribution. The
reported results state that the heuristic can compute within the
order of 10−2s a storage distribution which is 5% larger than
the smallest storage distribution allowing maximal throughput.
Using our algorithm, the optimal solution can be found in 26s
(see Tab. II). Depending on the context in which buffer sizing is
applied, this run-time may or may not be acceptable. In general,
however, the exponential worst-case complexity of our technique
could potentially lead to prohibitively large run-times. In those
cases, our technique can be combined with any heuristic for buffer
sizing. For example, the heuristic from [7] can be used to compute
a storage distribution close to the optimum. A fraction of the
storage space computed for each channel by the heuristic canthen
be used as a starting distribution in (line 3 of) our algorithm. In
this way, our algorithm explores the trade-off space just below
the storage distribution computed by the heuristic for a smaller
distribution that still satisfies the throughput constraint. To test
this approach, we ran our algorithm on the MP3 playback CSDFG
with the initial storage distribution equal to 90% of the storage
distribution requirements computed by the heuristic from [7] for
this CSDFG. Our algorithm was able to find the optimal storage
distribution within 1s. This illustrates how our algorithmcan be
combined with a heuristic, which will in general improve the
results of the heuristic with little effort.

XI. A PPROXIMATION OFBUFFERSIZES

A. A Generic Approximation Technique

The experimental results of the previous section show that the
search space of distributions is pruned efficiently by looking for
storage dependencies. Nevertheless, the number of distributions
that need to be explored may still be large, potentially leading to
long run-times of the algorithm. An approximation of the exact
result can be obtained by reducing the number of distributions
that need to be explored, for instance by changing the step size
for increasing the channel capacities. We have shown that for a
channelα considering as sizes all multiples ofstep(α) guarantees
that all minimal distributions are found. In this section, we
consider exploring only a setKα of capacities for channelα and
for any capacityk, we use⌈k⌉Kα to denote the smallest capacity
in Kα which is at leastk. We require that setsKα be such
that such capacity always exists (i.e., that channel capacities can
always be increased). Concrete examples of such sets, that we also

TABLE II

EXPERIMENTAL RESULTS ONCSDFGS.

H.263 Channel MP3
encoder1 equalizer playback

#actors / #sized channels 6/6 12/20 4/2
Min. pos. throughput (s−1) 8·10−2 3 4.0
Distr. size 104 19 921
Max. throughput (s−1) 0.3 3 8.3
Distr. size 105 19 1842
#Pareto points 3 2 829
#Min. distr. 3 2 829
#Distr. checked 2 1 2296
Max. #states visited 12·106 2298 14231
Max. #states stored 2 2 4
Exec. time 10s 4ms 26s

1The (unexpectedly low) throughput values for this model areob-
tained when assuming a 500 Mhz processor and using the cycle
counts reported in [24] (which does not specify the used platform).

use for our experimental evaluation later in this section, are sets
Kn

α , for any numbern ∈ N, defined as{k ∈ N | k = n · step(α)},
i.e., only multiples of thestep(α) are considered for the given
multiplication factorn.

Algorithm 1 is adapted as follows. Line 13 becomes:

δn(α)← ⌈δ(α) + 1⌉Kα .

That is, the next smallest capacity in the given setKα is chosen.
We can prove the following property of the adapted algorithm.
The adapted algorithm finds all minimal storage distributions δ

among all distributions with channel capacitiesδ(α) ∈ Kα for
all α ∈ C. The property is proved using Lemmas 1 and 2 and
Theorem 3, while restricting attention to distributions within the
limited set.

From the fact that the adapted algorithm finds all minimal
storage distributions among the reduced set, we can derive the
following bound on the discrepancy of the result from the optimal
result.

Theorem 5:(OVERESTIMATION BOUND) For every minimal
storage distributionδ with throughputTh, found in the full search,
there is a storage distributionδ′ with throughputTh ′ that is
minimal in the reduced search space such thatTh ′ ≥ Th and
|δ′| ≤

P

α∈C⌈δ(α)⌉Kα .
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Fig. 11. Worst-case overestimation for various channel capacities, step sizes,
and multiplication factors.

Proof: An increase in channel capacity cannot decrease
the throughput. If we round all channel capacities inδ up to
⌈δ(α)⌉Kα , we obtain a distribution with throughputTh ′, at least
throughput Th. If this distribution is minimal in the reduced
search space, the theorem is proved. If it is not minimal, there
exists a minimal one with the same throughput and smaller
distribution size, or with a higher throughput and the same size.
In both cases, this distribution satisfies the theorem.

