
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 1

Schedule-Extended Synchronous Dataflow Graphs
Morteza Damavandpeyma, Student Member, IEEE, Sander Stuijk, Twan Basten, Senior Member, IEEE,

Marc Geilen, Member, IEEE, and Henk Corporaal, Member, IEEE

Abstract—Synchronous dataflow graphs (SDFGs) are used
extensively to model streaming applications. An SDFG can be
extended with scheduling decisions, allowing SDFG analysis to
obtain properties like throughput or buffer sizes for the scheduled
graphs. Analysis times depend strongly on the size of the SDFG.
SDFGs can be statically scheduled using static-order schedules.
The only generally applicable technique to model a static-order
schedule in an SDFG is to convert it to a homogeneous SDFG
(HSDFG). This may lead to an exponential increase in the size of
the graph and to sub-optimal analysis results (e.g., for buffer sizes
in multi-processors). We present techniques to model two types of
static-order schedules, i.e., periodic schedules and periodic single
appearance schedules, directly in an SDFG. Experiments show
that both techniques produce more compact graphs compared
to the technique that relies on a conversion to an HSDFG. This
results in reduced analysis times for performance properties and
tighter resource requirements.

Index Terms—Synchronous dataflow graphs, periodic sched-
ules, single appearance schedules, schedule modeling.

I. INTRODUCTION

Synchronous dataflow graphs (SDFGs) are widely used to
model digital signal processing (DSP) and multimedia appli-
cations [1]–[4]. Model-based design-flows (e.g., [1], [5]–[8])
model binding and scheduling decisions into the SDFG. This
enables the analysis of performance properties (e.g, through-
put [9]) or resource requirements (e.g., buffer sizes [10]) under
resource constraints. Figure 1 shows an example of an SDFG
with four actors and three channels. An essential property of
SDFGs is that every time an actor fires (executes) it consumes
a fixed number of tokens from its input edges and produces a
fixed number of tokens on its output edges. These numbers are
called the rates (indicated next to the channel ends when the
rates are larger than 1). The fixed port rates make it possible
to statically schedule SDFGs.

Many SDFG analysis algorithms, e.g., throughput calcu-
lation or buffer sizing, are straightforward when a single
processor platform is used. For instance, the buffer sizes
can be determined by executing the SDFG according to a
given schedule. However, in a multi-processor environment,
SDFG analysis algorithms are not trivial because of the inter-
processor communication, amongst other reasons. An SDFG
can be bound to a multi-processor platform. Each processor

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Manuscript received Nov. 6, 2012; revised Feb. 14, 2013.
The authors are with the Department of Electrical Engineering,

Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail:{m.damavandpeyma, s.stuijk, a.a.basten, m.c.w.geilen,
h.corporaal}@tue.nl).

T. Basten is also with TNO, Embedded Systems Innovation, Eindhoven,
The Netherlands.

a0 a1c0

6
a2

c1

a3c2

33

Fig. 1. An example SDFG.

in the platform executes a set of actors from the SDFG;
the firings of actors bound to a processor are required to be
sequentialized. For this purpose, a finite periodic schedule can
be constructed. Such a schedule is called a periodic static-
order schedule (PSOS). PSOSs only specify the firing order
of actors. This separates them from fully static schedules,
which determine absolute start times of actors (e.g., schedules
generated using the technique of [11]). Traditionally, for
DSP software synthesis, a sub-set of all periodic static-order
schedules is considered. This sub-set contains so-called single
appearance schedules (SAS) [1]. In a SAS, the functional
code of the actors is included in a nested loop structure such
that each piece of code occurs only once. This minimizes the
code size potentially at the cost of additional buffer memory
needed to implement the channels. A model-based design-flow
usually uses PSOSs (or a sub-set of PSOSs such as SASs) for
an application modeled with an SDFG. In this way timing
(throughput) and memory usage (buffers) can be analyzed.

There is only one technique [12] known to model PSOSs
in an SDFG. This technique requires a conversion of an
SDFG to a so-called homogeneous SDFG (HSDFG) in which
all rates are one [2]. Figure 2 (without the colored edges)
shows the equivalent HSDFG of the SDFG in Figure 1.
The technique of [12] sequentializes the actor firings by
inserting a channel between each pair of consecutive actors
in a schedule. At the end of a schedule, it adds a channel
with one initial token from the last to the first actor in the
schedule. This ensures an indefinite execution of the graph
according to the schedule. To model PSOSs s0 = 〈a0(a2)2〉∗
and s1 = 〈(a1)5(a3)3a1(a3)3〉∗, the technique of [12] adds in
total 15 channels to the HSDFG of the example graph (the
green edges for s0 and the blue edges for s1 in Figure 2). For
example, s0 indicates an indefinite sequence of one firing of
a0 followed by two firings of a2. This order is enforced in the
HSDFG of Figure 2 by the green edges between the actors
a0 1, a2 1, and a2 2.

The SDFG to HSDFG conversion can lead to an exponen-
tial increase in the size of the graph. For example, such a
conversion for an H.263 decoder [10] (with QCIF resolution)
increases the graph size from 4 actors to 1190 actors. Note that
the number of actors in the resulting HSDFG highly depends
on how the application is modeled in the original SDFG. The
run-time of SDFG analysis algorithms depends amongst others
on the size of the graph. As a result, the run-time of many

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 2

a0_1

a1_1

a1_2

a1_3

a1_4

a1_5

a1_6

a2_1

a3_1

a3_2

a3_3

a3_4

a3_5

a3_6

a2_2

Fig. 2. PSOSs s0 = 〈a0(a2)2〉∗ and s1 = 〈(a1)5(a3)3a1(a3)3〉∗ modeled
in the SDFG of Figure 1 using the technique from [12]; each ai j actor in
the HSDFG is an instance of SDFG actor ai.

SDFG analysis algorithms may increase drastically when
modeling PSOSs in the graph using the technique from [12].
For example, the buffer sizing algorithm from [10] takes less
than 1 ms on the SDFG of an H.263 decoder. Modeling
a schedule into this SDFG using the technique from [12],
the same analysis lasts 1330 ms. SDFG analysis algorithms
are usually repeated more than once in an iterative design-
flow. As an example, for the SDFG of an H.263 decoder, the
design-flow from [6] performs 8 throughput calculations on
the SDFG to obtain the desired binding. Hence, it is vital
to maintain a compact schedule-extended graph, i.e., a graph
in which schedules are modeled explicitly, to provide a fast
and practical design flow. There is a second drawback to the
technique from [12]. The original graph structure is lost due
to the conversion to an HSDFG. A single channel in an SDFG
corresponds to a set of channels in the HSDFG. In Figure 2, for
example, the six edges between actor a0 1 and the a1 j actors
correspond to the single edge between a0 and a1 in the SDFG
of Figure 1. As a result, common buffer sizing techniques
cannot find the minimal buffer size for the original SDFG.
The H.263 decoder buffer sizes are for example overestimated
by 49% when applying the technique of [10] to the HSDFG.

A novel technique is needed to model PSOSs in an SDFG.
This technique should limit the increase in the number of
actors such that analysis times do not increase too much
when analyzing the SDFG with its schedules. The technique
should also preserve the original graph structure as this enables
accurate analysis of graph properties such as buffer sizes.
In [13], we presented a schedule modeling technique, called
DSM, to model any PSOS directly in an SDFG. In this
paper, DSM is discussed in more detail. In addition, a second
schedule modeling technique, called SASM, is introduced
that is limited to SASs, but that results in more compact
models compared to the first technique when modeling SASs.
Correctness of the two approaches is formalized. Extensive
experiments are carried out for evaluation purposes.

DSM and SASM can be used in any model-based design-
flow that models PSOSs into the SDFG (e.g., [1], [5]–[8]).

Conversion to an HSDFG may be inevitable at some steps of
a design trajectory. For example, multi-processor scheduling
may require such conversions, although some techniques exist
that can find schedules for SDFGs without any conversion to
HSDFGs. For example, the technique presented in [14] solves
the buffer sizing and scheduling problems simultaneously at
the SDFG level. It is not the conversion from SDFG to
HSDFG itself that is problematic though. The problem is
that analyses or optimizations on large HSDFGs may be
time consuming (e.g. throughput analysis) or inaccurate (e.g.
buffer sizing). With our techniques, obtained schedules can
be annotated back to the original SDFG; hence, the later
analysis and optimization can be performed on the schedule-
extended SDFG. Besides the already mentioned analyses, also
for example dynamic voltage scaling can be directly applied to
a schedule-extended SDFG model of an application mapped to
a multi-processor platform [15]. Note that code generation is
another step which requires an SDFG to HSDFG conversion;
this conversion can be delayed until all (or most of the) prior
analyses are carried out on the SDFG. Ultimately, the proposed
techniques may save significant amounts of analysis time in
a multi-processor design flow and they may lead to more
accurate results.

The remainder of the paper is structured as follows. The next
section discusses related work. Section III introduces SDFGs.
Section IV formalizes SDFG schedules. Sections V and VI
present our techniques to model PSOSs and SASs in an SDFG.
Section VII contains the theorems related to the correctness
of the presented techniques. We evaluate our technique by
applying it to several realistic applications in Section VIII.
Section IX concludes.

II. RELATED WORK

The technique from [12] is the only available technique
to model PSOSs in an SDFG, through a conversion to an
HSDFG. As already explained, this technique may result in
a long run-time for analysis algorithms and/or inaccurate
results from these algorithms. Our techniques alleviate both
shortcomings of the technique from [12].

