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Pipelined image-based control uses parallel instances of its image-processing algorithm in a pipelined fashion
to improve the quality of control. A performance-oriented control design improves the controller settling
time with each additional processing resource, which creates a resources-performance trade-off. In real-life
applications, it is common to have a continuous-time model with additive uncertainties in one or more param-
eters that may affect the controller performance and the aforementioned trade-off. We present a robustness
analysis framework for performance-oriented pipelined controllers with additive model uncertainties. We
present a technique to obtain discrete-time uncertainties based on the continuous-time uncertainties for given
uncertainty bounds. To benchmark such uncertainty bounds for a real system, we consider uncertainties in
one element of the system, potentially caused by multiple uncertain parameters in the model. Robustness and
its impact in the trade-off analysis are studied. We also provide a robustness-oriented pipelined controller
design that takes into account the benchmarked uncertainties. Our results show that in performance-oriented
designs, the tolerable uncertainties for a pipelined controller decrease when increasing the number of pipes.
In robustness-oriented designs, the controller robustness is enhanced with each newly added pipe. We show
the feasibility of our technique by implementing a realistic example in a Hardware-In-the-Loop simulation.
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1 INTRODUCTION

Image-processing algorithms are nowadays being used inside control loops as sensors. Examples of
these control loops are found in Advanced Driver Assistance Systems (ADAS) [17, 18] or in visual
servo control applications [6]. The main advantage of using image-processing in the loop is the
capability of generating sensing information that is not easily acquired with regular sensors. For
example, in ADAS it allows to determine traffic signals or road conditions, and in visual servo control
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Fig. 1. Example resource configuration of image-based control. a) Sequential configuration. b) Pipelined

configuration with two sensing cores.

it allows to acquire the position of particular objects. Image sensors introduce a computational
delay that appears as an additional source of latency in the control loop. When latency is longer
than the desired sampling period of the system, the lack of sensing information reduces the Quality
of Control (QoC) [33].

The rise of hardware with parallel processing capabilities allows to cope with long sensing delays
by either parallelizing the image-processing algorithm or by executing it in a pipelined fashion.
Parallelization can potentially reduce the sensing latency [2, 19, 36, 44]. However, parallelization is
not applicable to all algorithms, it may furthermore be time consuming, and the resulting latency
might not be shorter than the desired sampling period of the system. An alternative is to pipeline
the sensing algorithm [22, 29, 45]. Pipelining consists of running several instances of the image-
processing algorithm in a pipelined fashion. Such a technique generates extra sensing information
that decreases the sampling period while the sensing latency remains the same. Pipelining the
sensing algorithm can be straightforwardly applied to any image-processing algorithm that does
not have any temporal dependencies between subsequent samples (e.g. images). Fig. 1 compares
a classical implementation of an image-based controller (i.e. sequential implementation) with a
pipelined implementation of two-sensing-cores. Note that the computational delay remains constant
because the worst-case execution time is used in the controller design. In the pipelined sensing,
doubling the sensing resources doubles the actuation rate of the controller, halves the sampling
period, and can be used to improve the QoC. Fig. 2 shows an example of how controllers respond
(pipelined and sequential) with the resource configurations of Fig. 1. The settling time (i.e. QoC) of
the controller is shortened by using extra sensing information in the control algorithm. The QoC
improvement results in performance improvements for the application, which potentially reduces
the operation costs. Such a reduction is commonly larger than the cost of the additional processing
resources, which motivates the use of multi-core technology.
With performance-oriented designs, pipelining the sensing algorithm potentially improves

QoC with each newly added pipe; therefore a trade-off exists between resource usage (i.e. cost
of implementation) and QoC. We introduced a method to analyse such a trade-off using Particle
Swarm Optimization (PSO) in [30]. The method allows to find the number of sensing cores that
still gives a meaningful improvement in QoC. The method assumes perfect knowledge of the
system model. However, in practice it is common to have uncertainties in the model. This leads to
a robustness constraint. Uncertainty degrades QoC, may cause instability [47, Chapter 8.1], and
affects the aforementioned trade-off analysis. For example, in the motivational example of [30],
the trade-off analysis indicated that four pipes is the number of cores that still gives a meaningful
improvement in QoC. However, if there is a maximum uncertainty of 2% in one of the elements of
the state and input matrices (i.e. there is a robustness constraint that the controller continues to be
stable with up to 2% deviation in one element of these matrices), the robustness of the controller
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Fig. 2. Example of controller response with and without pipeline. The round markers denote multiples of the
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with four pipes is lower than a minimum desired bound, whereas the one with three pipes remains
within the desired bounds, while it still gives a meaningful improvement in QoC.

There is substantial literature dealing with the stability analysis of a controller based on a
discrete-time model with delay and uncertainties (see for example [13, 40]). Additive time-variant
norm-bounded uncertainties are common in such analysis because in many physical systems the
exact value of the parameters is not known but it is limited to a range of possible values (see for
example [4, 5, 24, 34]). Analysing the effect of time-variant bounded uncertainties has not been done
yet to pipelined systems. Moreover, discrete-time robustness analysis techniques commonly start
from known discrete-time uncertainties (see for example [10]). The relation of such discrete-time
uncertainties with real-life continuous-time applications is not obvious. In the trade-off analysis of
pipelined systems, this relation is particularly relevant because each newly added pipe produces
a different sampling time implying that new discrete-time uncertainties have to be computed. In
other words, the same continuous-time uncertainties have different effects in pipelined sensing
controllers with different resource configurations. This affects the trade-off analysis.

Contributions: our contributions are threefold: (i) we benchmark discrete-time uncertainties
based on continuous-time time-variant norm-bounded uncertainties described by matrices with a
single non-zero element (i.e. a single uncertain element in each matrix). The resulting uncertainties
are additive, time-variant, and norm-bounded. (ii) We present a robustness analysis technique
that shows the impact of the benchmarked uncertainties in the performance-oriented pipelined
controllers and in the trade-off between resource usage and QoC. For that we adapt the technique
of [13, 40] for pipelined systems. (iii) We present a robustness-oriented controller design that uses
the benchmarked uncertainties to enhance robustness with each added pipe. Our contributions
capture the interplay between processing resources, control performance, and control robustness in
pipelined systems. We show the feasibility of our approach by implementing a pipelined controller
on a platform with parallel processing capabilities using Hardware-In-the-Loop simulation.

The paper is organized as follows. Section 2 starts with relatedwork. The state-of-the-art pipelined
control strategy is summarized in Section 3. Section 4 shows a design flow that summarizes our
approach. The steps of the flow are elaborated in Section 5 with a strategy to structure discrete-time
uncertainties in pipelined systems, Section 6 with a technique to benchmark the discrete-time
uncertainties based on continuous-time uncertainties, Section 7 with a technique to analyse the
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robustness of a performance-oriented pipelined controller and a technique to design robustness-
oriented pipelined controllers, and Section 8 with an example analysis. We show the feasibility of
our approach with a Hardware-In-the-Loop simulation in Section 9. Section 10 concludes.

