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This article presents a modular automaton-based framework to specify flexible manufacturing systems and to

optimize the makespan of product batches. The Batch Makespan Optimization (BMO) problem is NP-Hard and

optimization can therefore take prohibitively long, depending on the size of the state-space induced by the

specification. To tame the state-space explosion problem we develop an algebra based on automata equivalence

and inclusion relations that consider both behaviour and structure. The algebra allows us to systematically

relate the languages induced by the automata, their state-space sizes and their solutions to the BMO problem.

Further we introduce a novel constraint-based approach to systematically prune the state-space based on the

the notions of nonpermutation-repulsiveness and permutation-attractiveness. We prove that constraining a

nonpermutation-repulsing automaton with a permutation-attracting constraint always reduces the state-space.

This approach allows us to i) compute optimal solutions of the BMO problem when the (additional) constraints

are taken into account and ii) compute bounds for the (original) BMO problem (without using the constraints).

We demonstrate the effectiveness of our approach by optimizing an industrial wafer handling controller.
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1 INTRODUCTION

Flexible Manufacturing Systems (FMSs) are Cyber-Physical Systems which perform operations on

batches of products. Production and transportation resources (the physical part) carry out operations

while a logistics controller (the cyber part) assigns operations to resources and determines their

order. Examples of these systems include lithography machines and industrial production printers.

During their design, functional requirements (such as keeping the order of products in a batch or
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Fig. 1. Overview of ingredients from previous work that this paper uses and extends upon.

avoiding collisions) must be satisfied while at the same time demanding performance requirements

must be met, for instance regarding productivity.

In [6, 19] a framework is proposed for the batch-oriented specification and design exploration

of FMSs (shown in Figure 1). The novelty of this framework lies in the separation of concerns

between specification and optimization, together with its compositional support for requirements

specification. The physical system is abstracted into sets of resources, peripherals and actions.

Different pieces of end-to-end deterministic functional behavior are captured as activities which
are Directed Acyclic Graphs (DAGs) composed of multiple peripheral actions and dependencies

among them. The temporal behavior of each activity is characterized using (max,+) algebra. An

activity sequence can be constructed to describe more elaborate functional behaviors by considering

multiple activities, such as the complete manufacturing of a product where each operation is

captured by a single activity. The set of all possible activity sequences is captured as the language

accepted by a finite state automaton, called a logistics automaton. Logistics automata can be defined

modularly for each product in a batch. The logistics automaton of the batch itself is then obtained

by composing these automata by means of a composition operator. Besides logistics requirements a

system also exhibits constraints on different product flows, such as resource capacity and safety

constraints. These are modularly captured in our framework as constraint automata and a constraint
operator is provided to compose them with logistics automata.

Once the FMS has been specified, the minimal completion time of a batch of products can be

computed by solving an optimization problem called the Batch Makespan Optimization (BMO)

problem. This BMO problem is NP-Hard [6]. Computing makespan-optimal solutions can there-

fore take prohibitively long, due to state-space explosion. To keep state-spaces manageable, we

complement the work of [6] in this article by developing an algebra of logistics automata based

on equivalence and inclusion relations that take both behavioural and structural information into

account. The algebra allows us to relate the languages induced by the automata, their state-space

sizes and their solutions to the BMO problem, thereby providing a systematic approach to specify

and explore different designs of FMSs. To the best of our knowledge, this is the first work in which

an algebraic framework is developed to reason qualitatively about state-space sizes of FSMs. Further

we introduce a novel constraint-based approach to systematically prune the state-space based on the

notions of nonpermutation-repulsiveness and permutation-attractiveness. We prove that constraining

a nonpermutation-repulsing automaton with a permutation-attracting constraint always reduces

the state-space. This approach allows us to i) compute optimal solutions of the BMO problem when

the (additional) constraints are taken into account and ii) compute bounds for the (original) BMO

problem (without using the constraints). The approach is inspired by industrial practices, where

manufacturing systems are typically over-specified [17] and in which over-specification is used

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:3

implicitly and unconsciously to deal with complexity. Examples of over-specification encountered

in industrial cases are disallowing multiple mapping possibilities for an operation or enforcing

the static ordering of system operations. This approach enables system designers to consciously

exploit over-specification by an explicit introduction of constraints to reduce the complexity of

computing a solution to the BMO problem. We will demonstrate the effectiveness of our framework

by specifying and optimizating an industrial wafer handling controller.