The work in [16] models the effect of a budget scheduler
or preemptive TDMA scheduler on the temporal behavior
of the SDFG, either by computing an accurate worst-case
response time or, more precisely, by introducing additional
actors to model the timing impact as a latency-rate model.
In contrast, for non-preemptive schedules, such as PSOSs,
we focus on the ordering of actor firings; their execution
time remains the same. We force an SDFG to follow the
PSOSs selected for each processor. This allows SDFG analysis
to obtain properties like throughput or buffer sizes for the
scheduled SDFG. This is also true for the models of [16].
However, for non-preemptive schedules, our results are tighter
and our techniques require less analysis time. The authors of
[17] have shown that an SDFG can be used to consider an
application with resource sharing possibilities; they perform
buffer sizing under a throughput constraint considering a given
schedule for the actors using a shared resource. For shared
resource analysis, they use event-models [18] which is based

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 3

on realtime-calculus [19]. Our approach differs from [17],
since modeling schedules directly into SDFGs enables us to
use dedicated analysis for dataflow graphs. Moreover, the
technique of [17] can only handle an SDFG with limited
types of cycles, such as cycles formed by self-edges or the
back edges modeling the buffer capacity between two actors.
However, staying in dataflow domain, as is done in our
technique, does not impose such a limitation on the graph
structure.

Ref [20] uses some new (custom) components, e.g., if −
then− else, to model schedules in an SDFG. These compo-
nents are not supported by the common model-based design-
flows using SDFGs (e.g., [1], [5]–[8]) and cannot be modeled
in an SDFG using the basic elements of an SDFG (i.e., actors
and channels). Our techniques eliminate the need for any new
(custom) component. As a result, any analysis technique for
SDFGs is directly applicable to the schedule-extended SDFG.

III. SYNCHRONOUS DATAFLOW GRAPHS

Let N denote the positive natural numbers and N0 = N ∪
{0}. Consider Ports as a set that contains all ports; each port
p ∈ Ports has a finite rate Rate(p) ∈ N. An actor ai is a
tuple (In,Out) consisting of a set In ⊆ Ports of input ports
and a set Out ⊆ Ports of output ports with In

⋂
Out = ∅.

Definition 1. (SDFG) An SDFG is a tuple (A,C) consisting
of a finite set A of actors and a finite set C ⊆ Ports2 of
channels. The channel source is an output port of an actor
and the channel destination is an input port of an actor.
Each port of an actor is connected to only one channel and
each channel end is connected to a single port. For every
actor ai = (In,Out) ∈ A, InC(ai) represents all channels
connected to the ports in In and OutC(ai) represents all
channels connected to the ports in Out.

The SDFG of Figure 1 has four actors (A =
{a0, a1, a2, a3}) and three channels (C = {c0, c1, c2}). Actors
communicate with tokens sent from one actor to another over
the channels. Tokens are depicted with a solid dot (and an
attached number in case of multiple tokens). An essential
property of SDFGs is that every time an actor fires (executes)
it consumes a fixed number of tokens from its input edges and
produces a fixed number of tokens on its output edges. These
numbers are called the rates (indicated next to the channel
ends when the rates are larger than 1). The rates determine
how often actors have to fire with respect to each other such
that the distribution of tokens over all channels is not changed.
This property is captured in the repetition vector [1] of an
SDFG. The repetition vector determines the number of times
each actor should be fired in order to bring the SDFG back
to its initial token distribution. Notation γ(a) refers to the
repetition vector value of actor a. The repetition vector of the
SDFG shown in Figure 1 is γ = [1 6 2 6]T . It corresponds to
1 firing of a0, 6 firings of a1, 2 firings of a2 and 6 firings of
a3. Channels can contain different numbers of tokens. A state
of an SDFG (represented by ω) is described by the number
of tokens in all channels of the SDFG. We assume that the
initial state of an SDFG is given by an initial token distribution

ω0. An actor ai ∈ A is enabled in an SDFG state ωj iff
ωj(c) ≥ Rate(q) for each channel c = (p, q) ∈ InC(ai).
When an actor ai starts its firing, it removes Rate(q) tokens
from all (p, q) ∈ InC(ai) and when it ends, it produces
Rate(p) tokens on every (p, q) ∈ OutC(ai). Consistency (i.e.,
the existence of a repetition vector) and absence of deadlock
are necessary in practice for SDFGs and can be verified effi-
ciently [21], [22]. Any SDFG which is not consistent requires
unbounded memory to execute or deadlocks. Therefore, we
limit ourselves to consistent and deadlock-free SDFGs.

IV. SDFG STATIC-ORDER SCHEDULING

Assume that the initial state ω0 for the SDFG of Figure 1
is equal to (c0, c1, c2)→ (0, 0, 0). Actor a0 is enabled in ω0.
Firing a0 results in a transition from state ω0 to a state (6, 0, 0).
We use this concept of states and transitions to formalize the
execution of an SDFG.

Definition 2. (EXECUTION) An execution σ of an SDFG is an
infinite alternating sequence of states and transitions ω0

ai−→
ω1

aj−→ · · · starting from a designated initial state ω0.

In a multi-processor system, multiple actors may be bound
to the same processor. These actors may be enabled at the
same time. In such a situation, a schedule is needed to order
the firings of the enabled actors on the processor. The fixed
port rates make it possible to statically schedule SDFGs with a
finite schedule per processor. Such a schedule orders the actor
firings on the underlying processor. This type of schedules,
which are called periodic static-order schedules (PSOSs), can
be repeated indefinitely. A separate PSOS should be con-
structed for each processor. Each PSOS only includes actors
bound to this specific processor. The following definition is
used to formally specify a PSOS.

Definition 3. (PERIODIC STATIC-ORDER SCHEDULE
(PSOS)) A PSOS is a finite ordered list of (a sub-set
of) actors in an SDFG (A,C). A PSOS is denoted by
si = 〈α1α2 . . . αn〉∗ where each αj |1≤j≤n is a sub-schedule
that represents an actor from A and n ∈ N is the length of
the schedule si, represented by n = |si|. The set Ai contains
all actors that appear at least once in si (Ai ⊆ A).

A PSOS can be represented in a compact format, called a
looped schedule (LS).

Definition 4. (LOOPED SCHEDULE (LS)) A looped schedule,
si = 〈(α1)β1(α2)β2 · · · (αm)βm〉∗, is defined as a successive
execution of α1 repeated β1 times followed by α2 repeated β2
times and so on, where each αj is either an actor firing or a
(nested) looped schedule and βj ∈ N.

Definition 5. (SINGLE APPEARANCE SCHEDULE (SAS)) A
LS in which each actor appears only once is called a single
appearance schedule (SAS).

Assume that the SDFG of Figure 1 is mapped to a platform
with two processors (P0 and P1). Actors a0 and a2 are mapped
to P0 with the PSOS s0 = 〈a0(a2)2〉∗ and actors a1 and a3
are mapped to P1 with the PSOS s1 = 〈(a1)5(a3)3a1(a3)3〉∗.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 4

PSOS s0 is a SAS while PSOS s1 is not. PSOS s′1 =
〈(a1)3(a3)3〉∗ can be used as a SAS for actors a1 and a3.

Definition 6. (SDFG ITERATION) Assume SDFG (A,C) has
repetition vector γ. An SDFG iteration is a set of actor firings
such that for each a ∈ A, the set contains γ(a) firings of a.

Definition 7. (PSOS ITERATION) Let si = 〈α1α2 . . . αn〉∗ be
a PSOS that schedules actors in Ai ⊆ A. A PSOS iteration is
a sequence of actor firings following the actor order specified
in si starting from actor α1 and ending with actor αn with a
length equal to |si| and including only actors from Ai.

The actor firing order in an execution σ = ω0
ax−→

ω1
ay−→ · · · can be captured using a list 〈ax, ay, · · · 〉

where the jth element in this list is the actor which is
fired in the transition from ωj−1 to ωj . The notation
orderList(σ,Ai) represents the mentioned list where actors
which do not belong to Ai are omitted. For example, in the
SDFG of Figure 1, consider an execution σ that results in
list 〈a0, a1, a1, a1, a2, a1, a1, a3, a3, a3, a1, a2, a3, a3, a3〉
with A1 = {a1, a3}; then orderList(σ,A1) =
〈a1, a1, a1, a1, a1, a3, a3, a3, a1, a3, a3, a3〉. We say that
the corresponding execution of an SDFG satisfies a PSOS
when the SDFG is executed according to the PSOS. We use
the following to formalize this term.

Definition 8. (SATISFACTION) Let σ be an execution of an
SDFG (A,C) and si a PSOS for actors Ai ⊆ A. If it exists,
let σ′ be the prefix of σ such that it contains exactly γ(ai)
occurrences of actor ai ∈ Ai; σ′ covers σ precisely up to the
point that one PSOS iteration is executed. Execution σ satisfies
PSOS si iff σ′ exists and the ordered list orderList(σ′, Ai)
corresponds to the order specified in si.

When an execution of a consistent and deadlock-free SDFG
satisfies the specified PSOSs, the channels of the SDFG need
bounded memories (according to Theorem 1 from [23]). The
number of actor appearances in the PSOS is a fraction or
multiple of its repetition vector entry. Formally, each actor ai
in the PSOS should appear r · γ(ai) times in the PSOS (with
r = u

v where u, v ∈ N) and the value r is identical for all
actors in the PSOS [9]. This follows from the SDFG property
that firing each actor as often as indicated in the repetition
vector results in a token distribution that is equal to the initial
token distribution. In the paper, the term normalized PSOS is
used to refer to a PSOS with r equal to 1.

Definition 9. (NORMALIZED PSOS) A PSOS si is called
normalized iff each actor aj ∈ Ai appears γ(aj) times in
one iteration of the PSOS si.

We limit ourselves in the remainder to PSOSs in which
r is a unit fraction (i.e., r = u

v with u = 1 and v ∈ N),
although our technique can also be directly applied to model
other PSOSs (i.e., in which u ∈ N).

V. MODELING PERIODIC STATIC-ORDER SCHEDULES

In this section, we introduce a technique to model PSOSs
in an SDFG. We first illustrate all ingredients of our approach
through a running example, and then discuss the algorithm

and the main steps in the algorithm in more detail. Note that
a schedule is correctly modeled if and only if any execution
of the schedule-extended graph satisfies the schedule and if
any execution of the original graph that satisfies the schedule
is still feasible in the schedule-extended graph.

A. Running example

Here we briefly introduce our approach in modeling a
PSOS in an SDFG using a running example. For this purpose
consider the example SDFG shown in Figure 1 and the PSOS
s1 = 〈(a1)5(a3)3a1(a3)3〉∗ which is a schedule for a1 and
a3. Our approach captures this schedule in the SDFG in
three steps, that (i) remove auto-concurrency, (ii) avoid inter-
iteration execution, and (iii) enforce the correct scheduling
decisions.