2 RELATEDWORK

Pipelined sensing control has been used for systems with image-based sensing delay in [7, 22, 23,
29, 30] and for systems with network-based sensing delay in [38, 39, 45]. This literature focuses on
comparing pipelined sensingwith sequential sensing (e.g. [22]), using frequency domain information
to analyse the phase margin of different pipelined controllers [45], allocating resources in networked
control to achieve pipeline parallelism e.g. [38], and introducing modelling (e.g. [29]) and control
design strategies (e.g. [30]). Analysing the QoC of pipelined control with respect to a model with
uncertainties has not been reported before.

The impact of bounded additive uncertainties on control systems has been widely studied in the
robust control literature for the continuous-time domain [20, 41, 42] and the discrete-time domain
[9, 10, 48]. A pipelined sensing control corresponds to a discrete-time controller; therefore we
focus on discrete-time techniques. Discrete-time approaches commonly assume a known set of
discrete-time uncertainties. In a pipelined sensing control, the additive uncertainties originate from
the dynamic system in the continuous-time domain, whereas its impact has to be analysed on the
discrete-time pipelined controller. Therefore, a strategy to discretize a model with uncertainties
is required. Strategies to compute discrete-time approximations of the uncertain matrices are
found in using the Chebyshev quadrature [34], switched systems [15] or first order forward
Euler approximations [21, 24, 37]. However, these strategies correspond to approximations which
might not accurately represent the continuous-time system. In pipelined control, each resource
configuration varies the sampling period generating different discrete-time uncertainties. The above
approximations might not produce enough difference between resource configurations, making
them not suitable for this application. Taylor series have been used in [5] to discretize continuous-
time uncertainty using the first i terms of the series. The resulting model is a homogeneous
polynomial of degree i . Increasing i in the series expansion leads to a higher accuracy in the
discretization at the cost of a more complex discrete-time model. This technique might be applicable
to pipelined control; however the resulting homogeneous polynomials are not commonly used
in discrete-time robustness analysis techniques. We present a technique to benchmark additive
bounded discrete-time uncertainties, that eases the robustness analysis.

The combined effect of delay and discrete-time bounded uncertainties on discrete-time controllers
has been analysed following two approaches: predictor output [11, 13, 28] or static feedback [13, 40].
Predictor output approaches use an estimate of the system output after the delay to compute the
controller output. Static feedback approaches include the delay in the discrete-time model to
compute the controller output. The pipelined controller designed in [30] corresponds to a static
feedback approach. Static feedback literature with additive uncertainties has reported a control
design strategy in the presence of constant and variable time delay in [40] and an uncertainty
maximization technique with variable time-delay for a given controller in [13]. In this paper, we
apply the static feedback technique to pipelined systems which have discretized time-variant
norm-bounded uncertainty. We analyse the effect of model uncertainties on the trade-off between
processing resources and QoC in a performance-oriented design, while meeting a robustness
constrain. We also develop a robustness-oriented pipelined controller design.

3 PIPELINED CONTROL

This section describes the state-of-the-art pipelined control strategy. To this end, we start with a
motivational example of a system that can potentially benefit from pipelined control. Then, the mod-
elling strategy of [29] and the performance-oriented control design strategy of [30] are explained
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and applied to this example. If these strategies are applied to multiple resource configurations, the
trade-off between the number of pipes and settling time can be analysed.

3.1 Example of pipelined control design

We use as a motivational example, the dynamic model presented in [30]. Consider a control
application with two states x = [x1 x2]

T , one input u = u1, one output y = x1, and the following
matrices:

Ac =

[
0 1.7
−9 −2.5

]
,Bc =

[
0
10

]
,C = [1 0] (1)

with Ac , Bc , and Cc the nominal state, input, and output matrices respectively. A camera and an
image-processing algorithm form a sensor for measuring the states x1 and x2. The total sensor-
to-actuator delay (using worst-case execution times) is τ = 0.084 s . The open loop step response
has a rise time of Rt = 0.337 s and a settling time of St = 2.810 s . This second order system could
represent, for example, the speed change of a motor driving a conveyor belt in an assembly line. The
image-processing algorithm could be a Hough transform algorithm which recognizes the objects
moving on the conveyor belt.
The sensing configurations shown in Fig. 1 are used to design two controllers with different

resource configurations: one with a sequential implementation and one with a two-cores pipelined
implementation. Ideally, the sampling period of the system is chosen such that the transient response
of the system is sufficiently sampled. For example, the system rise time can be used to approximate
the sampling period [31, Chapter 2.9]: h ≈

Rt
10 . However, due to the large τ , the minimum feasible

sampling period in a sequential configuration is h = τ = 0.084 s . With a two sensing cores pipelined
configuration, the extra sensing information can be used to decrease the sampling period up to
h = τ/2 = 0.042 s . The system response from both controllers is shown in Fig. 2. The pipelined
controller shows a settling time significantly shorter than the sequential implementation. Notice
that the system response remains at zero in both controllers till the elapsed time is larger than τ .
This is because the image-processing algorithm has not delivered the first output; therefore no
sensing information is available to the controller.

3.2 Modelling pipelined systems

This subsection summarizes the modelling strategy presented in [29] for performance-oriented
pipelined sensing controllers.

Given the continuous-time system with sensing-to-actuating delay τ :

Ûx(t) = Acx(t) + Bcu(t), t ∈ [kh + τ , (k + 1)h + τ ) (2)
y(t) = Ccx(t)

where Ac ∈ Rn×n , Bc ∈ Rn , and Cc ∈ R1×n are state, input, and output matrices, x ∈ Rn and
u ∈ R are state and input vectors and k = {0, 1, 2, . . .}. u(t) is piecewise constant in the intervals
t ∈ [kh + τ , (k + 1)h + τ ]. τ is a constant sensor-to-actuator delay. h is the sampling period.

For a resource configuration with γ sensing cores, the sampling period is defined by:

h =
τ

γ
. (3)

Such a sampling period produces a discrete-time pipelined system of the form:

z((k + 1)h) = Φdz(kh) + Γdu(kh), (4)
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with z ∈ R(n+γ ) the augmented state vector, Φd ∈ R(n+γ )×(n+γ ) and Γd ∈ R(n+γ ) the nominal
augmented discrete-time state and input matrices respectively. The augmented state is defined by:

z(kh) =
[
xT (kh) u((k − γ )h) u((k − γ + 1)h) · · · u((k − 2)h) u((k − 1)h)

]T
. (5)

The discrete-time input and state matrices are defined by:

Φd =


Ad Bd 0n×(γ−i)

0(γ−i)×n 0(γ−i)×i I(γ−i)×(γ−i)
0i×n 0i×i 0i×(γ−i)

 , Γd =


0n×i
0(γ−i)×i
Ii×i

 (6)

with Ad ∈ Rn×n and Bd ∈ Rn×i the discretized Ac and Bc respectively with sampling period h.
Computing Ad and Bd can be done using Taylor series expansion [31].

The control law is defined by:

u(kh) = Kz(kh) + Fr (7)

where K is the feedback gain, F is the feed-forward gain, and r is the constant reference. For the
closed loop representation, we define:

Φcl = Φd + ΓdK (8)

which is used in the robustness analysis of Section 7.