Note that the adapted algorithm still has an exponential worst-
case complexity. However, it allows a trade-off between run-
time and quality of the end result, by appropriately choosing
the Kα. One can choose, for example, the setsKn

α already
mentioned above, possibly with different multiplication factors
per channel. Theorem 5 then gives a bound on the worst-case loss
in quality (buffer-size overestimation). Consider a single channel
α. Theorem 5 and the definition ofKn

α imply that

δ′(α) ≤ ⌈δ(α)⌉K
n

α ≤ δ(α) + (n− 1)step(α).

It follows that the relative overestimation forα is bounded as
follows:

δ′(α)− δ(α)

δ(α)
≤

(n− 1)step(α)

δ(α)
, (1)

which is the expected result that the overestimation per channel
can be at mostn− 1 times the step size.

Figure 11 shows the worst-case overestimation for a single
channel, for various channel capacities, step sizes, and multi-
plication factors. The channel capacities and step sizes are in
line with those observed in the models of our benchmark. The
relative worst-case overestimation is small for increasing channel
size, which is when the approximation algorithm is most useful,
because only for large distribution spaces the run-time of our
exact technique may become problematic. Note that the relative
worst-case overestimation does not change when considering
multiple channels (assuming the same capacities, step sizes, and
multiplication factors). The likelihood that the worst case will
occur in fact decreases with increasing numbers of channelsin
the CSDFG. Another way to limit the over-estimation is to search
the trade-off space with several multiplication factors per channel,
as illustrated below.

It is also possible to try to bound the relative overestimation
via an appropriate choice ofKα, by choosing forKα the set
{⌈(1 + q)n⌉step(α) | n ∈ N}, for some appropriately smallq.
Except for rounding effects, this choice for theKα limits the
overestimation toq · 100%.

B. Experimental Results

The experimental results presented in Sec. X show that design-
space exploration of the H.263 decoder and the MP3 playback
application take the most time from all the tested models. For
both applications, this is due to the large number of Pareto points
in the trade-off space. However, the throughput of most of the
Pareto points is close to each other. In practice, it is not interesting
to find all these points. The approximation technique presented in
the previous section can be used to reduce the number of different
storage distributions that is explored.

Experiments have been performed with this approximation
algorithm on the H.263 decoder and MP3 playback application.
For both applications, a uniform multiplication factor hasbeen
used for the different channels. The step size in the H.263 decoder
was multiplied with a factor of 3, 9, and 27. For the MP3 playback
application, a multiplication factor of 3, 5, and 15 has beenused.
The results for these experiments are shown in Tab. III. (Thelast
column in the table is explained below.) The results show that
the approximation technique drastically improves the run-time of
the exploration at the cost of a reduced number of Pareto points
found (but as already said, it is hard to imagine that hundreds or
thousands of Pareto points are practically meaningful).

The approximation algorithm may lead to an overestimation of
the required storage space for a given throughput. The tableshows
for each experiment the maximum overestimation observed for an
arbitrary Pareto point in the complete trade-off space, theaverage
overestimation over the entire space, and the overestimation of
the minimal buffer requirements allowing maximal throughput.
The results show that the overestimation is very small in general,
which shows that dropping Pareto points for these models does
not have much impact in terms of storage requirements com-
puted for a given throughput constraint. The peak in maximum
overestimation for the largest multiplication factor in the MP3
experiment is to be expected, because large overestimationmay
occur for large multiplication factors in combination withsmall
buffer sizes. However, small buffers are the part of the trade-off
space that our algorithm explores first. In those cases, the exact
technique, an approximation with a smaller multiplicationfactor,
or an approximation aiming to bound the relative overestimation
(as explained at the end of the previous subsection) can be used
to determine the appropriate buffer sizes satisfying the throughput
constraint.

The experiments reported in Tab. III use only one multiplication
factor, which is the same for all the sized channels. There are
several ways to improve the obtained results. One way is to
carefully select different multiplication factors for thedifferent
channels. Another way is to apply our exact technique (or another
approximation) on a designated part of the approximated space, in
the same way as the combination of our technique with heuristics
that we explained earlier. Given a throughput constraint, one can
first make a coarse approximation of the trade-off space witha
large multiplication factor. Then, one can choose a distribution
that comes close to satisfying the constraint as the starting point
for a finer grain approximation or an exact exploration of the
trade-off space up to the point that the throughput constraint is
satisfied.

A third way to improve approximation results is to simply
combine the results of two or more approximations of the trade-
off space. This may lead to a reduced overestimation, as illustrated
by the last column of Tab. III. Combining the approximationsof
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TABLE III

RESULTS ON APPROXIMATION ALGORITHM.