In the example SDFG, a single firing of a0 produces 6
tokens in channel c0; then 6 firings of a1 can be performed
simultaneously. This simultaneous firing of an actor is called
auto-concurrency; in practice, this corresponds to executing
multiple instances of a function (task) in parallel. Auto-
concurrency for an actor cannot be handled in a real hardware
platform, unless more than one processor is allocated for
that actor. In this work, we focus on the case that an actor
is mapped to one processor. Hence, auto-concurrency must
be removed from the model. To sequentialize firings of an
actor, a self-edge with one initial token must be added to that
actor; this way auto-concurrency can be removed for that actor.
Figure 3(a) shows the example SDFG of Figure 1 in which any
auto-concurrency related to a1 and a3 is removed by adding
two self-edges (shown in red).

In one PSOS iteration, each actor must fire a specific
number of times. Actors must not be able to get fired more
than the number of times indicated by the PSOS. Consider the
following situation in the example SDFG of Figure 1. Two
firings of a0 provide 12 tokens in channel c0; this number
of tokens is enough for 12 firings of the actor a1. The first
6 firings of a1 belong to the first iteration and the second 6
firings belong to the second iteration. The second 6 firings of
a1 can occur before the completion of the first PSOS iteration
of s1; in this case, the resulting execution does not satisfy
the given PSOS s1. This situation is called inter-iteration
execution. To prevent inter-iteration execution related to s1,
we create a dependency from the last actor appearing in s1
to the first actor appearing in s1; see the blue elements in
Figure 3(b). This dependency limits the firing of the first actor
to a number of firings required in one PSOS iteration.

In the SDFG of Figure 3(b), consider the case that actors
a0, a1 and a2 have fired 1, 3 and 1 times, respectively. The
initial token distribution is changed to the distribution shown
in Figure 3(c). In this graph, both a1 and a3 from PSOS s1 are
enabled; but, only the firing of a1 must be granted at this point
to form an execution that satisfies the given PSOS s1. We call
such a state in which several actors are enabled a decision
state. Later on, a precise definition is given for this concept.
According to schedule s1, actor a3 must get enabled after 5
firings of a1. For this purpose, a dependency is created from
a1 to a3 (shown with green actor and channels in Figure 3(d));

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 5

c1

6

c0 c2

3
a1a0 a2 a3

cse.1

cse.3

Auto-concurrency

(a) Auto-concurrency has been removed.

c1

6

c0 c2

3 3

6
6

c1.pro c
1.pre

6

a1a0 a2 a3

a1.end

cse.1

cse.3

Auto-concurrency
Inter-iteration execution

(b) Auto-concurrency and inter-iteration execution have been removed.

c1

6

c0 c2

3 3

6
3

c1.pro c
1.pre

6

a1a0 a2 a3

a1.end

cse.1

cse.3

Auto-concurrency
Inter-iteration execution

3 3

(c) SDFG of Figure 3(b) after 1, 3 and 1 firings of a0, a1 and a2 resp.,
leading to a decision state in which both actors a1 and a3 are enabled.

c1

6

c0 c2

3 3

1.ω6
6 6

6
6

a

c1.pro c
1.pre

c1.a ω
3 61 6

c1.a ω

6

a1a0 a2 a3

a1.end

cse.1

cse.3

Auto-concurrency

Decision states

Inter-iteration execution

(d) Creating a dependency for the first decision state.

c1

6

c0 c2

3 3

1.ω6

6

6 6

6

6
6

3

5
a

c1.pro c
1.pre

c1.a
 ω
3 9

c1.a ω
3 61 6

c
1.a ω1 9

c1.a ω

6

a1a0 a2 a3

a1.end

1.ω9
a

cse.1

cse.3

Auto-concurrency

Decision states

Inter-iteration execution

(e) Creating a dependency for the second decision state.

Fig. 3. Step-by-step modeling of the PSOS s1 in the SDFG of Figure 1.

this new dependency prevents a3 from getting enabled unless
a1 has completed 5 firings. Another decision state can be found
after a1 has completed 5 firings; once again, both a1 and a3
from PSOS s1 are enabled at this point; but, the firing of
a3 must take place. For this purpose, a dependency is created
from a3 to a1 (see Figure 3(e)). This new dependency prevents
a1 from getting enabled from the current state onwards unless
a3 has completed 3 firings. The 5 initial tokens on the added
input channel to a1 ensure that the first 5 firings of a1 can take
place as planned. The SDFG of Figure 3(e) shows the final
solution that models the PSOS s1 in the SDFG of Figure 1.

B. The algorithm

Algorithm 1 captures our technique, called decision state
modeling (DSM). DSM accepts an SDFG and one or several
PSOSs as its input. In the algorithm n + 1 (n ∈ N0) is the
number of processors (or input PSOSs). DSM ensures that
actor firings of each PSOS follow the specified order in that
PSOS; the output of DSM is a new SDFG that models the
provided PSOSs in the input SDFG. Figure 4 depicts the
corresponding SDFG of Figure 1 which models the PSOSs s0
and s1 using DSM. The remainder of this section discusses the
three main steps of the algorithm - removing auto-concurrency,
avoiding inter-iteration execution, enforcing correct decisions
in decision states - in detail.

The description of some basic functions used in Algorithm
1 is as follows. The function AA(G, anew) is responsible
to include the actor anew in the SDFG G. The function
AC(G, cnew, asrc, adst, srcRate, dstRate, initTok) adds the
channel cnew from source actor asrc to destination actor adst;
the production rate of asrc on this channel is equal to srcRate
and the consumption rate of adst on this channel is equal to
dstRate; this channel is initialized with initTok initial tokens.
The function CNT (aj , si) returns the number of times that
the actor aj is fired in one iteration of PSOS si. The function
BEF(ak,j,si) returns the number of times that ak appears from
the first position in the PSOS si to and including the jth

position in the PSOS si; the function AFT(ak,j,si) returns the
number of times that ak appears from the (j + 1)

th position
in the PSOS si to the last position in the PSOS si.

C. Auto-concurrency

An actor ai ∈ A can be enabled multiple times simultane-
ously in an SDFG state ωj if ωj(c) ≥ k · Rate(q) for each
channel c = (p, q) ∈ InC(ai) where k ∈ N, k ≥ 2. This is
called auto-concurrency. The firings of actor ai should occur
sequentially according to the PSOS to which ai belongs. This
sequential execution can be enforced by adding a self-edge
with one initial token to actor ai (Line 1 in Algorithm 1). In
Figure 4, channels cse.0 − cse.3 (shown in red) are used to
prevent any auto-concurrency in the SDFG of Figure 1.

D. Inter-iteration execution

Consider actor a0 in the SDFG of Figure 1; the 1st firing of
a0 belongs to the 1st PSOS iteration of s0 and the 2nd firing of
a0 belongs to the 2nd PSOS iteration of s0 and so on. Since
a0 has no input channel, it can always be fired regardless

c1

6

c0 c2

3 3

1.ω6

6

6 6

6

62
6

3

5
a

c0.pre
c0.pro c1.pro c

1.pre

c1.a
 ω
3 9

c1.a ω
3 61 6

c
1.a ω1 9

c1.a ω

6

a1a0 a2 a3

a1.enda0.end

1.ω9
a

cse.0

cse.1 cse.2

cse.3

Auto-concurrency

Decision states

Inter-iteration execution

Fig. 4. PSOSs s0 and s1 modeled in the SDFG of Figure 1 using DSM.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 6

Algorithm 1: Decision State Modeling (DSM)
input : SDFG G(A,C), PSOSs {s0, · · · , sn}
output: G extended with schedules {s0, · · · , sn}
add a self edge with 1 initial token for each a ∈ A1
{s′0, µ0, · · · s′n, µn} ← normalize(G, {s0, · · · , sn})2
for i← 0 to n do3
/* To control inter-iteration execution */
aL := last actor in si4
aF := first actor in si5
AA(G, ai.end)6
AC(G, ci.pre, aL, ai.end, 1,CNT(aL, si), 0)7
AC(G, ci.pro, ai.end, aF ,CNT(aF , si), 1,CNT(aF , si))8

/* To control decision states */
Ω, pos← getDecisionStates(G, s′i, {s′0, · · · , s′n} \ s′i)9
Ω← reduceDecisionStates(Ω)10
Ω← foldDecisionStates(Ω, µi)11
foreach ωj ∈ Ω do12
AA(G, ai.ωj)13
foreach ak ∈ ∆j do14

if ak is the actor of choice then15
AC(G, ci.akωj , ak, ai.ωj , 1, CNT(ak, si),16
AFT(ak, pos[ωj], si))

else17
AC(G, ci.akωj , ai.ωj , ak, CNT(ak, si), 1,18
BEF(ak, pos[ωj], si))

a0

a1
c0

a2
c1

2

3

Fig. 5. An example SDFG.

of other actors in the graph. This behavior, which is called
inter-iteration execution, can prevent an SDFG execution from
satisfying the given PSOSs. Inter-iteration execution happens
when one PSOS iteration has not been completed and an actor
from that PSOS can proceed its firings beyond the current
PSOS iteration. Lines 4-8 in Algorithm 1 are used to control
this undesirable actor enabling. This part of the algorithm adds
(per PSOS) one actor and two channels to create a dependency
between the last and first actor appearing in the PSOS. The
added components limit, within one PSOS iteration, the firing
of the first actor in the PSOS (i.e., aF) to the count of actor aF
(i.e., CNT (aF , si)) in one iteration of the PSOS si. The next
iteration of the PSOS si can only commence if the last actor in
PSOS si (i.e., aL) fires CNT (aL, si) times in one iteration of
the PSOS si. In other words, the next iteration of a PSOS can
only commence after the completion of the current iteration
of this PSOS. In Figure 4, actor a0.end and channels c0.pre
and c0.pro are added to prevent any inter-iteration execution
in PSOS s0. Actor a1.end and channels c1.pre and c1.pro are
added to prevent any inter-iteration execution in schedule s1.
These elements are shown in our example in blue in Figure 4.