Example 3.1. Using the example pipelined controller of Section 3.1, a resource configuration
with two sensing pipes (γ = 2) results in a sampling period h = 0.042 s and an augmented state
vector z(kh) = [z1(k) z2(k) u((k − 2)h) u((k − 1)h)]T . z1 and z2 are the discrete-time equivalent of
x1 and x2 respectively. The discrete-time augmented matrices are then given by:

Φd =


0.986 0.070 0.015 0
−0.358 0.886 0.397 0

0 0 0 1
0 0 0 0

 , Γd =

0
0
0
1

 .
3.3 Control design and trade-off analysis

This subsection summarizes the method described in [30] for tuning a performance-oriented
controller with pipelined sensing.
To analyse the trade-off between resource usage and QoC, a controller with optimized perfor-

mance has to be tuned for each resource configuration. Performance metrics related to the response
of the controller (e.g. tracking velocity, settling time) are of interest in many real-life applications,
e.g. [22, 23, 29]. We consider the settling time as a performance metric, because it is relevant in
most real-time control applications. We then define our QoC performance as:

QoC =
1
St

where St is the controller settling time. Settling time is considered as the time that the system
output takes to reach and stay within a bound of 2% around the reference r , when a reference
change occurs. The feedback gain K of Eq. 7 is designed using the well known Linear Quadratic
Regulator (LQR). LQR finds a K that minimizes the quadratic cost:

J = min
∞∑

kh=0
zT (kh)Hz(kh) + uT (kh)Ru(kh) (9)

with H ∈ R(n+γ )×(n+γ ) and R ∈ R, the state and input weight matrices of the LQR, which are
symmetric positive semi-definite and positive definite matrices respectively, i.e. H = HT ≽ 0 and
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R = RT ≻ 0 [25]. The feed-forward gain F of Eq. 7 can then be designed according to a set-point
regulation equation [29]:

F =
[
K I

] [Φd − I Γd
C 0

]−1 [0
I

]
Finding F can be straightforwardly done once K is available. However, for finding K , note that

the cost function of Eq. 9 gives a controller which is optimal with respect to J in terms of the tuning
parameters H and R; this does not necessarily mean that it has the shortest settling time. Finding
H and R that minimize the settling time is referred to as LQR tuning.

In [30] and this work, PSO is used to tune an LQR for minimum settling time. A PSO algorithm
employs a swarm ofm particles Xq , with q = 1 . . .m to explore the design space of a problem in
order to minimize a fitness metric. In this case, the design space corresponds to the values of H and
R and the fitness metric corresponds to the controller settling time. The challenge arises because H
and R have to remain positive (semi-) definite while they are explored by the PSO algorithm. To
address this, the PSO algorithm presented in [30] uses two intermediate matrix variables Ψq and
Ωq to define the swarm i.e. Xq = [Ψq Ωq]. The tuning parameters satisfy:

Hq = ΨT
q Ψq,Rq = ΩT

q Ωq (10)

Eq. 10 guarantees that Hq and Rq are positive (semi-) definite. PSO can then be used to find the
values of Ψq and Ωq that minimize the settling time for a resource configuration. This tuning
technique can be applied to multiple resource configurations in order to find the number of pipes
that still gives a meaningful improvement on QoC i.e., an improvement that has an impact on
application performance.

Example 3.2. Following Example 3.1, the PSO particle swarm population is defined by:

Xq =
[
Ψ11q Ψ12q Ψ13q Ψ14q . . .Ψ44q Ω1q

]
where

Ψq =


Ψ11q . . . Ψ14q
...

. . .
...

Ψ41q . . . Ψ44q

 ,Ωq = Ω1q

The PSO algorithm can then explore Ψq and Ωq that minimize the settling time. In this example,
we use a swarm withm = 100 particles, resulting in a settling time St = 123.5ms and controller:

K =
[
−30.9 −7.3 −2.7 −1.9

]
, F = 36.1.

PSO is applied to multiple resource configurations to analyse the trade-off between processing
resources and settling time shown in Fig. 3. This figure shows that each newly added pipe reduces
the settling time. We consider a reduction of the settling time of at least 2 ms meaningful. The
improvement from five to eight pipes is less , which suggests four pipes as the resource configuration.

The method discussed in this subsection is used to explore the trade-off between the number of
pipes and settling time. However, in most applications it is common to have modelling uncertainties,
which combined with the pipelined delay potentially affect the system stability and the trade-off
analysis. It is then necessary to analyse the robustness of the designed controller.

4 OVERVIEW OF THE PROPOSED DESIGN FLOW

To analyse the robustness of a performance-oriented pipelined controller or to design a robustness-
oriented controller, the following design flow is proposed, clarified in Fig. 4.
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(1) Discretize model: given a continuous-time nominal dynamic model, a sensing delay, and a
set of resource configurations (i.e. the number of sensing cores used), a discrete-time nominal
pipelined model is found for each resource configuration (as outlined in Section 3.2).

(2) Performance-oriented controller design: given the discrete-time nominal pipelined mod-
els for each resource configuration. We propose to use PSO to tune a controller with minimum
settling time as an optimization objective (as outlined in Section 3.3). Note that the controller
is designed using the nominal plant. We subsequently analyse if the designed controller is
robust against given uncertainties in step four.

(3) Benchmark uncertain model: given continuous-time additive uncertainties for the dy-
namic model, the set of resource configurations, and the sensing delay, discrete-time additive
uncertainties are found for each resource configuration. Section 5 presents a discrete-time
pipelined uncertain model while Section 6 describes the benchmarking of the discrete-time
uncertainties. The benchmarking for the basis for analysis (Steps (4) and (5)) or design (Step
(6))If a robustness-oriented pipelined controller is desired, step six is implemented. If the

Discretize model
In: model Ac , Bc

resource configuration γ
sensing delay τ

Out: for each γ :
z((k + 1)h) = Φd z(kh) + Γdu(kh)

Benchmark uncertain model
In: model ∆Ac , ∆Bc

resource configuration γ
sensing delay τ

Out: for each γ :
Uncertainty matrix ∆Φd

Performance-oriented controller design
In: for each z((k + 1)h) = Φd z(kh) + Γdu(kh)
Out: for each γ :

controller K ,F
minimum settling time St

Robustness analysis of performance-oriented control
In: Φd , ∆Φd , K
Out: for each γ :

a maximal α such that
z((k + 1)h) = (Φd + α∆Φd )z(kh) + Γdu(kh)
is stable

Robustness-oriented control design
In: Φd ,∆Φd , Γd
Out: for each γ :

a K , F such that α is maximal

Trade-off analysis
In: for each γ :

St , α
Out: a γ such that St is meaningfully

improved while meeting a
requested α

Fig. 4. Overview of the proposed design flow.
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robustness analysis of a performance-oriented control is desired, steps four and five are
applied.

(4) Analyse robustness of performance-oriented control: given the discrete-time controller,
nominal and uncertain model, we analyse the robustness of each resource configuration. To do
so, we parametrize the uncertainties as a scalar α , which is maximized for guaranteed stability.
Section 7.1 presents basic control robustness theorywhile the details of the robustness analysis
are presented in Section 7.2.

(5) Trade-off analysis: given the settling times and the robustness analysis (i.e. an α ) for each
resource configuration, a resource configuration is chosen such that the settling time is still
meaningfully improved while a robustness constraint (i.e. a minimum desired α ) is met.
Section 8 shows a detailed example of this analysis.