Overview: The remainder of this article is organized as follows. Section 2 and 3 summarize the

framework that we will extend in this article. In Section 4 we define equivalence and inclusion

relations on logistics automata that take into account both behavioural and structural information,

and we establish their key algebraic properties. Section 5 establishes sufficient conditions to ensure

that automata constraining reduces state-space sizes. Section 6 demonstrates the use of the algebra

to systematically relate automata languages, their state-space sizes, and their solutions to the BMO

problem. In Section 7 the framework is applied to specify and optimize an industrial wafer handling

controller. Related work is discussed in Section 8 and Section 9 concludes the article.

2 SPECIFICATION FRAMEWORK
This article extends the specification framework of [19] (highlighted in Figure 1). In this section,

we summarize the ingredients of this framework and its essential properties.

2.1 Plant and Activities
A manufacturing system is decomposed into a plant as a set of peripherals (P), actions (A) and

resources (R). Each peripheral can execute actions. An action describes an atomic behavior of the

system, e.g. the movement of a motor or the actuation of an on/off peripheral such as a clamp.

The complete set of actions describes all behavior that the system can exhibit. Peripherals are

aggregated into resources, which can be claimed and released. Figure 2 a) depicts a synthetic example

of a system decomposed into resources R1, R2 and R3, peripherals p1, p2, p3, p4 and p5 and actions

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ands 𝑥7. Using actions, deterministic functional behaviors of the system can

be constructed as activities. An activity is a Directed Acyclic Graph (DAG), consisting of a set 𝑁

of nodes and a set → of dependencies between nodes. Nodes refer to either an action executed

by a peripheral (associated with a pair (𝑥, 𝑝) : 𝑥 ∈ A and 𝑝 ∈ P), or a claim (cl) or release (rl)

of a resource (associated with a pair (𝑟, 𝑣) : 𝑟 ∈ R and 𝑣 ∈ {𝑐𝑙, 𝑟𝑙}). Figure 2 b) depicts two such

activities, a and b. By sequencing multiple activities to form an activity sequence we capture more

elaborate operational behavior, such as the complete manufacturing of a product. We denote an
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Fig. 2. Overview of the concepts of the framework of [19]: a) an FMS decomposed into resources R1, R2 and
R3, peripherals p1, p2, p3, p4 and p5 and actions 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ands 𝑥7, b) two example activities a and
b, c) sequenced activity a;b and d) example logistics automaton 𝐿ex and (max,+) automaton MaxPlus(𝐿ex).
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activity sequence as 𝑎 = 𝑎1 𝑎2 · · · 𝑎𝑛 where 𝑎1, 𝑎2, · · · , 𝑎𝑛 denote activities. The temporal behavior

of an activity sequence can be determined by the sequencing operator (;) [19] that combines two

activities in a new activity. Resource sharing and concurrency between multiple activities is taken

into account by the correct claiming and releasing of resources between activities. Figure 2 c) depicts

the result of sequencing activities a and b, yielding a;b. Intuitively, the releasing and claiming

of shared resources must be correctly matched and replaced by a new dependency such that the

resulting DAG is itself an activity.

Besides functional specification, the framework requires a temporal specification for performance

optimization. To this end, a function 𝑇 : A → R≥0 maps each action to its (fixed) execution time.

Given an activity, the execution times can be lifted to the level of nodes, where the execution times

of claim and releases nodes are assumed to be 0. In Figures 2 b) and c) the timing information is

annotated within the nodes (except for the release and claim nodes). Since actions are executed

on resources, a resource time stamp vector 𝛾𝑅 : R → R−∞ represents the system state in terms of

resource availability. For each 𝑟 ∈ R, 𝛾𝑅 (𝑟 ) ∈ R−∞ is the availability (here availability does not

represent resource capacity, but timing availability) time of resource 𝑟 . For example, in Figure 2 d),

the initial system state is 𝛾𝑅 = [0, 0, 0]𝑇 , implying that all system resources are available at time 0.

Starting from resource vector 𝛾𝑅 the execution of an activity 𝑎 leaves the system in a new state

𝛾 ′
𝑅
. This new state is determined by computing the completion times of each node in the activity,

taking into account the dependencies and execution times of its nodes. In the example of Figure 2

d), the resource-time stamp vector after executing activities 𝑎 and 𝑏 is 𝛾 ′
𝑅
= [4.5, 4.0, 6.0]𝑇 , thus for

the next activity resources 𝑅1, 𝑅2 and 𝑅3 are available at times 4.5, 4.0 and 6.0, respectively.