E. Decision states

This sub-section presents the third step of DSM. It first
defines the concept of a decision state and then proceeds with

a2

a0
ω0 ω1

a1
ω2

a1
ω3

a2
ω4

a1
ω5

P1

P0

a2 a2 a1
a2

Fig. 6. The state space of the SDFG of Figure 5 when PSOSs s′′0 = 〈a0〉∗
and s′′1 = 〈(a1)2a2a1a2〉∗ are used.

the algorithm for identifying decision states; after explaining
two optimization steps, it ends with the technique to enforce
the appropriate schedule decisions.

1) Concept: Multiple different actors mapped to a single
processor may be enabled in a specific state. Here, we describe
such situations in an SDFG execution. Consider the SDFG in
Figure 5. Assume that a0 is mapped to processor P0 with
PSOS s′′0 = 〈a0〉∗ and a1 and a2 are mapped to processor
P1 with PSOS s′′1 = 〈(a1)2a2a1a2〉∗. For brevity, we only
discuss the actors mapped to processor P1. The corresponding
state space - for one SDFG iteration - when executing our
example SDFG using the PSOSs s′′0 and s′′1 is visualized in
Figure 6. In this figure, the actors mapped to processor P0

(P1) are surrounded by a square (circle). Auto-concurrency
and inter-iteration execution are excluded using the constructs
introduced in Section V-C and Section V-D resp. The periodic
behavior of the PSOSs is obvious from the state space where
one SDFG iteration moves the graph to its initial state, i.e.,
ω0 (see Figure 6). There are some states in Figure 6 in which
more than one actor is enabled (e.g., ω1 − ω5) on processor
P1. In such a situation, the execution related to those actors
can deviate from the specified PSOS. We use the following
definition to formalize such a situation.

Definition 10. (DECISION STATE) Consider the PSOS si as
a schedule for actors Ai ⊆ A and an execution σ of an SDFG
(A,C) which satisfies PSOS si. A state ωj ∈ σ is a decision
state iff multiple different actors from Ai are enabled in ωj .

We use Ω to refer to the finite set containing all decision
states occurring in the execution of an SDFG up-to one
iteration of a PSOS. The following terminology describes the
enabled actors in a decision state.

Definition 11. (OPPONENT ACTOR SET) Let ωj ∈ Ω be a
decision state for PSOS si. The opponent actor set ∆j of the
decision state ωj is a finite set which contains all actors that
are enabled in decision state ωj and that belong to Ai.

The finite set ∆j represents the opponent actors in the
decision state ωj ∈ Ω. One of the enabled actors in a decision
state ωj , in line with the given PSOS si, should be selected
to fire. The following is used to describe such an actor.

Definition 12. (ACTOR OF CHOICE) Consider the PSOS si
which schedules actors Ai ⊆ A and the opponent actor set
∆j of the decision state ωj in an execution σ of the SDFG
G(A,C) which satisfies si. An actor ac ∈ ∆j is called the
actor of choice of the decision state ωj iff the firing of actor ac
in state ωj is a necessity for the execution σ in order to satisfy
the PSOS si. Since a PSOS specifies a fixed firing order, there

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 7

Algorithm 2: Get Decision States
input : SDFG G, PSOS sc, PSOSs {so1, · · · , son}
output: Decision state set Ω
output: relative positions pos

ωj ← the initial state of G1
for i← 1 to |sc| do2
ωj ← maxExec(G, ωj , {so1, · · · , son})3
if sizeof(enabledActors(G, ωj , sc)) >1 then4
pos[ωj]← i5
Ω← Ω ∪ {ωj}6
∆j ← enabledActors(G, ωj , sc)7

ωj ← fire(G, ωj , sc[i])8

a1

a0
ω0 ω1

a1
ω2

a1
ω3

a1
ω4

a2
ω5

a1
ω6

a3

a1 ω7

a3

a3
ω8

a1

a3
ω9

a1

a3
ω10

a1

ω11ω12

a2
ω13

a3ω14

a3a3

P1P0

Fig. 7. The state space of the SDFG of Figure 1 when the PSOS s1 =
〈(a1)5(a3)3a1(a3)3〉∗ is the schedule of interest (i.e., sc) in Algorithm 2.

can only be a single actor of choice in any decision state.

Lines 9-18 in DSM show how we deal with non-
deterministic execution due to decision states. DSM models
the given PSOSs one-by-one iteratively. The ordering of
PSOSs in DSM does not have any impact on the final behavior.
In each iteration of the for-loop in line 3, we enforce the
execution of the actors in the current schedule of interest
(i.e., schedule si) to follow schedule si. The next sub-section
explains how decision states of the schedule of interest are
extracted. At the same time, a value is preserved for each
decision state that captures the relative position of that decision
state with respect to the beginning of the schedule of interest;
the notation pos[ωj] refers to this position for ωj . For example,
in the SDFG of Figure 1, pos[ω6] = 5 since the relative
position of ω6 with respect to the beginning of the schedule
of interest (i.e., s1) is 5 (in Figure 7 consider 4 firings related
to s1 have been occurred before ω6 and the 5th actor firing
related to s1 is going to happen in ω6). For each ωj ∈ Ω
extracted for si, DSM adds an actor (ai.ωj in line 13) and
one channel between the new actor ai.ωj and each opponent
actor in the set ∆j (lines 14-18 in Algorithm 1). The elements
added in each decision state (e.g., ωj) postpone the execution
of the actors in ∆j \ {ac} to the state after decision state ωj .
Hence, ac (i.e., the actor of choice) is the only actor which
can be fired in the state ωj .

2) Decision state identification: Algorithm 2 shows our
technique to detect all decision states within PSOS sc. Assume
sc is a PSOS for the actors mapped to processor Pc. Schedules
so1 · · · son are PSOSs for the other actors of the SDFG mapped
to the other processors (denoted by Po1 · · ·Pon). The output
of Algorithm 2 is a set that contains all decision states for
PSOS sc. This algorithm also returns the relative positions
of decision states with respect to the beginning of sc. In
Algorithm 2, the input schedules are normalized PSOSs. The
function normalize (in line 2 of Algorithm 1) normalizes

the input PSOSs. The function returns the normalized PSOSs
along with their normalization factors. The normalized PSOS
s′x can be achieved by repeating µx times the input PSOS sx
(i.e., s′x = (sx)µx). µx is the normalization factor of sx and
can be calculated by dividing the repetition vector entry of an
arbitrary actor in sx by the count of that actor in the PSOS
sx (in our running example, µ0 and µ1 are 1).

After normalizing the input schedules, all situations that can
lead to multiple actors (mapped to the same processor) being
ready to fire must be discovered. An actor in the schedule of
interest sc could be affected by the execution of an actor in the
other schedules as well as by another actor in sc. Processors
can run at different clock rates; these differences and inter-
processor dependencies cause variation in the number of
tokens on the inter-processor channels originating from the
actors mapped to the other processors to the actors mapped
to the processor of interest (i.e., Pc). The number of tokens
on the input channels of an actor determines whether an actor
is enabled or not. To determine any possible actor enabling
within sc, a necessary and sufficient number of tokens on
all inter-processor channels entering to the actors mapped
to processor Pc must be considered. We will now explain
what necessary and sufficient number of tokens means in our
algorithm. Each iteration of the schedule of interest sc requires
that the actors mapped to the other processors are fired up-
to at most their repetition vector entry values. Hence, only
executing one iteration of the other schedules so1 · · · son is
enough to provide a necessary number of tokens on inter-
processor channels entering to the actors mapped to processor
Pc. More than one iteration for the other schedules so1 · · · son
may be feasible; this may cause an actor in sc to be enabled
more than its count in one iteration of sc. The inter-iteration
prevention constructs introduced in Section V-D control this
undesired actor enabling. So, we only extract decision states
within one iteration of the normalized schedule to provide a
sufficient number of tokens.

Also, DSM does not impose any limitation between PSOSs
since no dependency is created between actors mapped to
different processors. PSOSs can independently be iterated if
the dependencies in the SDFG allow that. We allow the actors
on the other processors to be executed (according to their
schedules) as much as they can; the corresponding execution
is named maximal execution. The maximal execution will stop
at one point either due to a dependency on the actors on the
processor Pc or because one PSOS iteration is completed. The
SDFG state (denoted by ωj in Algorithm 2) should be kept
during the operation of the algorithm. The maximal execution
is represented by the function maxExec in Algorithm 2. After
one maximal execution, the number of tokens on the inter-
processor channels entering into the actors on the processor
Pc determines any possible enabled actor. The preserved state
(i.e., ωj) will be added to the decision state set (Ω) if more
than one actor on the processor Pc is enabled at this state
(line 6 in Algorithm 2). The current position (i.e., i) in the
schedule of interest sc is also preserved for the discovered
decision state (see line 5 in Algorithm 2). All enabled actors
will be recorded as opponent actors of the state ωj (line 7 in
Algorithm 2). The execution of the actors on the processor

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 8

a0 a1c0

4
a2c1

c2 3

3

4

2 8

2

Fig. 8. A third example SDFG.

Pc is continued by executing the enabled actor in line with sc
to determine all possible decision states (line 8 in Algorithm
2). The function fire(G,ωj , sc[i]) fires the actor at the ith

position in the PSOS sc. The process is repeated until a full
iteration of the PSOS has been examined. In the end, the set
Ω contains all possible decision states when executing sc.

Figure 7 depicts the resulting state space from applying
Algorithm 2 on the SDFG of Figure 1 when s1 is the schedule
of interest (i.e., sc). In the SDFG of Figure 1, five consecutive
decision states (Ω = {ω5 · · ·ω9}) have been found for s1 and
no decision state has been found for s0 (see Figure 7).

3) Redundant decision states: Here, we explain an opti-
mization proposed in DSM to remove unnecessary decision
states. DSM adds some components (per decision state) to
create a dependency from the actor of choice of a decision
state to the other opponent actors of that decision state. Such
a dependency delays the firing of those opponent actors to
the state after the decision state. The added components are
explained in detail in Section V-E5.