(6) Robustness-oriented control design: given the discrete-time uncertain pipelined model, a
controller is designed with maximal robustness for each resource configuration. To do so, we
find controllers that maximize the parametrized scalar α . Details of are given in Section 7.3.

5 MODELLING PIPELINED SYSTEMSWITH UNCERTAINTIES

To perform a robust analysis of the discrete-time pipelined controller, the model with uncertainties
has to be first discretized. To do so, this section describes the discretization of continuous-time
bounded additive uncertainties. The resulting discrete-time uncertainties are augmented according
to the structure of pipelined systems.

5.1 Continuous-time model with additive uncertainties

Consider that the continuous-time system described in Eq. 2 contains additive uncertainties:

Ûx(t) =Āc (t)x(t) + B̄c (t)u(t), t ∈ [kh + τ , (k + 1)h + τ ) (11)

where:

Āc (t) = Ac + ∆Ac (t), B̄c (t) = Bc + ∆Bc (t), (12)

with Ac , Bc , Cc , x(t), u(t) were introduced in the model of Eq. 2. ∆Ac (t) ∈ R
n×n , ∆Bc (t) ∈ Rn are

continuous-time time-varying model uncertainties.

5.2 Discrete-time equivalent of continuous-time uncertainties

Discretizing Eq. 11 with sampling period h and sensor-to-actuator delay τ using Eq. 3, we obtain,

x((k + 1)h) = (Ad + ∆Ad (kh))x(kh) + (Bd + ∆Bd (kh))u((k − γ )h), (13)

where Ad ∈ Rn×n , Bd ∈ Rn are as per Eq. 6 while ∆Ad (kh) ∈ R
n×n and ∆Bd (kh) ∈ R

n are the
resulting discretized time-varying model uncertainties. The benchmarking of the time-varying
matrices is later explained in Section 6.

5.3 Augmented model for the pipelined system with uncertainties

First, we define the augmented states using Eq. 5. Considering the discretized model in Eq. 13, we
obtain the following augmented system:

z((k + 1)h) = Φ̄d (kh)z(kh) + Γdu(kh) (14)
y(kh) = Cdz(kh), (15)

with
Φ̄d (kh) = Φd + ∆Φd (kh),

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: June 2018.
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where Φd and Γd were defined in the model of Eq. 6. ∆Φd (kh) is the discrete-time augmented
uncertainty matrix given by:

∆Φd (kh) =

[
∆Ad (kh) ∆Bd (kh) 0n×(γ−1)

0γ×n 0γ×1 0γ×(γ−1)

]
, (16)

where I and 0 denote identity and zero matrices of appropriate dimensions. Note that Γd is not
influenced by the model uncertainties.

5.4 Structure of the model uncertainties

Model uncertainties considered in this work are norm-bounded and of the following form:

∆Φd (kh) = αDG(kh)E (17)

D ∈ R(n+γ )×n , E ∈ Rn×(n+γ ) are known constant matrices while G(kh) ∈ Rn×n is an uncertain
time-varying matrix:

GT (kh)G(kh) ≤ I . (18)

α ∈ R+ is a positive constant which is used as a scaling factor later in the design. A greater α
implies higher robustness.

The method presented in this section provides a strategy to model discrete-time norm bounded
additive uncertainties in pipelined systems. The resulting discrete-time uncertainties are then used
to analyse the system robustness in Section 7.

6 BENCHMARKING THE MODEL UNCERTAINTY

The structure of the model uncertainties described in Section 5.4 requires knowledge of the constant
matrices D ∈ R(n+γ )×n , E ∈ Rn×(n+γ ) and the time-varying matrixG(kh) ∈ Rn×n as shown in Eq. 18.
It can be noted from Theorem 7.5 (Robustness analysis) and Theorem 7.7 (Robust design) presented
later that the choice for the D and E matrices influences the analysis outcome. Intuitively, these two
matrices define the boundaries of the uncertainty matrix ∆Φd (kh). In the following subsections,
we benchmark these matrices based on the boundaries of the uncertainty matrix.

6.1 Uncertainty bound

The time-varying uncertainty ∆Φd (kh) described in Section 5.4 has a constraint given by
GT (kh)G(kh) ≤ I . Notice that this constraint also implies that | |G(kh)| | ≤ 1. We derive the upper
bound on the uncertainty as:

| |∆Φd (kh)| | = | |αDG(kh)E | |

| |∆Φd (kh)| | ≤ | |α | | | |D | | | |G(kh)| | | |E | | ≤ | |α | | | |D | | | |E | |

| |∆Φd (kh)| | ≤ | |α | | | |D | | | |E | |. (19)

Eq. 19 provides an upper bound on the maximum norm of uncertainties that can be tolerated by
the analysis and design method presented in the next section. This upper bound depends on α , D,
and E. α is maximized during the optimization analysis to obtain the maximal upper bound on the
uncertainties. D and E are constant matrices that need to be computed before the optimization
procedure. Note that an incorrect selection of these matrices (e.g. matrices with smaller norm than
the real one) can be compensated by α during the optimization analysis to obtain the maximal
upper bound. For example, for a D and E with a smaller norm, a larger α should be found. In the
following subsections, we propose an estimation technique to select D and E.
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6.2 Selection of D and E

Let us define the terms∆Ad ,wc and∆Bd ,wc in Eq. 16, as the∆Ad (kh) and∆Bd (kh)with themaximum
norm over the range of uncertainty under consideration:

| |∆Ad ,wc | | = max
k

| |∆Ad (kh)| |,

| |∆Bd ,wc | | = max
k

| |∆Bd (kh)| |. (20)

Obviously, ∆Ad ,wc and ∆Bd ,wc are dependent on ∆Ac (t) and ∆Bc (t). We propose the following
structure of the D and E matrices,

D =

[
In×n
0γ×n

]
, E =

[
∆Ad ,wc ∆Bd ,wc 0n×(γ−1)

]
. (21)

Including the definition of D and E of Eq. 17, we obtain:

∆Φd (kh) = αDG(kh)E =

[
αG(kh)∆Ad ,wc αG(kh)∆Bd ,wc 0n×(γ−1)

0γ×n 0γ×1 0γ×(γ−1)

]
, (22)

Eq. 22 defines the terms ∆Ad (kh) and ∆Bd (kh) in Eq. 16. Eq. 22 further depends on ∆Ad ,wc and
∆Bd ,wc which are benchmarked in the following.

6.3 Computation of ∆Ad ,wc and ∆Bd ,wc

In practice, computation of exact ∆Ad ,wc and ∆Bd ,wc is hard since it requires evaluation of all
(infinitely many) possible combinations of ∆Ac (t) and ∆Bc (t). We therefore rely on an experimental
method for a restricted class of model uncertainty for benchmarking. We consider the case where
only one element of ∆Ac (t) and ∆Bc (t) is non-zero with given minimum and maximum values.
That is, the uncertain element a(t) of ∆Ac (t) is bounded by amin ≤ a(t) ≤ amax . Similarly, the
uncertain element b(t) of ∆Bc (t) is bounded by bmin ≤ b(t) ≤ bmax . For this case, we benchmark
| |∆Ad ,wc | |, | |∆Bd ,wc | | as:

| |∆Ad ,wc | | = max | |∆Ad | |,
a ∈ {amin,amax }

| |∆Bd ,wc | | = max | |∆Bd | |
a ∈ {amin,amax }

b ∈ {bmin,bmax }

(23)

where ∆Ad and ∆Bd are constant discretized uncertainties which are computed with the following
two propositions. These propositions require constant ∆Ac and ∆Bc i.e. constant values of a, b.
Therefore, we assign constant values to a and b in the range amin ≤ a(t) ≤ amax , bmin ≤ b(t) ≤
bmax to obtain a set of ∆Ad , ∆Bd . We then select ∆Ad ,wc and ∆Bd ,wc using Eq. 23.