It is well-know that (max,+) algebra can be used to mathematically describe timed synchronous

systems [5, 9, 13]. This observation also applies to activities and in [19] it is shown that𝛾 ′
𝑅
= 𝑀𝑎⊗𝛾𝑅 ,

where 𝑀𝑎 is the (𝑚𝑎𝑥, +) matrix of activity 𝑎 and where ⊗ is the (max,+) matrix multiplication

operator. In case a sequence 𝑎1 𝑎2 · · · 𝑎𝑛 of activities is executed, we thus have 𝛾 ′
𝑅
= 𝑀𝑎1;𝑎2;· · · ;𝑎𝑛 ⊗𝛾𝑅

(where ; denotes the activity sequencing operator). It is not difficult to see that this expression is

equivalent to𝑀𝑎𝑛 ⊗ · · · ⊗ 𝑀𝑎2 ⊗ 𝑀𝑎1 ⊗ 𝛾𝑅 . For a good introduction to (max,+) algebra we refer the

reader to [1, 5, 15]. To determine the makespan of an activity sequence, we assume the system to

start with resource availability vector 0𝑅 , i.e. for which 0𝑅 (𝑟 ) = 0 for each 𝑟 ∈ R. The makespan is

determined by the (𝑚𝑎𝑥, +) norm of the state after execution. The makespan of activity sequence

𝑎 = 𝑎1 𝑎2 · · · 𝑎𝑛 , written𝑚𝑘𝑠 (𝑎), is therefore given by ∥𝑀𝑎𝑛 ⊗ · · · ⊗𝑀𝑎2 ⊗𝑀𝑎1 ⊗ 0𝑅 ∥ (where ∥ · ∥
denotes the norm operator). As an example we consider the sequenced activity a;b of Figure 2 c)
again. The makespan of the corresponding activity sequence 𝑎 𝑏 is given by:

𝑚𝑘𝑠 (𝑎 𝑏) = 𝑀𝑏 ⊗ 𝑀𝑎 ⊗

0

0

0

 =

0 −∞ −∞

−∞ 1 −∞
−∞ 3 2

 ⊗

3.5 4.5 −∞
−∞ 3 −∞
−∞ −∞ 0

 ⊗

0

0

0

 =

4.5

4

6

 .
As a prelude to Section 2.2, Figure 2 d) presents a logistics automaton 𝐿ex encoding two activity

sequences 𝑎 𝑏 and 𝑏 𝑎. To determine the activity sequences with the smallest makespan, the (max,+)

automaton MaxPlus(𝐿ex) of 𝐿ex is computed by decorating the states of 𝐿ex with appropriate

resource availability vectors. Activity sequences that terminate in states with the smallest vector

norms are makespan-optimal, which is proven in Section 3. For the automaton 𝐿ex in Figure 2 d)

this happens to be sequence 𝑏 𝑎.

2.2 Logistics
An activity sequence can model the complete manufacturing of a product or batch of products,

where a single activity models one manufacturing operation. In general, more than one activity
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sequence will satisfy the requirements imposed on the system. The set of all activity sequences

that satisfy these requirements is encoded by a logistics automaton.

Definition 1 (Logistics automaton). A logistics automaton is a tuple ⟨S,A𝑐𝑡, .−→,S0⟩, where S
is a finite (possibly empty) set of states,A𝑐𝑡 is a finite (possibly empty) set of activities,

.−→⊆ S×A𝑐𝑡×S
is a transition relation, and S0 ⊆ S is a set of initial states. Here S0 = {𝑠0} except when S = ∅. In that
case the automaton is empty and therefore S0 = ∅ as well. Let 𝑠

𝑎−→ 𝑠 ′ be a shorthand for (𝑠, 𝑎, 𝑠 ′) ∈ .−→.
The following additional properties must hold:

• there exists no 𝑠 ∈ S such that 𝑠
.−→+

𝑠 , where
.−→+ is the transitive closure of

.−→, and where 𝑠
.−→ 𝑡

denotes that 𝑠
𝑎−→ 𝑡 for some 𝑎 ∈ A𝑐𝑡 ;

• if S ≠ ∅ then for all 𝑠 ∈ S, 𝑠0
.−→∗

𝑠 , where
.−→∗ is the reflexive transitive closure of

.−→.

A logistics automaton encodes a collection of activity sequences. This collection is called the

language of the automaton.