It is possible to have several consecutive decision states
which are delaying the firing of an actor to several states
later. For example, three consecutive decision states (ω7−ω9)
exist in Figure 7 that all delay the firing of a1; the added
components in ω7 delay the sixth firing of a1 to ω8; the added
components in ω8 delay the sixth firing of a1 to ω9; and so
on. The latest decision state in the sequence of decision states
ω7−ω9 is enough to delay the firing of a1 to ω10. Hence, the
decision states ω7−ω8 are redundant and can be removed from
the decision state set Ω. The function reduceDecisionStates
is responsible for removing redundant decision states. Note
that it would be possible to perform this reduction during
the decision state identification step. This optimization can
significantly reduce the number of extra components in the
final SDFG. Decision state ω5 is also redundant according to
our optimization. So, only two decision states ω6 and ω9 are
necessary to model s1 in the SDFG of Figure 1.

4) Decision state folding: In Algorithm 1, the input PSOSs
are normalized to find all decision states. The normalization
of PSOSs is required to explore sufficient states of an SDFG.
Consider PSOSs s2 = 〈a0〉∗ and s3 = 〈a2 a1〉∗ for our
second example SDFG in Figure 8. To obtain normalized
PSOSs, µ2 and µ3 must be equal to 3 and 4 respectively. This
leads to the following normalized PSOSs: s′2 = 〈(a0)3〉∗ and
s′3 = 〈(a2 a1)4〉∗. Decision state identification for s′3 results in
5 decision states.

(a2
−

)(a1
a2

)
︸ ︷︷ ︸
1st 2nd

(a2
a1

)(a1
a2

)
︸ ︷︷ ︸
3rd 4th

(a2
a1

)(a1
a2

)
︸ ︷︷ ︸
5th 6th

(a2
−

)(a1
−

)
︸ ︷︷ ︸
7th 8th

shows

the corresponding execution of s′3. In construct
(
ax
ay

)
, ax is

the enabled actor in line with the PSOS and ay is the other
enabled actor if any at all. In this execution, the 1st, 3rd, 5th

and 7th states are similar in behavior since the same actor
(i.e., a2) is expected to fire in all of those states.

Modeling a repetitive behavior for a PSOS si, also models

this behavior for its normalized PSOS (i.e., s′i = (si)
µi). Using

this property, we can merge decision states appearing in all µi
repetitions of the PSOS si. We call this optimization decision
state folding (line 11 in Algorithm 1). Folding groups the
similar states. In our example, the 1st, 3rd, 5th and 7th states
are grouped and represented with one state. Similarly, the 2nd,
4th, 6th and 8th states are grouped. So, the above execution
shrinks to

(
a2
a1

)(
a1
a2

)
. After grouping all similar states in the

original execution into a representative state, it is considered
a decision state if any of the group members is a decision
state. In practice, a decision state in a state of the new folded
execution will be considered as a decision state for each of the
equivalent states in the original execution. This cannot violate
the execution according to the input PSOS because DSM
ensures that only the actor of choice executes in a decision
state. This optimization could reduce the number of decision
states up to µi times in a normalized PSOS s′i. The firings
related to those actors enabled in the last state except the actor
of choice of that state are supposed to happen in subsequent
PSOS iterations; this is already ensured by preventing inter-
iteration execution (see Section V-D). Hence, after folding,
the last state can be ignored as a decision state. In our third
example, decision state folding reduces the number of decision
states from 5 to 1 for the PSOS s3.

5) Enforcing a schedule in decision states: In our first
example SDFG, only two actors are enabled in decision state
ω6 (i.e., ∆6 = {a1, a3}) (see Figure 7). Actor a1 is the actor
of choice in ω6 and a3 is the only opponent actor whose
execution should be delayed to the state after ω6. To enforce
firing of a1 and to prevent firing of a3 in ω6, DSM creates a
dependency from a1 to a3 by adding actor a1.ω6 and channels
c1.a1ω6 and c1.a3ω6 . The rates and initial tokens related to the
new elements are set in such a way that the execution of the
graph in other states are not affected. The actor a1.ω6

is only
responsible for decision state ω6. So, a1.ω6

needs to only fire
once in an iteration. For this purpose, the port rates of a1.ω6

on
its channels (i.e., c1.a1ω6 and c1.a3ω6) are set to 6. The added
dependency channels from the newly added actor in decision
state ωj (e.g., a1.ω6

in ω6) to the opponent actors which are not
the actor of choice (e.g., a3 in ω6) only provide enough tokens
for their execution in states ω0 − ωj−1 (e.g., 0 tokens for a3
in ω0−ω5); these actors cannot be enabled due to the lack of
initial tokens in the newly added channels in the corresponding
decision state (e.g., there will be no token in c1.a3ω6

in ω6).
Hence, only the actor of choice amongst the opponent actors
of a decision state will be enabled in that state (e.g., only a1
can fire in ω6). The delayed actors in a decision state (e.g.,
ωj) will have sufficient tokens on the incoming channel from
the newly added actor for that decision state (i.e., ai.ωj) after
firing of the actor of choice in ωj . For example, there will
be 6 tokens in channel c1.a1ω6

after the firing of a1 (i.e., the
actor of choice) in decision state ω6; hence, the actor a1.ω6

immediately fires and then provides sufficient tokens for later
firings of a3. So, the delayed actor in decision state ω6 (i.e.,
a3) will no longer be blocked due to the absence of tokens in
channel c1.a3ω6

after the decision state ω6. The firing of actor
a1 after decision state ω6 produces 1 token in channel c1.a1ω6

and the firings of actor a3 after decision state ω6 consumes 6

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 9

a0 a2

c2

5

a1c0 c1

5

5
a4a3c3 c4

2 3

Fig. 9. An example SDFG.

Algorithm 3: SAS Modeling (SASM)
input : SDFG G(A,C), PSOS si ={(α1)β1(α2)β2 ...(αn)βn}
output: G extended with schedule si
add a self edge with 1 initial token for each a ∈ Ai1
for i← 1 to n do2

if αi is not an actor then3
SASM (G, αi)4

AA(G, acnti)5
/* adding a counter channel */

AC(G, ccnti , rightMost(αi), acnti , 1,6

RN(rightMost(αi), αβii), 0)
/* adding a limiter channel */

if i = n then7
AC(G, climi , acnti , leftMost(α1), RN(leftMost(α1),8

αβ11), 1, RN(leftMost(α1), αβ11))
else9
AC(G, climi , acnti , leftMost(αn+1),10

RN(leftMost(αn+1), αβn+1
n+1), 1, 0)

tokens from channel c1.a3ω6
; as a result, the number of tokens

in the new channels are reset to the initial values at the end of
one iteration of the schedule s1. Hence, the periodic behavior
is also achievable for the added components.

DSM also adds actor a1.ω9
and channels c1.a1ω9

and c1.a3ω9

to the graph for the other decision state ω9. The components
added in decision state ω9 show similar behavior as the
components added in ω6.

VI. MODELING SINGLE APPEARANCE SCHEDULES

A well-known class of scheduling techniques are single
appearance schedules (SASs) in which each actor appears
exactly once in the LS form. This aspect makes SASs suitable
to minimize code memory size. s2 = 〈(a0a1)5a2〉∗ is a PSOS
and SAS for part of the SDFG (i.e., actors a0-a2) in Figure 9.

DSM is able to model any PSOS. However, more compact
graphs are possible for SASs. Algorithm 3 presents our single
appearance schedule modeling (SASM) technique. Similar to
DSM, SASM adds some extra actors and channels to the origi-
nal SDFG to model the given schedules. The original channels
and actors in the schedule-extended SDFG are preserved and
distinguishable from the newly added elements by any of our
techniques. Hence, both our techniques preserve the original
structure of an SDFG. This property can be beneficial when
a resource allocation algorithm needs to be applied on the
schedule-extended graph; a resource allocation algorithm can
easily distinguish an original actor (or channel) from an actor
(or channel) which is added to model the schedules.

We know that each actor appears only once in a SAS;
this property can help us to model a SAS in an SDFG in
a smarter way than DSM does. An actor (or a nested inner
LS) should be executed a specific number of times before

another actor (or another nested inner LS) starts executing.
In s2 = 〈(a0a1)5a2〉∗, the nested inner LS (a0a1) must be
executed 5 times before a2 starts firing. This type of execution
control can be handled using a counter construct. The key idea
of SASM is to implement a counter concept in the graph.
Later, we explain how we implement such counters to model
SASs in an SDFG. Similar to DSM, auto-concurrency can be
eliminated by adding a self-edge with 1 initial token to each
actor in the SDFG (see line 1 in Algorithm 3). The rest of
Algorithm 3 deals with implementing the counter concept.

Figure 10 shows the graph of the SDFG in Figure 9 which
models the schedule s2 using SASM. Schedule s2 has a nested
a0a1; this can be replaced with α01 to form a looped schedule
representation (i.e. s2 = 〈(α01)5a2〉∗ where α01 = a0a1). A
counter in SASM is implemented by one actor acnti (e.g.,
acnt3 in Figure 10), a counter channel ccnti (e.g., ccnt3) and
a limiter channel climi

(e.g., clim3
). A counter in SASM has

two properties: first, it counts the number of times that element
αi (e.g., α01 above) is being executed; second, it limits the
element αi+1 (e.g., a2) to be executed to βi+1 times (e.g.,
1 as the number of repetitions of a2 is one). The counter
channel ccnti (e.g. ccnt3) is placed from the rightmost actor
in αi (e.g., actor a1 in α01) to the actor acnti (e.g., acnt3);
the production rate of the rightmost actor in αi on ccnti is
set to 1 and the consumption rate of acnti on ccnti is set
to the number of times that the rightmost actor in αi can
be executed in αi

βi (e.g., 5 as the number of times that a1
can be executed in α01

5 is five). In Algorithm 3, the function
rightMost(αi) (leftMost(αi)) returns the rightmost (leftmost)
actor in element αi (e.g. rightMost((a0a1)5) returns actor a1).
The function RN(a,αiβi) retrieves the count of a in element
αi
βi (e.g. RN(a0,(a0a1)5) returns 5).
The limiter channel climi

(e.g., clim3
) is placed from acnti

(e.g., acnt3) to the leftmost actor in the next element, i.e.,
αi+1 (e.g., a2). SASM performs the placement of the counter
constructs in a circular way. In other words, the next element
of αj is considered to be α(j+1) mod n where j ∈ N∧ j ≤ n
for a LS {(α1)β1(α2)β2 ...(αn)βn}. The production rate of
acnti on climi

is set to the number of times that the leftmost
actor in αi+1 can be executed in αi+1

βi+1 (e.g., 1 as the
number of times that a2 can be executed in element a2) and
the consumption rate of the leftmost actor in the next element,
i.e., αi+1, from climi

is set to 1. So, element αi+1 depends
on actor acnti (because of climi

) and actor acnti depends on
αi (because of the ccnti); the βi executions of αi produce
enough tokens on the counter channel ccnti and then actor
acnti can be fired. The firing of actor acnti provides enough
tokens on limiter channel climi

to only allow βi+1 executions
for the next element αi+1. Hence, by adding these components
we enforce that αi+1 can be executed βi+1 times after αi is
executed βi times.