H.263 decoder MP3 playback
exact n = 3 n = 9 n = 27 exact n = 3 n = 5 n = 15 n = 3, 5

Min. pos. throughput (s−1) 50 50 50 50 4.0 4.0 4.0 4.0 4.0
Distr. size 4753 4753 4753 4753 921 921 921 921 921
Max. throughput (s−1) 100 100 100 100 8.3 8.3 8.3 8.3 8.3
Distr. size 8006 8006 8012 8021 1842 1842 1846 1851 1842
#Pareto points 3255 1087 365 124 829 278 186 43 336
#Min. distr. 3255 1087 365 124 829 278 186 43 336
#Distr. checked 292·103 28720 3613 558 2296 357 185 42 542
Max. overest. - 0.07% 0.24% 0.69% - 3.72% 7.33% 26.91% 3.72%
Avg. overest. - 0.03% 0.10% 0.33% - 0.17% 1.51% 5.28% 0.14%
Min.buf. / max.thr. overest. - 0% 0.07% 0.19% - 0% 0.22% 0.49% 0%
Exec. time 53min 5min 36s 7ms 26s 4s 2s 0.49s 6s

the trade-off space obtained via multiplication factors 3 and 5
leads to an increased number of Pareto points found, resulting
in a reduced average overestimation when compared to the two
approximations in isolation. We obtained the results reported in
Tab. III by explicitly computing the two approximations, and then
combining the results. A more efficient implementation would
first compute the approximation with the largest multiplication
factor, and then use the information about distributions already
explored while computing the approximation with the smaller
multiplication factor. This would lead to an amount of checked
distributions and a run-time which are less than the sums of those
values for the individual approximations. The experiment shows
the versatility of the approximation technique. Note that it does
not make sense to combine approximations when one multiplica-
tion factor is a divisor of (one of) the other multiplicationfactor(s)
(which is why Tab. III does not report any other combinations).

C. Scalability

The experimental results presented so far show that it is possi-
ble to explore the trade-off space for all the application models in
our benchmark within seconds, either via the exact technique or
by approximation (with only very little overestimation). However,
both the exact algorithm and the approximation technique have
an exponential worst-case complexity. The observed run-times for
the exact exploration indicate that the run-times may become
problematic when models and/or Pareto spaces grow in size,
while the approximation technique is fast in the two tested cases.
To investigate scalability, we adapted the SDF3 toolkit [28] to
generate three synthetic CSDFGs, for which the exact algorithm
does not terminate in several hours, confirming that the run-times
of the exact algorithm may become very large. However, it is
important to note that these graphs differ in a number of aspects
from the realistic application models in our benchmark. Realistic
applications are often a relatively straightforward pipeline of
actors with only one or a few cycles. Furthermore, the number
of branches in the graphs is limited. In the generated graphs,
there are many cycles and branches with complex interactions.
As a result, the number of Pareto points in these generated graphs
is very large. Consequently, many different storage distributions
have to be explored, which causes the run-time of the exact
algorithm to become very large.

Since the approximation technique yields a reduction of the
explored space that is exponential in terms of the number of
channels being sized, it is interesting to test the scalability of

TABLE IV

EXPERIMENTAL RESULTS ON SYNTHETICCSDFGS.

n = 3 n = 4 n = 5

graph 1 50s / 0.38% 16s / 0.38% 7s / 0.37%
graph 2 161s / 0.91% 70s / 0.91% 29s / 0.91%
graph 3 271s / 0.71% 45s / 0.71% 28s / 0.71%

the approximation technique on these artificial models. We tested
the approximation with multiplication factors 3, 4 and 5 forall
channels in the graphs. These channels all have a step size ofone.
Tab. IV reports the results, showing run-times and, using Eqn. 1,
the calculated upper bound on the overestimation for the minimal
buffer sizes needed for maximal throughput. The results show that
the approximation algorithm can successfully prune the design
space, even for extremely large trade-off spaces, guaranteeing that
the overestimation stays within very tight bounds.

XII. C ONCLUSION

We have presented a method to explore the trade-offs between
the throughput and buffering requirements for SDFGs and CS-
DFGs. It generalizes the techniques from [9] to CSDFGs. It
also improves the exploration algorithm from [9] allowing better
pruning of the trade-off space. The experiments show that, despite
the complexity of the problem, it is possible to perform an exact
design-space exploration for real application kernels. Wealso
show that our technique can be combined with existing heuristics
for buffer sizing. This makes it possible to compute sharper
bounds on the buffer requirements than those found with the
heuristic alone with limited run-time overhead. It may in fact often
lead to optimal results if the applied heuristic yields a sufficiently
accurate estimate as the starting point for our algorithm.