Definition 2 (Language of a logistics automaton). Let 𝐿 = ⟨S,A𝑐𝑡, .−→,S0⟩ be a logistics
automaton. The language L(𝐿) of 𝐿 is defined by

L(𝐿) =

∅, if S0 = ∅
{𝑎 ∈ A𝑐𝑡∗ | 𝑠0

𝑎
−→ 𝑠 for some 𝑠 ∈ S and 𝑠 ̸ .−→}, if S0 = {𝑠0}

Here A𝑐𝑡∗ denotes the collection of all sequences of activities in A𝑐𝑡 . Each 𝑎 ∈ A𝑐𝑡∗ is of the form
𝑎1..., 𝑎𝑛 , where 𝑎𝑖 ∈ A𝑐𝑡 (1 ≤ 𝑖 ≤ 𝑛). For 𝑛 = 0, 𝑎 is the empty activity sequence denoted by 𝜖 . For

states 𝑠, 𝑠 ′ ∈ S and 𝑎 = 𝑎1, ..., 𝑎𝑛 ∈ A𝑐𝑡∗ we let 𝑠
𝑎
−→ 𝑠 ′ denote the existence of 𝑠1, ..., 𝑠𝑛 ∈ S such that

𝑠
𝑎1−→ 𝑠1

𝑎2−→ · · · 𝑎𝑛−−→ 𝑠𝑛 = 𝑠 ′. Further 𝑠
𝑎
−→ denotes that 𝑠

𝑎
−→ 𝑠 ′ for some 𝑠 ′ ∈ S, 𝑠 .−→ denotes that 𝑠

𝑎−→ 𝑠 ′

for some 𝑎 ∈ A𝑐𝑡 and 𝑠 ′ ∈ S and 𝑠 ̸ .−→ denotes that 𝑠
.−→ does not hold. Note that L(𝐿) = ∅ if S = ∅

and L(𝐿) = {𝜖} if S = {𝑠0}. Notice also that any sequence in the language should "run to completion".
This means it should finish in a final state, i.e. a state with no outgoing transitions. As a consequence
languages of logistics automata are not prefix closed in general.

Example 1. Recall Figure 2 d) depicting logistic automaton 𝐿ex. Nodes represent states and edges
represent transitions. Activities are annotated on edges and the initial state is distinguished by an extra
circumference. 𝐿ex encodes the language L(𝐿ex) = {𝑎 𝑏, 𝑏 𝑎}.

2.3 Modular Logistics Specification: composition and constraining
Even though a logistics automaton is able to encode the complete manufacturing of a batch of

products, for large batch sizes or complex manufacturing jobs a monolithic automaton is not desired.

For this purpose a composition operator on logistics automata is provided. The operator allows

the manufacturing of the products to be specified individually and then composed to obtain an

automata that encodes all the logistics requirements for the full batch of products.

Definition 3 (Composition of Logistics Automata). Let 𝐿1 = ⟨S1,A𝑐𝑡1,
.−→1, 𝑆01⟩ and 𝐿2 =

⟨S2,A𝑐𝑡2,
.−→2, 𝑆02⟩ be logistics automata. Before we define the composition automaton 𝐿1 ⊙ 𝐿2, we

first define relation
.−→⊆ (S1 × S2) × (A𝑐𝑡1 ∪A𝑐𝑡2) × (S1 × S2) as the smallest set 𝑉 satisfying the

following inference rules:

𝑠
𝑎−→1 𝑠

′ 𝑎 ∈ A𝑐𝑡1\A𝑐𝑡2
(𝑠, 𝑡) 𝑎−→ (𝑠 ′, 𝑡)

(1) 𝑠
𝑎−→1 𝑠

′ 𝑡
𝑎−→2 𝑡

′ 𝑎 ∈ A𝑐𝑡1 ∩A𝑐𝑡2

(𝑠, 𝑡) 𝑎−→ (𝑠 ′, 𝑡 ′)
(2)

𝑡
𝑎−→2 𝑡

′ 𝑎 ∈ A𝑐𝑡2\A𝑐𝑡1
(𝑠, 𝑡) 𝑎−→ (𝑠, 𝑡 ′)

(3)
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where 𝑠, 𝑠 ′ ∈ S1 and 𝑡, 𝑡 ′ ∈ S2. Now define the set of states S of the composition automaton as

S =


∅, if S1 = ∅ or S2 = ∅
{(𝑠, 𝑡) ∈ S1 × S2 | (𝑠01 , 𝑠02 )

.−→∗ (𝑠, 𝑡)
and for some (𝑠 ′, 𝑡 ′) ∈ S1 × S2 with
𝑠 ′ ̸ .−→1 and 𝑡 ′ ̸

.−→2, (𝑠, 𝑡)
.−→∗ (𝑠 ′, 𝑡 ′)} if S01

= {𝑠01 } and S02
= {𝑠02 }

Further define
.−→′
= {((𝑠, 𝑡), 𝑎, (𝑠 ′, 𝑡 ′)) ⊆ .−→| (𝑠, 𝑡), (𝑠 ′, 𝑡 ′) ∈ S} and

S0 =

{
∅, if S = ∅
{(𝑠01 , 𝑠02 )} otherwise

The composition automaton 𝐿1 ⊙ 𝐿2 is now defined as ⟨S,A𝑐𝑡1 ∪A𝑐𝑡2,
.−→′
,S0⟩.