The limiter channel of the counter construct added for the
last element (i.e., (αn)βn) in a LS {(α1)β1(α2)β2 ...(αn)βn} is
initialized with some initial tokens to prevent a deadlock in the
graph. The number of initial tokens on the limiter channel is
set to the count of the left most actor of α1 in the first element
of that LS (i.e., (α1)β1). Line 8 in SASM performs the token
initialization. Inter-iteration execution cannot happen because

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 10

a0 a2

c25

a1
c0 c1

5

5

5

5

5Inner loop

c lim1

clim2

ccnt1 1

a4a3
c3 c4

acnt

2
acnt

ccnt2
3

acnt

c lim4

4
acnt

ccnt4

clim3

ccnt3

Fig. 10. SDFG of Figure 9 extended with s2 = 〈(a0a1)5a2〉∗ using SASM.

ay

ccnt

p qax acnt

clim

mn
ay

(b) p is equal to1

ax

cxy

n·q+mq

ayax

cxy

n+m·p p

(a) original form

(c) q is equal to1

i i

i

Fig. 11. Optimization of SASM.

SASM always creates a dependency from the last actor in the
schedule to the first actor in the schedule.

In Figure 10, the actor acnt3 is added to count the number
of times that the sequence a0a1 is executed. The consumption
rate of actor acnt3 on its input channel is 5; this means that
after 5 executions of sequence a0a1 the next actor (i.e., a2)
can be enabled. Also, the actor acnt3 limits the number of
times that actor a2 should get enabled; this can be done by
choosing the value 1 as production rate of actor acnt3 on its
output channel. In other words, the actor a2 can only fire
once because of the limitation imposed by actor acnt3 . The
actor acnt1 (acnt2) is added to ensure the single execution of
actors a1 (a0) after the single execution of actor a0 (a1). The
actor acnt4 is added to ensure that the sequence a0a1 can be
executed 5 times after the actor a2 is executed once.

SASM is applied recursively (line 4 in SASM) to model the
nested LS αi. For example, SASM(G, a0a1) will be called
inside SASM(G, (a0a1)5a2); the result of the recursive call is
shown in Figure 10 with a rectangle marking the inner-loop.

Some of the elements added by SASM can be removed
without affecting the outcome. Consider Figure 11(a) which
contains a counter actor and two channels that can be discarded
in the following cases:

• The counter actor acnti can be removed if rate p is equal
to 1. The counter actor and two channels in the original
form are replaced with channel cxy (see Figure 11(b)).

• The counter actor acnti can be removed if rate q is equal
to 1. The counter actor and two channels in the original
form are replaced with channel cxy (see Figure 11(c)).

The newly replaced channel cxy is only necessary if there is no
other equivalent channel in the original SDFG. The channels
(p, q) and (p′, q′) which have the same source actor ax ∈ A
and sink actor ay ∈ A are equivalent if the equation Rate(p)

Rate(p′) =
Rate(q)
Rate(q′) = ω0(c)

ω0(c′)
is true. Applying these optimizations on

Figure 10 replaces all components added by SASM by channel
c01 (see Figure 12). The SDFG which models schedule s2
in the SDFG of Figure 9 with DSM and the HSDFG-based
techniques result in a graph with 10 (26) and 13 (21) actors

a0 a2

c25

a1
c0 c1

5

5

c01

a4a3c3 c4

Fig. 12. SDFG of Figure 9 extended with s2 = 〈(a0a1)5a2〉∗ using
optimized SASM.

(channels) resp. The SDFG which models the same schedule
with SASM only has 5 (9) actors (channels).

VII. CORRECTNESS OF THE PROPOSED TECHNIQUES

This section presents the theorems related to the correctness
of our proposed techniques. A schedule is encoded correctly
if any execution of a schedule-extended graph satisfies the
encoded schedule and if any execution of the original graph
that satisfies the given schedule is still possible in the schedule-
extended graph. The proofs of the theorems are omitted for
space reasons. They can be found in the report version of this
paper [24].

Assume that the actors and channels added by DSM (or
SASM) to model schedule si in SDFG G(A,C) are denoted
by Asi and Csi , resp. G′(A′, C ′) is the SDFG that models
si in G using DSM (or SASM) where A′ = A ∪ Asi and
C ′ = C ∪ Csi .

Theorem 1 and Theorem 2 state the correctness of DSM
in modeling a single PSOS for a sub-set of the actors of the
SDFG. Applying the theorems once for each schedule to be
encoded shows the correctness of Algorithm 1.

Note that actors and channels added to model a given
schedule do not affect actors that are not part of the schedule.
Theorem 1 shows that any execution of the schedule-extended
graph satisfies the modeled schedule. Firings of the added
actors need to be ignored, which is achieved by the stated
condition on the ordered lists resulting from the executions in
the schedule-extended and original graphs.

Theorem 1. Consider PSOS si as a schedule for actors
Ai ⊆ A from SDFG G (A,C). Assume G′(A′, C ′) is the
SDFG that models si in G using DSM. For any execution σ′

of G′(A′, C ′) it holds that σ satisfies si where it is assumed
that σ is the execution of G(A,C) with orderList(σ,A) =
orderList(σ′, A).

Theorem 2 shows that no execution of the original graph
is unnecessarily excluded in the schedule-extended graph. In
other words, any execution of the original graph that satisfies a
given schedule is still feasible in the schedule-extended graph.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 11

Theorem 2. Consider PSOS si as a schedule for actors
Ai ⊆ A from SDFG G(A,C). Assume G′(A′, C ′) is the
SDFG that models si in G using DSM. For any execution σ
of G that satisfies si it holds that there is exactly one σ′ that
is an execution of G′(A′, C ′) such that orderList(σ,A) =
orderList(σ′, A).

The following two theorems state the correctness of SASM.
They are very similar to the two theorems for DSM.

Theorem 3. Consider SAS si ={(α1)β1(α2)β2 ...(αn)βn} as
a schedule for actors Ai ⊆ A from SDFG G (A,C). Assume
G′(A′, C ′) is the SDFG that models si in G using SASM.
For any execution σ′ of G′(A′, C ′) it holds that σ satisfies si
where it is assumed that σ is the execution of G(A,C) with
orderList(σ,A) = orderList(σ′, A).

Theorem 4. Consider PSOS si as a schedule for actors
Ai ⊆ A from SDFG G(A,C). Assume G′(A′, C ′) is the
SDFG that models si in G using DSM. For any execution σ
of G that satisfies si it holds that there is exactly one σ′ that
is an execution of G′(A′, C ′) such that orderList(σ,A) =
orderList(σ′, A).

VIII. EXPERIMENTAL RESULTS

In this section, we evaluate our techniques experimentally.
We first explain the experimental setup. We then evaluate
our techniques in terms of the sizes of the schedule-extended
graphs, comparing our techniques to that of [12]. We further
consider the throughput analysis time when analyzing the
schedule-extended graphs obtained by different techniques.
Note that the throughput that is achievable for a given schedule
is independent of the way it is encoded. It is the analysis
time itself that is of interest. Finally, we look at the accuracy
of buffer sizing analysis. The accuracy of obtained buffer
requirements does depend on the way schedules are encoded.

A. Experimental setup

The DSM and SASM techniques have been inte-
grated in the SDF3 [29] dataflow tool set, available at
http://www.es.ele.tue.nl/sdf3. We use a set of DSP and multi-
media applications (see the first column of Table I) to assess
our DSM and SASM techniques.

In our experiments, applications are bound to a multi-
processor platform using the technique of [6]. A PSOS de-
termines the actor firing order and as such it influences the
enabled actors in a state; as a result, the number of decision
states can be different for different PSOSs. The size of the
schedule-extended graph using DSM depends on the number
of decision states in the given schedules. We use a list
scheduling approach from [30] to determine PSOSs for the
applications. We use two different variations to verify DSM
in different situations. The first list schedule uses forward
priorities (Lfp) and the second one uses reverse priorities
(Lrp). Actors closer to the inputs of the graph have higher
priority in the Lfp schedules compared to actors closer to the
outputs of the graph and vice-versa in Lrp schedules.

The scheduling technique presented in [31] is used to derive
SASs for our benchmark applications. The technique in [31]

also minimizes the required buffer sizes when determining
a SAS. However, the technique in [31] cannot directly be
used for multi-processors. We have utilized the technique of
[31] to find SASs for a multi-processor platform. Initially
the binding technique from [6] is used to bind the SDFG
to a multi-processor platform. Then, the technique of [31]
is applied to the SDFG to derive a SAS for all actors in
the SDFG. This SAS is decomposed into some smaller SASs
using the binding information; each of the smaller SASs is
a schedule for one processor in the platform. Consider an
example SDFG with 5 actors denoted by a0 − a4. Assume
a0, a1 and a3 are bound to processor P1 and a2 and a4 are
bound to processor P2. Applying the technique of [31] to this
imaginary SDFG gives the SAS s0 = 〈(a0(a1

2a2a3
4)3)2a4

5〉∗
for the whole SDFG. This SAS can be decomposed using the
binding information to form a SAS for each of the processor in
the platform. Only considering actors bound to P1 in s0 results
in s01 = 〈a0(a1

2a3
4)3〉∗ which is a SAS for the actors bound

to P1. Similarly, a SAS s02 = 〈a26a45〉∗ can be extracted
from s0 to order actors bound to P2. This way we utilize the
technique of [31] for multi-processor platforms. The optimality
of the generated schedules from the performance or buffer
sizing perspective is debatable. However, we use this adapted
SAS technique merely to provide some near-optimal inputs to
evaluate our SASM schedule encoding technique versus the
existing technique. Our techniques do not affect the quality of
the scheduling result itself.