Proposition 6.1. Computation of ∆Ad for a given ∆Ac : Consider the uncertain systems in
Eq. 11 and Eq. 13. A constant ∆Ad for a given ∆Ac is computed by:

∆Ad = e(Ac+∆Ac )h − eAch (24)

Proposition 6.2. Computation of ∆Bd for given ∆Ac and ∆Bc : Consider the uncertain systems
in Eq. 11 and Eq. 13. ∆Bd for constant ∆Ac and ∆Bc is computed by:

Bd =

∫ h

0
e(Ac+∆Ac )s (Bc + ∆Bc )ds −

∫ h

0
e∆Ac s (∆Bc )ds (25)
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Example 6.3. Using the example of Section 3.1, we define the uncertainties as:

∆Ac (t) =

[
0 0
0 a(t)

]
,∆Bc (t) =

[
0

b(t)

]
where

−0.05 ≤ a(t) ≤ 0.05
−0.2 ≤ b(t) ≤ 0.2

a(t) and b(t) correspond to an uncertainty of 2% in one parameter in the nominal matrices. Propo-
sitions 6.1 and 6.2 are used to find one ∆Ad and one ∆Bd for a range of constant continuous-time
uncertainties ∆Ac (t) and ∆Bc (t). The continuous-time uncertainties that produce the discrete-time
matrices with the largest norm are:

∆Ac =

[
0 0
0 50

]
× 10−3,∆Bc =

[
0

200

]
× 10−3 (26)

The uncertainties with the worst-case norm are then:

∆Ad ,wc =

[
−9.3 72.7
−370.8 1879

]
× 10−6,∆Bc ,wc =

[
312.3
8379.3

]
× 10−6

For the case of two pipes (γ = 2), then we use Eq. 21:

E =

[
−9.3 72.7 312.3 0
−370.8 1879 8379.3 0

]
× 10−6,D =


1 0
0 1
0 0
0 0


7 ROBUSTNESS OF PIPELINED SYSTEMS

We use a control law of the form shown in Eq. 7. The gains K and F need to be analysed or
redesigned for the model with uncertainties described in Section 5.4 for guaranteeing closed-loop
stability. Note that F does not influence stability but it is important for performance benchmarking
experiments which are performed for a given robust feedback gain K . In the following, we focus
on analyzing and/or designing feedback gain K with respect to the model uncertainties described
above to guarantee closed-loop stability.

Using u(kh) = Kz(kh), the closed-loop model for the system Eq. 14:

z((k + 1)h) = Φ̄cl (kh)z(kh) (27)

with Φ̄cl ∈ R
(n+γ )×(n+γ ) given by

Φ̄cl (kh) = Φcl + ∆Φd (kh), (28)

where Φcl is the nominal closed-loop system further given by

Φcl = Φd + ΓdK . (29)

In the following, we focus on the following questions:
• Robustness analysis for a performance-oriented controller: given a feedback gain K
that stabilizes the nominal closed-loop system in Eq. 29, find the maximum α for which
closed-loop stability of the uncertain system in Eq. 27 can be guaranteed.

• Robustness-oriented controller design: design a feedback gainK maximizing α such that
closed-loop stability of the uncertain system in Eq. 27 can be guaranteed.
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To analyse robustness or redesign a pipelined control system against additive norm-bounded
time-varying uncertainties, Lemmas 7.1 to 7.4 bellow are needed. Then, Theorem 7.5 presents a
robustness analysis technique for an already designed controller and Theorem 7.7 presents a robust
control design technique. These theorems are adapted from [13, 40] to pipelined systems.

7.1 Preliminary lemmas

Lemma 7.1. [43] Given the constant matrices Θ,Λ and Ξ of appropriate dimensions with Θ = ΘT ,
and the time-varying matrix G(kh), the following inequality holds:

Θ + ΛG(kh)Ξ + (ΛG(kh)Ξ)T ≺ 0
for all G(kh) satisfying GT (kh)G(kh) < I , if and only if there exists a scalar ϵ ∈ R+ such that

Θ + ϵ−1ΛΛT + ϵΞTΞ ≺ 0.

Lemma 7.2. Schur complement [46]: Given the matrices M , L, and P , with M = MT , and the
positive definite matrix P = PT ≻ 0, the matrix inequality M + LT P−1L ≺ 0 can be rewritten in the
following form: [

M LT

L −P

]
≺ 0. (30)

Lemma 7.3. Discrete-time stability [32, Chapter 23]: The system in Eq. 27 is stable if there
exists a positive definite matrix P ∈ R(n+γPC )×(n+γPC ) such that the following inequality holds for all
Φ̄cl (kh):

Φ̄Tcl (kh)PΦ̄cl (kh) − P ≺ 0.

Finally, we introduce Lemma 7.4 since it is shown to be less conservative than Lemma 7.3 in
[8, 12].

Lemma 7.4. [12] The system in Eq. 27 is stable if there exist a matrix O ∈ R(n+γPC )×(n+γPC ) such
that O = OT ≻ 0 (i.e., positive definite), and a matrix V ∈ R(n+γPC )×(n+γPC ) such that[

O Φ̄cl (kh)V
(Φ̄cl (kh)V )T VT +V −O

]
≻ 0, (31)

for all Φ̄cl (kh).

7.2 Robustness analysis for performance oriented controller

The following theorem finds the maximum scalar α that stabilizes the system of Eq. 27 with a given
feedback gain K . α is therefore used to quantify the controller robustness for a particular resource
configuration. A larger α implies a higher system robustness.

Theorem 7.5. Robustness analysis:Consider the closed-loop uncertain system (27) where Φ̄cl (kh) ∈
R(n+γ )×(n+γ ), the nominal closed-loop system (29) is stable and ∆Φd (kh) ∈ R

(n+γ )×(n+γ ) is given by
Eq. 17 and Eq. 18 with known matrices D ∈ R(n+γ )×n , E ∈ Rn×(n+γ ). The system in Eq. 27 is stable if
there exist a positive definite matrixO ∈ R(n+γ )×(n+γ ), a matrixV ∈ R(n+γ )×(n+γ ), and a scalar λ ∈ R+

that

minimize σ

subject to


−O λD −ΦclV 0
λDT −σλI 0 0

−(ΦclV )T 0 O −V −VT (EV )T

0 0 (EV ) −λI

 ≺ 0

with σ = α−2.
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Proof. For stability of system (27), we start with using Lemma 7.4:[
O Φ̄cl (kh)V

(Φ̄cl (kh)V )T VT +V −O

]
≻ 0

Substituting Φ̄cl (kh) in Eq. 28, using Eq. 17 and multiplying by −1 yields:[
−O −ΦclV − αDG(kh)EV