The language of a composite logistics automaton can be computed from the languages of its

constituent automata by merging together the sequences of the languages of these constituents:

Lemma 1. Let 𝐿1 = ⟨S1,A𝑐𝑡1,
.−→1, 𝑆01⟩ and 𝐿2 = ⟨S2,A𝑐𝑡2,

.−→2, 𝑆02⟩ be logistics automata. Then
L(𝐿1 ⊙ 𝐿2) = {𝑎 ∈ (A𝑐𝑡1 ∪ A𝑐𝑡2)∗ | 𝑎\A𝑐𝑡1 ∈ L(𝐿1) and 𝑎\A𝑐𝑡2 ∈ L(𝐿2)} where 𝑎\A𝑐𝑡1 and
𝑎\A𝑐𝑡2 denote the projections of activity sequence 𝑎 onto alphabets A𝑐𝑡1 and A𝑐𝑡2 respectively.

By means of the composition operator we can specify the behavior of a batch of products in a

modular way. This operator respects the requirements specified for the individual products and

ensures the completion of each of them. For a complete specification of the manufacturing of a batch

of products, we also need to specify constraints across different product flows such as ordering

constraints (e.g. FIFO ordering for a batch), safety constraints (e.g. access to exclusive safety areas),

resource capacity constraints (e.g. a resource must be empty before receiving a product) or other

constraints that are expressed as dependencies across different product flows. Such constraints are

expressed in terms of constraint automata.

Definition 4 (Constraint automaton). A constraint automaton is a tuple ⟨S,A𝑐𝑡 , .−→,S0⟩,
where S is a finite (possibly empty) set of states, A𝑐𝑡 is a finite (possibly empty) set of activities,
.−→⊆ S ×A𝑐𝑡 × S is a transition relation, and S0 ⊆ S is a set of initial states, where S0 = ∅ if S = ∅
and S0 = {𝑠0} otherwise. The following additional property must hold:

• if S ≠ ∅ then for all 𝑠 ∈ S, 𝑠0
.−→∗

𝑠 .

A constraint automaton encodes a language, just as a logistics automaton does.

Definition 5 (Language of a constraint automaton). Let𝐶 = ⟨S,A𝑐𝑡, .−→,S0⟩ be a constraint
automaton. The language L(𝐶) of 𝐶 is defined by

L(𝐶) =

∅, if S0 = ∅
{𝑎 ∈ A𝑐𝑡∗ | 𝑠0

𝑎
−→ 𝑠 for some 𝑠 ∈ S}, if S0 = {𝑠0}

Notice that constraint automata are distinct from logistics automata in the sense that they can be

recursive and are therefore able to encode infinite languages. Constraints can be applied to logistics

automata through the constraint operator. A constraint automaton𝐶 = ⟨S2,A𝑐𝑡2,
.−→2,S02

⟩ is called
a constraint on logistics automaton 𝐿 = ⟨S1,A𝑐𝑡1

.−→1,S01
⟩ if A𝑐𝑡2 ⊆ A𝑐𝑡1. Applying constraint𝐶 to

automaton 𝐿 yields a new logistics automaton which is denoted by 𝐿 ↾ 𝐶 .
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Fig. 3. Composing logistics automata 𝐿1 and 𝐿2 and constraining them with constraints 𝐶1, 𝐶2 and 𝐶3.

Definition 6 (Constraint Operator). Let 𝐿 = ⟨S1,A𝑐𝑡1,
.−→1,S01

⟩ be a logistics automaton
and 𝐶 = ⟨S2,A𝑐𝑡2,

.−→2,S02
⟩ be a constraint on L (so that A𝑐𝑡2 ⊆ A𝑐𝑡1). Before we define 𝐿 ↾ 𝐶 we

first define relation
.−→⊆ (S1 × S2) ×A𝑐𝑡𝑙 × (S1 × S2) as the smallest set 𝑉 satisfying the following

inference rules:

𝑠
𝑎−→1 𝑠

′ 𝑎 ∈ A𝑐𝑡1\A𝑐𝑡2
(𝑠, 𝑡) 𝑎−→ (𝑠 ′, 𝑡)

(1) 𝑠
𝑎−→1 𝑠

′ 𝑡
𝑎−→2 𝑡

′ 𝑎 ∈ A𝑐𝑡1 ∩A𝑐𝑡2

(𝑠, 𝑡) 𝑎−→ (𝑠 ′, 𝑡 ′)
(2)

where 𝑠, 𝑠 ′ ∈ S1 and 𝑡, 𝑡 ′ ∈ S2. Now define the set of states S of the constrained automaton as