B. Comparison on graph sizes

Table I contains the size of the schedule-extended graphs
using the HSDFG-based and DSM techniques to model Lfp
and Lrp schedules for a single core platform (see the first
two rows of each application line). Using schedules generated
by Lfp, the number of decision states is less than when Lrp
is used, except in the channel equalizer and MP3 playback
applications. By using Lfp scheduling, actors closer to inputs
have higher priority compared to actors closer to outputs.
This leads to consecutive execution of an actor followed by
consecutive execution of another actor with lower priority and
so on. Thanks to our optimization in DSM, considering only
one decision state before a context switch will be sufficient
(e.g., decision state ω9 in Figure 7) and the number of decision
states can be reduced significantly. Usually SDFG actors
closer to outputs are dependent on actors closer to inputs;
this dependency can prevent an actor from being executed
consecutively in a graph scheduled by Lrp. As a result, the
number of context switches in a graph scheduled by Lrp will
typically be larger compared to Lfp. Hence, the effectiveness
of the decision state optimization in DSM decreases and extra
elements are required to model the schedules in the graph.
The exceptions in the channel equalizer and MP3 playback
are due to the existence of a cycle in the SDFG; the cycle can
increase the number of context switches in the schedule and
as a result, Lfp could result in the same or a higher number
of decision states in DSM compared to Lrp. However, DSM
always outperforms the HSDFG-based technique regardless of
the input schedule in our experiments. The number of actors

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 12

TABLE I
SIZE OF THE SCHEDULE-EXTENDED SDFGS

Orig. size # actors (# channels) Reduction compared to the HSDFG-based technique
Benchmark # actors (# channels) Schedule type HSDFG-based DSM SASM DSM SASM

H.263 dec. [10] 4 (6)
Lfp 1190 (2973) 6 (14) NA 99% (99%) NA
Lrp 1190 (2972) 598 (1198) NA 49% (59%) NA
SAS 1190 (2972) 598 (1198) 4 (12) 49% (59%) 99% (99%)

H.263 enc. [25] 5 (7)
Lfp 201 (596) 7 (16) NA 96% (97%) NA
Lrp 201 (499) 105 (212) NA 47% (57%) NA
SAS 201 (499) 106 (214) 5(15) 47% (57%) 97% (97%)

MP3 dec. [10] 14 (21)
Lfp 911 (2849) 27 (61) NA 97% (97%) NA
Lrp 911 (2327) 400 (807) NA 56% (65%) NA
SAS 911 (2327) 400 (807) 14 (44) 56% (65%) 98% (98%)

modem [1] 16 (35)
Lfp 48 (115) 22 (63) NA 54% (45%) NA
Lrp 48 (128) 35 (89) NA 27% (30%) NA
SAS 48 (128) 35 (89) 16 (61) 27% (30%) 66% (52%)

samplerate conv. [1] 6 (11)
Lfp 612 (1639) 12 (29) NA 98% (98%) NA
Lrp 612 (1784) 157 (319) NA 74% (82%) NA
SAS 612 (1865) 238 (481) 12 (31) 61% (74%) 98% (98%)

satellite rec. [26] 22 (48)
Lfp 4515 (11638) 41 (108) NA 99% (99%) NA
Lrp 4515 (12820) 1223 (2472) NA 72% (80%) NA
SAS 4515 (15270) 3673 (7372) 24(91) 18% (51%) 99% (99%)

MP3 playback [27] 4 (8)
Lfp 10601 (37531) 5298 (10600) NA 50% (71%) NA
Lrp 10601 (37529) 5296 (10596) NA 50% (71%) NA
SAS 10601 (37530) 5297 (10598) 6 (16) 50% (71%) 99% (99%)

bipartite [26] 4 (8)
Lfp 73 (341) 8 (20) NA 89% (94%) NA
Lrp 73 (359) 26 (56) NA 64% (84%) NA
SAS 73 (350) 17(38) 9(22) 76% (89%) 87% (93%)

channel eq. [28] 21 (40)
Lfp 41 (100) 32 (83) NA 22% (17%) NA
Lrp 41 (95) 27 (73) NA 34% (23%) NA
SAS 41 (93) 30 (79) 21(65) 27% (15%) 48% (30%)

TABLE II
THE THROUGHPUT ANALYSIS TIME (IN MILLISECONDS)

Type of the schedules / The used schedule modeling technique
SAS Lfp Lrp

Benchmark # of processors HSDFG-based DSM SASM HSDFG-based DSM HSDFG-based DSM
H.263 dec. 2 36 540 < 1 < 1 118 720 < 1 120 710 < 1
H.263 enc. 2 380 < 1 < 1 690 < 1 400 < 1
MP3 dec. 3 13 900 320 10 17 660 < 1 13 980 1 380
modem 3 10 < 1 < 1 < 1 < 1 < 1 < 1
samplerate conv. 3 3 970 110 < 1 3 140 < 1 3 880 < 1
satellite rec. 2 not finished in 3 days 12 414 400 130 not finished in 3 days 280 not finished in 3 days 675 700
MP3 playback 2 not finished in 3 days < 1 < 1 not finished in 3 days 10 780 not finished in 3 days < 1
bipartite 2 30 < 1 < 1 40 < 1 50 < 1
channel eq. 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1

(channels) using DSM is 66% (71%) lower compared to the
HSDFG-based technique on average and 22% (17%) lower in
the worst-case observed in our experiments. The average case
refers to the mean value of the obtained results and the worst-
case reports the smallest graph size reduction (i.e., reduction
in numbers of actors and channels compared to the HSDFG-
based technique).

SASs are a suitable class of schedules that minimize code
memory size. DSM is able to model any arbitrary schedule
in an SDFG. SAS can be modeled using DSM; however, it
is possible to consider the intrinsic property of SASs when
modeling a SAS in an SDFG. Our second technique, SASM,
uses the fact that each actor appears only once in the looped
schedule form. SASM models the counter concept in the graph
in order to force actors to be executed a specific number of
times. The third row of each application line in Table I contains
the size of the schedule-extended graphs using the HSDFG-
based, DSM and SASM techniques to model SASs, generated
by the technique developed in [31].

SASM results in a schedule-extended SDFG with a limited
number of extra actors and channels. For example, SASM only
adds 2 (8) extra actors (channels) to the original graph of the
MP3 playback application in order to model a SAS, while

the HSDFG-based technique adds 1057 (37522) extra actors
(channels) to model the same schedule. The graphs obtained
by SASM have 88% (85%) and 48% (30%) less actors (chan-
nels) compared to the HSDFG-based technique on average and
in the worst-case among the benchmark applications. Using
the DSM technique to model the same SASs results in 46%
(57%) and 27% (15%) less actors (channels) compared to the
HSDFG-based technique on average and in the worst-case.
Our results confirm that the techniques proposed in this paper
achieve a more compact schedule-extended graph compared
to the available technique.

C. Comparison on analysis times

The time required to perform an analysis on an SDFG
depends on the size of the graph and the number of cycles
in the graph. As an example, the throughput analysis of
[9] is performed on the schedule-extended graphs using our
techniques and the HSDFG-based technique. Our experiments
are performed to evaluate the impact of the graph size on
the analysis time of a common analysis technique. Note that
other techniques (e.g., YTO [32]) can be employed to calculate
throughput of HSDFGs, but the size of the schedule-extended

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 13

vld iq
594 594

idct mc

Fig. 13. SDFG of H.263 decoder application.

HSDFGs is such that our conclusions remain the same. The
benchmark graphs are mapped onto multi-processor platforms
with two or three processors. Table II contains the throughput
analysis times when SASs, list forward priority (Lfp) sched-
ules and list reverse priority (Lrp) schedules are used as input
schedules. The results show the superiority of SASM over
DSM and the HSDFG-based technique. Note that the SDFG
to HSDFG conversion is fast; the numbers reported for the
HSDFG-based technique in Table II are related to the run-
time of the throughput analysis from [9]. In our experiment,
the run-time of a throughput calculation for HSDFGs is long
independent of the analysis technique used (i.e., state-space
[9], YTO [32], etc.).

D. Comparison on buffer sizes

To further analyze the effectiveness of our techniques, the
buffer sizing algorithm from [10] is applied to the schedule-
extended SDFGs of the H.263 decoder and MP3 decoder.
Figure 13 depicts the SDFG of the H.263 decoder. Besides the
compactness of the schedule-extended graph, our techniques
preserve the original structure of an SDFG (when ignoring the
added actors and channels), allowing accurate buffer sizing,
which is not guaranteed for the state of the art technique. The
H.263 decoder is mapped to a platform with two processors.
The actors vld and iq are mapped to the first processor with
a PSOS 〈vld(iq)594〉∗ and the actor idct and mc are mapped
to the second processor with a PSOS 〈(idct)594mc〉∗. The
analysis time for buffer sizing on the schedule-extended H.263
decoder is less than 1 ms when using DSM (or SASM) to
model the schedules. The same analysis takes 1330 ms when
using the technique from [12] to model the same schedules
in the same graph. Figure 14(a) shows the Pareto space of
throughput and buffer size when modeling the schedules with
DSM (or SASM) and the HSDFG-based technique [12]. In this
experiment, the schedules are first modeled in the graph; then,
the buffer sizing technique of [10] is applied. A single channel
in an SDFG corresponds to a set of channels in the equivalent
HSDFG. As a result, the buffer sizing technique cannot find
the minimal buffer size when applying it on the equivalent
HSDFG. Our experiments show these inaccuracies. Applying
buffer sizing on the graph which models the schedules using
the technique from [12] results in 49% overestimation in
required buffers compared to applying the same buffer sizing
technique on the graph which models the schedules with one of
our techniques. Note that the maximal achievable throughput
is independent of the way schedules are encoded. The analysis
results confirm this. Only the computed buffer sizes differ. For
instance in both cases of Figure 14, the maximal throughput
for the given schedules is always achievable, also by using
the HSDFG-based schedule modeling technique; the latter

1189 1190 1782

HSDFGDSM/SASM

T
h
ro

u
g

h
p
u
t

Buffer size (tokens)

1.59E-06

2.90E-06

(a) H.263 decoder

594 1936

HSDFGDSM/SASM

T
h
ro

u
g

h
p
u
t

Buffer size (tokens)

2.35E-07

(b) MP3 decoder

Fig. 14. Pareto space of schedule-extended graphs modeled by DSM and
HSDFG-based techniques (the scales of the two graphs are different).

suggests the need for larger buffers though. Figure 14(b)
shows results for the MP3 decoder. We use the mapping
and scheduling from [33] for a platform with 3 processors.
The analysis time on the graph which models the schedule
using one of our techniques is 594 ms while 141610 ms is
required to perform the same analysis on the graph using the
technique from [12]. Using the technique from [12] results
in 226% overestimation in buffer size compared to using our
techniques.