−(ΦclV )T − α (DG(kh)EV )T O −V −VT

]
≺ 0

⇒

[
−O −ΦclV

−(ΦclV )T O −V −VT

]
+

[
0 −αDG(kh)EV
0 0

]
+

[
0 0

−α (DG(kh)EV )T 0

]
≺ 0

Double transposing the third matrix above yields:[
−O −ΦclV

−(ΦclV )T O −V −VT

]
+

[
0 −αDG(kh)EV
0 0

]
+

[
0 −αDG(kh)EV
0 0

]T
≺ 0

Decomposing the second and third matrices gives:[
−O −ΦclV

−(ΦclV )T O −V −VT

]
+

[
−αD

0

]
G(kh)

[
0 EV

]
+

{[
−αD

0

]
G(kh)

[
0 EV

]}T
≺ 0

Applying Lemma 7.1, we obtain:[
−O −ΦclV

−(ΦclV )T O −V −VT

]
+ ϵ−1

[
−αD

0

] [
−αDT 0

]
+ ϵ

[
0

(EV )T

] [
0 EV

]
≺ 0

Note that in the above condition, the second and third element capture the influence of the
uncertainty on the overall system stability. These terms depend on the free matrices D, E, and
V . Therefore it is not possible to generalize their negative or positive definiteness. The first term
captures the influence on the stability of the nominal closed-loop system. Since the closed-loop
nominal system is stable, this term must be negative definitive as shown in Lemma 7.4. Further,[

−O −ΦclV
−(ΦclV )T O −V −VT

]
+

[
ϵ−1α2DDT 0

0 0

]
+

[
0 0
0 ϵ(EV )T EV

]
≺ 0

⇒

[
−O + ϵ−1α2DDT −ΦclV

−(ΦclV )T O −V −VT + ϵ(EV )T EV

]
≺ 0 (32)

Applying the Schur complement (Lemma 7.2) with respect to the term −O + ϵ−1α2DDT :


−O ϵ−1D −ΦclV

ϵ−1DT −ϵ−1α−2I 0
−(ΦclV )T 0 O −V −VT + ϵ(EV )T EV

 ≺ 0

Applying the Schur complement on the term O −V −VT + ϵ(EV )T EV :
−O ϵ−1D −ΦclV 0

ϵ−1DT −ϵ−1α−2I 0 0
−(ΦclV )T 0 O −V −VT (EV )T

0 0 EV −ϵ−1I

 ≺ 0
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Defining λ = ϵ−1 and σ = α−2, the above is equivalent to Theorem 7.5 completing the proof. By
finding the minimum σ satisfying the above LMI, we obtain the maximum α (scaling factor of
robustness). �

Note that in Theorems 7.5 and 7.7, minimizing σ maximizes α , which means that the uncertainties
that can be handled are also maximized.

Remark 1. The conditions shown in Theorem 7.5 (and also Theorem 7.7) correspond to a non-linear
matrix inequality due to the multiplication of the terms σ and λ. However, assuming a value of λ > 0,
the conditions are simplified to a Linear Matrix Inequality. Therefore, we assign different values to λ
between a small number (e.g. 100× 10−27) and a large number (e.g. 10) that produce a feasible solution.
We solve each of the resulting optimization problems and we then report the largest α . This strategy
does not guarantee that the found α is optimal due to the discretization of the design space of λ.

Remark 2. Applying the Schur complement (Lemma 7.2) to one element of a block matrix (e.g.
Eq. 32) divides one element into four new elements. As a result, a new row and a new column are
created inside the matrix inequality which are filled by the newly created elements and zeros. The
organization of such elements might differ as long as they are placed according to the symmetry of the
matrix inequality. It is possible to prove that two matrix inequalities L1 and L2 with elements placed
symmetrically in different positions are equivalent by finding a transformation matrix F such that
FTL1F = L2.

Example 7.6. Consider the model from Example 3.1, the controller from Example 3.2, and the
following uncertainties:

E =

[
−9.3 72.7 312.3 0
−370.8 1879 8379.3 0

]
× 10−6,D =


1 0
0 1
0 0
0 0

 .
The E and D matrices are benchmarked with the procedure explained in Section 9. Consider also
that the minimum robustness required for this example is α ≥ 1. This implies that the controller
can tolerate uncertainties at least larger than the product of E and D. The optimization problem of
Theorem 7.5 is then formulated.

Using Remark 1, the optimization problem is converted into a set of Linear Matrix Inequalities.
The modelling tool Yalmip [26] together with the convex optimization software SDPT3 [35] are
used to solve the optimization problem. As a result, α = 7.7 is found for γ = 2. Given that α ≥ 1,
the robustness constraint of our problem is met for two pipes.

7.3 Robustness-oriented pipelined controller design

The following theorem finds the feedback gain K that maximizes the scalar α , while guaranteeing
the stability of Eq. 27. Like in the previous case, a larger α implies a more robust controller.
Theorem 7.7. Robust controller design: Consider the closed-loop uncertain system (27) where

Φ̄cl (kh) ∈ R
(n+γ )×(n+γ ) and ∆Φd (kh) are given by Eq. 17 and Eq. 18 with knownmatricesD ∈ R(n+γ )×n ,

E ∈ Rn×(n+γ ). A robust feedback gain K ∈ R1×(n+γ ) exists if there exist a positive definite matrix
O ∈ R(n+γ )×(n+γ ), matrices V ∈ R(n+γ )×(n+γ ) and Vk ∈ R1×(n+γ ), and scalar λ ∈ R+ that

minimize σ

subject to


−O λD −ΦdV − ΓdVk 0
λDT −σλI 0 0

−(ΦdV + ΓdVk )
T 0 O −V −VT (EV )T

0 0 (EV ) −λI

 ≺ 0
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Fig. 5. Robustness analysis of motivational example.

with Vk = KV and σ ∈ R+ and K = VkV −1.

Proof. The proof follows the steps of Theorem 7.5 using the definition of Φcl (Eq. 29) and
Vk = KV . The details are therefore omitted. The invertibility of V is implied because from the
matrix inequality it can be deduced that V + VT ≻ O ≻ 0, which means that V is full rank and
therefore invertible. �

8 ROBUSTNESS EXAMPLE OF PIPELINED SYSTEMS

The robustness analysis procedure of Section 7 shows to quantify the robustness of a pipelined
controller by means of the scalar α . However, in pipelined control, each resource configuration has
a different discrete-time uncertainties model. Therefore, the robustness analysis of a performance-
oriented controller or the design of a robustness-oriented controller has to be repeated for each
resource configuration to be considered. This procedure allows for the performance-oriented design
to select a resource configuration that improves QoC while meeting a robustness requirement (i.e.
minimum α ). For the robustness-oriented control design it allows to select a resource configuration
that provides a controller with maximized robustness. This is best explained by means of the
following examples:

Example 8.1. Robustness analysis of performance-oriented controller: continuing with
Example 7.6, the robustness analysis is applied to a range of resource configurations from one
to eight pipes i.e. γ = 1, . . . , 8. Fig. 5 shows the maximum α found in each one of the resource
configurations. Taking into account that the robustness requirement is α ≥ 1, we observe the
following from Fig. 5:

• From Example 3.2 it was concluded that the resource configuration that gives a meaningful
improvement on QoC is four pipes. However, the robustness constraint is only met in the
resource configurations γ = 1, . . . , 3 with α ≥ 1. Therefore, the resource configuration
that gives a meaningful improvement on settling time while guaranteeing the robustness
constraint is three pipes.