S =


∅, if S1 = ∅ or S2 = ∅
{(𝑠, 𝑡) ∈ S1 × S2 | (𝑠01 , 𝑠02 )

.−→∗ (𝑠, 𝑡)
and for some (𝑠 ′, 𝑡 ′) ∈ S1 × S2 with
𝑠 ′ ̸ .−→1, (𝑠, 𝑡)

.−→∗ (𝑠 ′, 𝑡 ′)} if S01
= {𝑠01 } and S02

= {𝑠02 }

Further define
.−→′
= {((𝑠, 𝑡), 𝑎, (𝑠 ′, 𝑡 ′)) ⊆ .−→| (𝑠, 𝑡), (𝑠 ′, 𝑡 ′) ∈ S} and

S0 =

{
∅, if S = ∅
{(𝑠01 , 𝑠02 )} otherwise

The constrained automaton 𝐿 ↾ 𝐶 is now defined as ⟨S,A𝑐𝑡1,
.−→′
,S0⟩.

Both the constraint and composition operators assume multi-way synchronization for transitions.

Note however that the constraint operator requires the logistics automaton to run to completion (i.e.

reaches a final state), while this is not true for the constraint automaton. In other words constraint

automata capture only safety requirements (expressing that nothing bad should happen) while

logistics automata capture both safety requirements and liveness requirements (expressing that

something good happens eventually, namely the completion of the different products in a batch).

On the contrary, the composition operator requires both logistics automata to run to completion.

The language of a constrained logistics automaton can be computed from the languages of its

constituent automata by filtering out activity sequences that are not consistent with the constraint:

Lemma 2. Let 𝐿 = ⟨S1,A𝑐𝑡1,
.−→1, 𝑆01⟩ be a logistics automaton and let 𝐶 = ⟨S2,A𝑐𝑡2,

.−→2, 𝑆02⟩ be a
constraint on 𝐿. Then L(𝐿 ↾ 𝐶) = {𝑎 ∈ L(𝐿) | 𝑎\A𝑐𝑡2 ∈ L(𝐶)}.

Finally we claim that the application of a constraint to a logistics automaton, results in a subset of

the original language:

Lemma 3 (Language constraining). Let 𝐿 be a logistics automaton and let 𝐶 be a constraint on
𝐿. Then L(𝐿 ↾ 𝐶) ⊆ L(𝐿).
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Example 2. Consider the automata depicted in Figure 3. 𝐿1 and 𝐿2 represent two distinct product
flows and 𝐿1 ⊙ 𝐿2 represents their combined execution flow in a two-product batch. Constraint 𝐶1

represents a requirement on the order of activities 𝑐 and 𝑑 on the product modeled by 𝐿1. Constraints
𝐶2 and 𝐶3 express requirements concerning the product flows of 𝐿1 ⊙ 𝐿2. ((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ↾ 𝐶2 shows
the application of constraints 𝐶1 and 𝐶2 to 𝐿1 ⊙ 𝐿2. Since 𝐶1 requires activity 𝑑 to be preceded by 𝑐 ,
transition𝑑 is removed. Further all behavior in which activity 𝑒 is not preceded by 𝑎 is removed due to𝐶2.
((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ↾ 𝐶3 shows the application of constraint𝐶1 and𝐶3 to 𝐿1 ⊙ 𝐿2. In this case all behavior
in which activities 𝑏 or 𝑓 and 𝑎 or 𝑒 do not occur in alternating order is removed (for instance sequence
a e b c f g is removed). Notice that, consistent with Lemma 3, L(((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ↾ 𝐶2) ⊆ L(𝐿1 ⊙ 𝐿2)
and L(((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ↾ 𝐶3) ⊆ L(𝐿1 ⊙ 𝐿2).

3 BATCH MAKESPAN OPTIMIZATION
We are interested in finding the activity sequence with the lowest makespan in the language of a

logistics automaton. In [6] we formalized this Batch Makespan Optimization (BMO) problem and

proved it to be NP-hard:

Definition 7 (BatchMakespan Optimization (BMO)). Given a Logistics automaton 𝐿 determine
an 𝑎 ∈ L(𝐿) such that𝑚𝑘𝑠 (𝑎) ≤ 𝑚𝑘𝑠 (𝑎′), for all 𝑎′ ∈ L(𝐿).

Lemma 4. The Batch Makespan Optimization problem is NP-hard.

Through language inclusion we can establish sub-optimal solutions to the BMO problem and find

bounds on the optimal makespan:

Lemma 5. Let 𝐿1 and 𝐿2 be logistics automata for which L(𝐿1) ⊆ L(𝐿2) and assume 𝑎 to be a BMO
solution to 𝐿1 and 𝑎′ to be a BMO solution to 𝐿2. Then mks(𝑎) ≥ mks(𝑎′).