In addition to the exact exploration algorithm, we presented
a generic and very versatile approximation technique basedon
the exact algorithm. The approximation provides throughput
guarantees, and it has a proven analytical upper bound on the
overestimation in buffer sizes. Approximation of the trade-off
space can be used when the run-times of the exact technique
would become problematic. The results for the approximation
technique show that it can drastically improve the run-timeneeded
for the exploration of the trade-off space with only very limited
overestimation of the storage space.

The techniques presented in this paper are implemented in the
freely available SDF3 toolkit [28]. We use the techniques in a
predictable multiprocessor design flow [29] based on the dataflow
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model of computation, integrating the results with the processing
and communication resource allocation techniques of [30].
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[19] K. Altisen, G. Gößler, and J. Sifakis, “A methodology for the con-
struction of scheduled systems,” inSymposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, FTRTFT 00, Proceedings,
volume 1926 in LNCS. Springer-Verlag, 2000, pp. 106–120.

[20] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, andW. Yi,
“Times: a tool for schedulability analysis and code generation of real-
time systems,” inFormal Modeling and Analysis of Timed Systems,
FORMATS 03, Proceedings, volume 2791 in LNCS. Springer-Verlag,
2003, pp. 60–72.

[21] S. Shukla and R. Gupta, “A model checking approach to evaluating
system level dynamic power management policies for embedded sys-
tems,” inHigh-Level Design Validation and Test Workshop, HLDVT 01,
Proceedings. IEEE, 2001, pp. 53–57.

[22] A. Ghamarian, M. Geilen, T. Basten, B. Theelen, M. Mousavi, and
S. Stuijk, “Liveness and boundedness of synchronous data flow graphs,”
in Formal Methods in Computer Aided Design, FMCAD 06, Proceed-
ings. IEEE, 2006, pp. 68–75.

[23] S. Sriram and S. Bhattacharyya,Embedded Multiprocessors: Scheduling
and Synchronization. Marcel Dekker, 2000.

[24] D. Kim, “System-level specification and cosimulation for multimedia
embedded systems,” Ph.D. dissertation, Seoul National University, 2003.

[25] H. Oh and S. Ha, “Fractional rate dataflow model for efficient code
synthesis,”Journal of VLSI Signal Processing, vol. 37, no. 1, pp. 41–
51, May 2004.

[26] A. Moonen, M. Bekooij, R. van den Berg, and J. van Meerbergen,
“Evaluation of the throughput computed with a dataflow model- a case
study,” TU Eindhoven, Tech. Rep., March 2007.

[27] S. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal, “Automatic sce-
nario detection for improved WCET estimation,” inDesign Automation
Conf., DAC 05, Proceedings. ACM, 2005, pp. 101–104.

[28] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” inApplica-
tion of Concurrency to System Design, ACSD 06, Proceedings. IEEE,
2006, pp. 276–278, SDF3 is available via www.es.ele.tue.nl/sdf3.

[29] S. Stuijk, “Predictable mapping of streaming applications on multipro-
cessors,” Ph.D. dissertation, TU Eindhoven, 2007.

[30] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs,” inDAC 07, Proceedings. ACM, 2007, pp. 777–782.

Sander Stuijk received his Master’s degree (with
honors) in Electrical Engineering in 2002 and his
Ph.D. degree in 2007 from the Eindhoven University
of Technology. He is currently a postdoc in the De-
partment of Electrical Engineering at the Eindhoven
University of Technology. His research focuses on
the mapping of streaming multimedia applications
on multiprocessor platforms.

Marc Geilen received his Master’s degree (with
honors) in Information Technology in 1996 and his
Ph.D. in 2002, from the Eindhoven University of
Technology. He is currently an assistant professor
in the Department of Electrical Engineering and has
been involved with different European and national
research projects. His research interests include val-
idation and (formal) verification, modeling, simu-
lation and programming paradigms for streaming
multimedia systems, multiprocessor platforms and
wireless sensor networks, and multi-dimensional op-

timization and trade-off analysis. He (co-)authored publications on these topics
and he is a member of technical program committees and a topicchair in the
DATE 2008 program committee.

Twan Basten is an associate professor in the De-
partment of Electrical Engineering at the Eindhoven
University of Technology. He has a Master’s degree
(with honors) and a Ph.D. degree in Computing Sci-
ence from the same university. Twan Basten worked
as visiting researcher at the University of Waterloo,
Canada, Philips Research Laboratories, Eindhoven
and Carnegie Mellon University, Pittsburgh, PA. His
research interest is the design of complex, resource-
constrained embedded systems, based on a solid
mathematical foundation, with a focus on multipro-

cessor systems and models of computation. Twan Basten was the Ambient
Intelligence co-chair in the DATE 2003 PC, topic chair in theDATE 2004
and 2005 PCs, and the PC co-chair for ACSD 2007. He (co)authored over 80
scientific publications.