• Each newly added pipe decreases the maximum α that the controller can tolerate, because
increasing the number of pipes produces a more aggressive controller response, which is
more likely to become unstable with model uncertainties.

• Only a 2% uncertainty in one of the elements of the model matrices has a major impact on
the overall system robustness. This is because the Bc matrix has only one non-zero element.
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Table 1. Settling times (ms) of motivational example with different values of uncertainties

Number ∆Ac(2,2) = 0 ∆Ac(2,2) = −0.0025, ∆Ac(2,2) = 0.0025
of pipes ∆Bc(2,1) = 0 ∆Bc(2,1) = 0.010 ∆Bc(2,1) = −0.010

1 222.2 247.5 313.5
2 153.2 165.8 198.7
3 130.5 138.0 161.8
4 119.3

robustness constraint not met, i.e. α < 1
5 111.9
6 107.5
7 104.1
8 101.8

An uncertainty in such an element directly affects the amount of energy that the controller
inputs to the dynamic system, affecting the stability of the system.

• The controller design of Section 3.3 optimizes QoC for a nominal system. However, the un-
certain part of the system may deteriorate the QoC. Since the exact value of the uncertainties
is not known but only a range, the settling time varies for different values of uncertainties.
Table 1 shows an example of such performance deterioration. We used constant continuous-
time uncertainties to benchmark these values. The settling time increases with the model
uncertainties. However, the best performance is still achieved with the highest number
of pipes. The settling times of the systems with uncertainties and resource configurations
γ = 4 . . . 8 are not shown because α < 1 (meaning the robustness constraint is not met).

Example 8.2. Robustness-oriented pipelined control design A controller that maximizes α
is designed using Theorem 7.7. Fig. 6 shows the resulting α when the initial uncertainty shown in
Example 6.3 was increased to 50%. We observe the following from the graphs:

• The maximal α that the system can tolerate increases with the number of pipes, which
potentially means that the robustness of the pipelined controller increases with each newly
added pipe when designed for maximal robustness.

• The new values of α are significantly larger than the values found with Theorem 7.5, which
means a more robust controller is obtained. However, the increased robustness comes at the
cost of performance deterioration. For example, in the nominal system with one sensing
pipe, the settling time of a controller designed for robustness (using Theorem 7.7) is 2s , while
using the PSO algorithm and not considering the uncertainties in the controller design gives
222ms .

• The controller resulting from Theorem 7.7 is mostly interesting for systems with large
uncertainties, where performance-oriented designs may not be feasible. For example, in ADAS
uncertainties originated from changing traffic conditions. There, a more robust controller
is desired since it increases vehicle safety. The most robust controller corresponds to the
hardware configuration with the largest number of pipes.

9 FEASIBILITY STUDY

9.1 Overview

In this section, we demonstrate the effectiveness of a performance-oriented pipelined control using
Hardware-In-the-Loop (HIL) simulation. This simulation consists of emulating the plant behaviour
implementing the controller and the model in independent embedded hardware, such that there is
an exchange of electrical signals between the plant and the controller (see [3, 16],[27, Chapter 14]
and the references therein).

HIL offers the possibility of studying the behaviour of the pipelined controller in a more realistic
scenario, e.g. when multiple processing resources exchange their previous controller output to
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Fig. 6. Robustness analysis including the control design.

compute new controller outputs, or changing the nominal model of the system to evaluate the
impact of model uncertainties in the controller.

We subdivide this section in five parts. We introduce an application where pipelined systems can
be of benefit. We then present a reconfigurable platform suitable for HIL implementation. Next we
describe our HIL simulation. We then apply the design flow of Section 4 considering the available
hardware and the presented example. We finally present some results of our HIL simulation.

9.2 Plant description and model

We consider an example of an assembly line like the xCPS system shown in Fig. 7a [1]. This kind of
system mimics the behaviour of complex machines such as assembly lines or wafer scanners, in
which data-intensive algorithms (e.g. image-processing) are used as sensors in control loops.

In xCPS, the speed of assembly objects travelling on the belt has to be regulated such that the
objects move slow when they have to be processed by one of the actuators in front of the belts, and
fast when they have to travel between actuators. The conveyor belt rotation speed ω is controlled
by a continuous-time PI controller. The settling time of such a controller is 20ms . The PI controller
does not receive information about the object speed moving on top of the conveyor belt, but only
about the belt itself. Ideally, both speeds (i.e. belt and object) should be the same, however in practise
due to disturbances (e.g. friction of the block with the belt borders) they might differ. Therefore,
a camera and an image-processing algorithm are used as a sensor of an additional image-based
controller to regulate the block’s speed. The Hough transform for circles is used to recognize the
position of the block on the belt, which is used to estimate the block speed. A schematic of the
system is shown in Fig. 7b. The plant to be controlled by the image-based control is the PI controller
together with the model of the conveyor belt (i.e. the inner loop). The output of the image-based
controller is then used as reference for the PI controller.

Using the worst-case execution time of the image-processing algorithm, the control computation
tasks, and the actuation task, a τ = 90ms latency is introduced to the image-based control loop,
which compared to the 20ms settling time of the inner loop, potentially limits the performance of the
image-based control loop. A pipelined performance-oriented design may improve the performance
of the image-based controller and the system performance.
The conveyor belt is moved by a DC motor. The combined model of such a motor and the PI

controller (i.e. the inner loop) are given by:[
Ûx1
Ûx2

]
=

[
−K2

m −
bm
Jm

−
KpKm
Rm Jm

KmKi
Rm Jm

−1 0

] [
x1
x2

]
+

[
KpKm
Rm Jm

1

]
rP I
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Fig. 7. Plant of feasibility study. (a) Assembly line xCPS. (b) Controller structure of one of the belts.

Table 2. Conveyor belt motor parameters.

Symbol description value units
Km motor electrical constant 1.25 vs/rad

Jm mechanical inertia 17.44 дm2

Rm motor resistance 10.39 Ω
bm viscous friction coefficient 0.58 Nms
Kp controller proportional gain 4.10
KI motor integral gain 166

with
[
x1 x2

]T
=

[
ω

∫
(rP I − ω)dt

]T , ω the belt angular speed, and rP I the reference sent to the
PI controller. The model parameters are shown in Table 2. The resulting matrices are:

Ac =

[
−70.36 1.14 × 103

−1 0

]
,Bc =

[
28.31

1

]
The bm presented in Table 2 corresponds to a nominal value. However, the actual value is

estimated to vary ∆bm = ±0.04 around the nominal bm . This range is caused because the motor is
moving the belt whose friction is unknown but bounded to a range. The bounds on b are used to
create the uncertain matrices:

∆Ac (t) =

[
a(t) 0

0 0

]
,∆Bc (t) =

[
0
0

]
where

−∆bm/Jm ≤ a(t) ≤ ∆bm/Jm

−2.30 ≤ a(t) ≤ 2.30

9.3 HIL simulation

9.3.1 Platform requirements. In order to make a HIL simulation for pipelined control, we need a
platform with multi-core capabilities and a global notion of time. Multiple cores are required to
independently run the controller in a pipelined fashion, as well as the plant model. A global notion
of time is required to trigger the sensing and actuation tasks in each core at precise time instants,
so that it guarantees sensing-to-actuating delay and the pipelined parallelism.
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Fig. 8. Required platform for a three-cores pipelined controller for the system presented in Section 9.2. The

colours follow those of Fig. 1.