3.1 Solving the BMO problem: (max,+) automata
The BMO problem can be solved in two steps. The first is to build a timed expansion of logistics

automaton L using the (max,+) characterization of its activities. The result of this expansion is a

new logistics automaton where each state includes a resource time-stamp vector capturing the

resource availability after executing the activities in the path leading to that state. Given a logistics

automaton 𝐿 we call its timed expansion a (max,+) automaton and denote it by MaxPlus(𝐿).

Definition 8 ((max,+) automaton). Let 𝐿 = ⟨S,A𝑐𝑡, .−→,S0⟩ be a logistics automaton. First define
MaxPlusStates(𝐿) as the smallest set 𝑉 satisfying inference rules (1) and (2):

S0 = {𝑠0}
(𝑠0, 0𝑅) ∈ 𝑉

(1)
(𝑠,𝛾𝑅) ∈ 𝑉 𝑠

𝑎−→ 𝑠 ′

(𝑠 ′,𝑴𝑎 ⊗ 𝛾𝑅) ∈ 𝑉
(2)

Here 𝛾𝑅 denotes a resource time-stamp vector and 0𝑅 denotes the resource time-stamp vector containing
only 0 valued entries. Note that 0𝑅 represents the initial system state in which all resources are
available at time zero.𝑴𝑎 denotes the (𝑚𝑎𝑥, +) matrix corresponding to activity 𝑎 ∈ A𝑐𝑡 and 𝑠, 𝑠 ′ ∈ S.
Then we define MaxPlus(𝐿) as (MaxPlusStates(𝐿),A𝑐𝑡, .−→′

,S′
0
), where −→′=

{
(𝑠, 𝛾𝑅), 𝑎, (𝑠 ′, 𝛾 ′

𝑅
) ∈

MaxPlusStates(𝐿) ×A𝑐𝑡 ×MaxPlusStates(𝐿) | 𝑠 𝑎−→ 𝑠 ′ and 𝛾 ′
𝑅
= 𝑀𝑎 ⊗ 𝛾𝑅

}
and S′

0
= ∅ if S0 = ∅ and

S′
0
= {(𝑠0, 0𝑅)} otherwise.

Each state of the logistics automaton can occur multiple times in the (max,+) automaton, depending

on the cumulative products of (max,+) activity matrices along the paths from the initial state leading

to this particular state. Therefore the number of states of the (max,+) automaton is at least as large

as the number of states of the corresponding logistics automaton. Their languages are however

equivalent, which is stated by the following Lemma.
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Lemma 6. Given a logistics automaton 𝐿 then L(𝐿) = L(MaxPlus(𝐿)).
The state-space encoded by a (max,+) automaton includes all the necessary functional and temporal

information of the system in terms of allowed activity sequences as well as their respective comple-

tion times. For this reason, we denote the state-space of a (max,+) automaton the optimization-space.
The second step to solve the BMO problem is to explore all the final states (states with no outgoing

transitions) of the optimization-space and comparing the norms of the corresponding resource-time

stamp vectors. Any sequence in the optimization-space leading to a final state with the lowest

occurring norm is a solution to the BMO problem as stated in the following theorem.

Lemma 7. Let 𝐿 be a logistics automaton and MaxPlus(𝐿) = {S, .−→,A𝑐𝑡,S0} its corresponding
(max,+) automaton. Let (𝑠,𝛾) ∈ S be such that (𝑠,𝛾) ̸ .−→ and that for all (𝑠 ′, 𝛾 ′) ∈ S with (𝑠 ′, 𝛾 ′) ̸ .−→,

𝛾

 ≤ 

𝛾 ′

, and let 𝑎 ∈ L(𝐿) be such that (𝑠0, 0𝑅)

𝑎
−→ (𝑠, 𝛾). Then for all 𝑎′ ∈ L(𝐿):𝑚𝑘𝑠 (𝑎) ≤ 𝑚𝑘𝑠 (𝑎′).

Example 3. Consider the (max,+) automaton of logistics automaton 𝐿ex depicted in Figure 2. Consis-
tent with Lemma 6, indeed L(MaxPlus(𝐿ex)) = L(𝐿ex). The temporal execution of activity sequences
𝑎 𝑏 and 𝑏 𝑎 lead to different resource time-stamp vectors and thus the final state of 𝐿ex is duplicated
in MaxPlus(𝐿ex). According to Lemma 7, activity sequences in L(𝐿ex) are makespan-optimal if they
terminate in the states with the smallest vector norms in MaxPlus(𝐿ex). The final state in MaxPlus(𝐿ex)
with the smallest vector norm is labelled with vector [5.5, 4.0, 3.0]𝑇 . This final state corresponds to
sequence 𝑏 𝑎. Hence 𝑏 𝑎 is a solution to the BMO problem of 𝐿ex.