Modeling a PSOS in an SDFG using DSM requires ex-
ecution of one complete SDFG iteration. The number of
states in one iteration could be exponential in the number of
actors in the graph. However, for all real-world SDFGs used
in our experiments, the execution time of DSM is below 1
ms. SASM also models SASs based on the structure of the
schedules in their looped form; as each actor appears once
in a SAS, the complexity of SASM depends on the number
of actors in the graph. Similar to DSM, the execution time
of SASM is always below 1 ms in our experiments. The
complexity of our techniques relates to the length of the SDFG
iteration and the number of processors in the platform (i.e.,
|P |). Hence, the complexity of our techniques is bounded to
O(|P | ·

∑
a∈A γ(a)).

IX. CONCLUSION

We present two techniques, DSM and SASM, to model
PSOSs and SASs directly in an SDFG. The resulting graphs
are much smaller (often much less than half the size) than
graphs resulting from the state of the art technique that first
converts an SDFG to an HSDFG. This results in a speed-
up of analysis techniques. Computing the trade-off between
buffering and throughput for multi-processor platforms, for ex-
ample, becomes several orders of magnitude faster. Moreover,
properties like buffer sizes can be analyzed more accurately.
The techniques have been integrated in the SDF3 tool set
available at http://www.es.ele.tue.nl/sdf3. This allows easy
integration of the techniques in multi-processor design flows.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments,
which helped improving the presentation of the paper. This
work was supported in part by the Dutch Technology Foun-
dation STW, project NEST 10346.

REFERENCES

[1] S. S. Bhattacharyya et al., “Synthesis of embedded software from syn-
chronous dataflow specifications,” Journal of VLSI Signal Processing,
vol. 21, pp. 151–166, 1999.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 20XX 14

[2] S. Sriram et al., Embedded Multiprocessors: Scheduling and Synchro-
nization, 2nd ed. CRC Press, 2009.

[3] P. Poplavko et al., “Task-level timing models for guaranteed performance
in multiprocessor networks-on-chip,” CASES. ACM, 2003, pp. 63–72.

[4] M.-Y. Ko et al., “Compact procedural implementation in DSP software
synthesis through recursive graph decomposition,” SCOPES. ACM,
2004, pp. 47–61.

[5] A. Bonfietti et al., “Throughput constraint for synchronous data flow
graphs,” CPAIOR. Springer-Verlag, 2009, pp. 26–40.

[6] S. Stuijk et al., “Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” in DAC, 2007, pp. 777–782.

[7] W. Liu et al., “Efficient SAT-based mapping and scheduling of homoge-
neous synchronous dataflow graphs for throughput optimization,” RTSS.
IEEE, 2008, pp. 492–504.

[8] Y. Yang et al., “Automated bottleneck-driven design-space exploration
of media processing systems,” DATE. ACM, 2010, pp. 1041–1046.

[9] A. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” ACSD. IEEE, 2006, pp. 25–36.

[10] S. Stuijk et al., “Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs,” IEEE Transaction on Comput-
ers, vol. 57, no. 10, pp. 1331–1345, 2008.

[11] M. Benazouz et al., “A new method for minimizing buffer sizes for
cyclo-static dataflow graphs,” in ESTIMedia’10. IEEE, pp. 11 –20.

[12] N. Bambha et al., “Intermediate representations for design automation
of multiprocessor DSP systems,” Design Automation for Embedded
Systems, vol. 7, no. 4, pp. 307–323, 2002.

[13] M. Damavandpeyma et al., “Modeling static-order schedules in syn-
chronous dataflow graphs,” in DATE’12. ACM, pp. 775–780.

[14] A.-P. Wang et al., “Buffer optimization and dispatching scheme for
embedded systems with behavioral transparency,” ACM Transactions on
Design Automation of Electronic Systems, vol. 17, no. 4, pp. 41:1–41:26,
Oct. 2012.

[15] M. Damavandpeyma et al., “Throughput-constrained DVFS for scenario-
aware dataflow graphs,” in RTAS’13. IEEE.

[16] M. H. Wiggers et al., “Monotonicity and run-time scheduling,” EM-
SOFT. ACM, 2009, pp. 177–186.

[17] D. Thiele et al., “Optimizing performance analysis for synchronous
dataflow graphs with shared resources,” in DATE’12. ACM, pp. 635–
640.

[18] R. Henia et al., “System level performance analysis - the SymTA/S
approach,” IEE Proccedings Computers and Digital Techniques, vol.
152, no. 2, pp. 148 – 166, mar 2005.

[19] L. Thiele et al., “Real-time calculus for scheduling hard real-time
systems,” in ISCAS’00, vol. 4. IEEE, 2000, pp. 101 –104.

[20] H. H. Wu et al., “A model-based schedule representation for heteroge-
neous mapping of dataflow graphs,” HCW. IEEE, 2011, pp. 66–77.

[21] S. Bhattacharyya et al., Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, 1996.

[22] E. Lee et al., “Synchronous data flow,” Proceeding of the IEEE, vol. 75,
no. 9, pp. 1235–1245, 1987.

[23] M. Geilen et al., “Minimising buffer requirements of synchronous
dataflow graphs with model checking,” DAC ’05. ACM, 2005, pp.
819–824.

[24] M. Damavandpeyma et al., “Schedule-extended synchronous dataflow
graph,” TU Eindhoven, Tech. Rep., ESR-2013-01, 2013. [Online].
Available: http://www.es.ele.tue.nl/esreports/esr-2013-01.pdf

[25] H. Oh et al., “Fractional rate dataflow model for efficient code synthe-
sis,” Journal of VLSI Signal Processing, vol. 37, pp. 41–51, 2004.

[26] S. Ritz et al., “Scheduling for optimum data memory compaction in
block diagram oriented software synthesis,” ICASSP. IEEE, 1995.

[27] M. H. Wiggers et al., “Efficient computation of buffer capacities for
cyclo-static dataflow graphs,” DAC. ACM, 2007, pp. 658–663.

[28] A. Moonen et al., “Practical and accurate throughput analysis with the
cyclo static dataflow model,” MASCOTS. IEEE, 2007, pp. 238–245.

[29] S. Stuijk et al., “SDF3: SDF for free,” ACSD. IEEE, 2006, pp. 276–
278.

[30] G. De Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill, 1994.

[31] P. K. Murthy et al., “Joint minimization of code and data for synchronous
dataflow programs,” Formal Methods in System Design, vol. 11, no. 1,
pp. 41–70, 1997.

[32] N. E. Young et al., “Faster parametric shortest path and minimum
balance algorithms,” CoRR, vol. cs.DS/0205041, 2002.

[33] M. Geilen et al., “Worst-case performance analysis of synchronous
dataflow scenarios,” CODES+ISSS. ACM, 2010, pp. 125–134.

Morteza Damavandpeyma received his B.Sc. and
M.Sc. degrees in computer engineering from the
University of Tehran, Iran in 2006 and 2008, re-
spectively. He is currently a Ph.D. candidate in
the Department of Electrical Engineering at the
Eindhoven University of Technology (TU/e). His
research interests include modeling, analysis and
synthesis of embedded systems and multiprocessor
System-on-Chips.

Sander Stuijk received his M.Sc. degree (with
honors) in Electrical Engineering in 2002 and his
Ph.D. degree in 2007 from the Eindhoven University
of Technology. He is currently an assistant professor
in the Department of Electrical Engineering at the
Eindhoven University of Technology. His research
interests include modeling methods and mapping
techniques for the design, specification, analysis and
synthesis of predictable hardware/software systems.

Twan Basten is a professor in the Electrical En-
gineering department at Eindhoven University of
Technology (TU/e), the Netherlands, where he chairs
the Electronic Systems group. He is also a se-
nior research fellow of TNO Embedded Systems
Innovation in the Netherlands. He holds an M.Sc.
and a Ph.D. in Computing Science from TU/e.
His research interests include embedded and cyber-
physical systems, dependable computing and com-
putational models.

Marc Geilen is an assistant professor in the De-
partment of Electrical Engineering at Eindhoven
University of Technology. He holds an M.Sc. in
Information Technology and a Ph.D. from the Eind-
hoven University of Technology. His research inter-
ests include modeling, simulation and programming
of multimedia systems, multiprocessor systems-
on-chip, networked embedded systems and cyber-
physical systems, and multi-objective optimization
and trade-off analysis.

Henk Corporaal has gained an M.Sc. in Theo-
retical Physics from the University of Groningen,
and a Ph.D. in Electrical Engineering, in the area
of Computer Architecture, from Delft University of
Technology. He is a professor in Embedded Sys-
tem Architectures at the Eindhoven University of
Technology (TU/e) in The Netherlands. His current
research projects are on low power single and multi-
processor architectures, their programmability, and
the predictable design of soft- and hard real-time
systems.