Table 3. TDM slots for a three-core implementation on the CompSOC platform.

Table TDM position
position 1 2 3 4 5 6 7 8 9
core 1 S1 S1 S1 S1 S1 S1 S1 C1 A1
core 2 S2 C2 A2 S2 S2 S2 S2 S2 S2
core 3 S3 S3 S3 S3 C3 A3 S3 S3 S3

90ms
30ms

Fig. 8 shows an example of the required platform for running a three-core pipelined controller
in the plant of Section 9.2. The global notion of time allows to trigger a new sensing task every
30ms . The total sensing to actuating latency corresponds to τ (90ms in this case) in all the cores.
Note that the image-processing algorithm latency may be shorter than its worst-case execution
time. Therefore, the global notion of time is used to trigger the actuation tasks as close as possible
to τ seconds after the start of the sensing task, achieving pipelined parallelism.

9.3.2 CompSOC platform. We use CompSOC, a multi-core tile-based architecture [14] as our
implementation platform. In each core, the hardware resources are allocated according to a Time
Division Multiplexing (TDM) table. The TDM tables are synchronized using a global clock, i.e. there
is a global notion of time.

9.3.3 HIL set-up. Our HIL simulation uses the CompSOC platform with one core emulating the
inner loop and one to three core tiles running the pipelined controller.
The core emulating the inner loop runs a discrete-time version of the model discretized at a

sampling rate hp = 500µs . hp satisfies hp << h, implying the plant appears to be continuous from
the controller perspective.

In the cores emulating the pipelined controller the sensing, control computation, and actuation
tasks are assigned to slots in the TDM tables. The task allocation has to guarantee that the time
elapsed between the start of sensing and the end of actuating slots corresponds to τ . The actuation
slot sends the controller input to the plant at the end of the actuation slot to guarantee τ . The task
allocation across TDM tables also needs to guarantee pipelined parallelism, i.e. the start of the
sensing task should be allocated such that pipelined parallelism is achieved. The global clock is
then used to align the TDM tables among the cores.
The image-processing algorithm is not implemented in the HIL because of the lack of actual

images. The latency of the image-processing algorithm is simulated by increasing the number of
slots dedicated to the sensing task. The sensing information is read in the first sensing slot and
delivered to the controller after the last sensing slot.
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Fig. 9. Trade-off analysis without considering model uncertainties.

Table 3 shows an example of the TDM tables of a HIL simulation running three sensing pipes for
the system of Section 9.2. The table length corresponds to τ guaranteeing the sensing-to-actuating
latency. The TDM positions are synchronized among the three tables using the global clock. The
tasks are allocated in such a way that a new sensing task starts every 30ms , guaranteeing pipelined
parallelism.

9.4 Application of the design flow

To find the resource configuration that improves the QoC while guaranteeing a robustness con-
straint. Following Example 7.6, we set the robustness constraint to α ≥ 1. We apply the design flow
of Section 4 for the available core tiles γ = 1 . . . 3. We show the analysis for the case of γ = 3.
Model discretization: Using the procedure explained in Section 3.2 we find a sampling period

h and a discrete-time augmented model Φd , Γd for each resource configuration γ . For the resource
configuration γ = 3, h = 30ms and the model is given by:

Φd =


−0.0099 12.1327 0.5648 0 0
−0.0106 0.7349 0.0203 0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


, Γd =


0
0
0
0
0


Performance-oriented controller design: Using the procedure explained in Section 3.3, we

compute a controller K , F for each resource configuration γ . For γ = 3, the controller is given by:

K =
[
11.24 −2.47 −102.26 −188.94 −432.09

]
× 10−3,

F = 1.803

The resulting trade-off between control performance and resource usage is shown in Fig. 9. In
this case, each added core significantly improves the settling time. Therefore the optimal resource
configuration (without considering the system robustness) is γ = 3.
Uncertain model benchmarking: The procedure explained in Section 6 is applied to the

resource configurations. A pair of uncertainty matrices E,D is found for each resource configuration.
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Fig. 10. Robustness analysis in the feasibility study

The resulting matrices for γ = 3 are:

E =

[
0.0037 0.2779 0 0 0
−0.0002 −0.0042 0 0 0

]
,D =


1 0
0 1
0 0
0 0
0 0


Robustness analysis for performance-oriented control: Applying Theorem 7.5 for the

three considered resource configurations, an α for each resource configuration is found. For the
case of γ = 3, α = 2.77.

Trade-off analysis: Using the α of each resource configuration, Fig. 10 is drawn. Given that all
the resource configurations have α ≥ 1, γ = 3 is chosen as the resource configuration that improves
QoC while guaranteeing a robustness constraint.

9.5 HIL simulation results

We first validate our HIL simulation by comparing it with a Simulink-based simulation. Fig. 11
compares controller responses with three pipes. Both simulations show the same result implying
that our HIL is correct and that pipelined control is feasible. Fig. 11 only shows information every
h steps for the HIL simulation while for the Simulink simulation it shows a continuous line. This is
as expected in a realistic scenario, because the only output information is available when a core
finishes the image-processing algorithm, i.e., every h seconds.
Fig. 12 compares the controller performance using the three available resource configurations.

Every newly added pipe improves the QoC of the system. The resource configuration with three
pipes outperforms the other two, due its higher sampling rate.
The robustness of the pipelined controller is also tested using HIL simulation. We add to the

nominal model a constant uncertainty of a = 1.15. The model is discretized and implemented in
the corresponding core tile. The result is shown in Fig. 13 for γ = 3. The controller is still stable,
although the settling time is increased from St = 118ms in the nominal case to St = 138ms in the
uncertain case.

10 CONCLUSIONS AND FUTUREWORK

We have presented a method to either analyse the impact of uncertain models in performance-
oriented pipelined controllers or to design robustness-oriented pipelined controllers. Our method
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starts with a technique to benchmark discrete-time uncertainties based on continuous-time uncer-
tainties. Such uncertainties are presented in the form of norm-bounded time-variant additive matri-
ces with one uncertain element. Our results show that the robustness of a performance-oriented
pipelined controller decreases with each newly added pipe, because adding sensing resources
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produces a more aggressive response which is more susceptible to modelling errors. Therefore, our
analysis may be used in a performance-oriented design to select a resource configuration that not
only provides performance improvement but also guarantees that a minimum desired robustness is
met. Likewise, our results show that the robustness of pipelined controller can be increased with
each newly added pipe in a robustness-oriented design. Therefore, our method can be used to select
a resource configuration that provides a desired robustness. We presented a Hardware-In-the-Loop
(HIL) simulation to show the feasibility of pipelined control. The HIL simulation validates our
analysis, results, and observations.
As future work, we plan to consider variable sensing delays instead of abstracting them as the

worst-case delay (which may occur rarely). Further, it would be interesting to develop an analysis
for a more general class of uncertainties. Finally, existing design methods for pipelined control may
provide insight whether it is possible to design a controller that improves robustness and control
performance at the same time.
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