3.2 Worst-case optimization-space: Tree automata
The size of the state-space of a (max,+) automaton is at least as large as that of the corresponding

logistics automaton, a fact that we will prove in the next section. It can even grow exponentially

in the size of the state-space of the corresponding logistics automaton, which is the very reason

that the BMO problem is NP-hard. In the worst case each path in the logistics automaton induces a

unique cumulative product of (max,+) matrices. This worst case is captured by what we will call

the tree automaton Tree(𝐿) of 𝐿, the proof of which is given in the next section.

Definition 9 (Tree automaton). Let 𝐿 = ⟨S,A𝑐𝑡, .−→,S0⟩ be a logistics automaton. We first
define Paths(𝐿) as the smallest set 𝑉 satisfying:

S0 = {𝑠0}
𝑠0 ∈ 𝑉

(1)
𝑞 𝑠 ∈ 𝑉 𝑠

𝑎−→ 𝑠 ′

𝑞 𝑠 𝑎 𝑠 ′ ∈ 𝑉
(2)

Here 𝑠, 𝑠 ′ ∈ S and 𝑎 ∈ A𝑐𝑡 . 𝑃𝑎𝑡ℎ𝑠 (𝐿) contains sequences of elements in S andA𝑐𝑡 . Each sequence is of
the form 𝑠0 𝑎0 𝑠1 𝑎1 · · · 𝑠𝑛 and encodes the path from starting state 𝑠0 to state 𝑠𝑛 (via transitions labeled
with activities 𝑎0 · · ·𝑎𝑛−1 and intermediate states 𝑠1 · · · 𝑠𝑛−1). In inference rule (2), 𝑞 𝑠 refers to a path
that ends in state 𝑠 . Note that 𝑞 can refer to an empty sequence of elements. Remark that Paths(𝐿) = ∅
ifS = ∅. We now define Tree(𝐿) as (Paths(𝐿),A𝑐𝑡, .−→′

,S′
0
), where .−→′

= {(𝑞 𝑠, 𝑎, 𝑞 𝑠 𝑎 𝑠 ′) ∈ Paths(𝐿)×
A𝑐𝑡 × Paths(𝐿) | 𝑠 𝑎−→ 𝑠 ′} and S′

0
= ∅ if S0 = ∅ and S′

0
= {𝑠0} otherwise.

Just like the MaxPlus operator, the Tree operator leaves the language of the logistics automaton

unaltered.

Lemma 8. Given a logistics automaton 𝐿 then L(𝐿) = L(Tree(𝐿)).

4 ALGEBRA ON LOGISTICS AUTOMATA
So far we introduced the ⊙, ↾, MaxPlus and Tree operators on logistics automata. In this section

we complement these operators with equivalence and inclusion relations and prove important
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Fig. 4. Example where logistics automaton 𝐿𝑖 is included in 𝐿ℎ but 𝐿ℎ is not included in 𝐿𝑖 ; and logistics
automaton 𝐿𝑗 is not included in logistics automaton 𝐿𝑘 .

algebraic properties. In this fashion we define an algebra on logistics automata to systematically

relate their languages, their state-space sizes and their optimization-space sizes.

4.1 Equivalence and inclusion relations
We start by defining equivalence and inclusion relations on logistics automata that capture both

behavioral and structural aspects. The behavioral aspect relates the languages of the automata,

while the structural aspect relates their state-space sizes.

Definition 10 (Eqivalence). Let 𝐿1 = ⟨S1,A𝑐𝑡1,
.−→1,S01

⟩ and 𝐿2 = ⟨S2,A𝑐𝑡2,
.−→2,S02

⟩ be
logistics automata. Then 𝐿1 and 𝐿2 are equivalent, written 𝐿1 ≈ 𝐿2, if and only if A𝑐𝑡1 = A𝑐𝑡2 and
either i) S1 = ∅ and S2 = ∅ or ii) S01

= {𝑠01 } and S02
= {𝑠02 } and there exists a bijective function

F : S1 → S2 satisfying:
(1) F (𝑠01 ) = 𝑠02 ;
(2) For all 𝑠, 𝑠 ′ ∈ S1 and 𝑎 ∈ A𝑐𝑡1 𝑠

𝑎−→ 𝑠 ′ if and only if 𝐹 (𝑠) 𝑎−→ 𝐹 (𝑠 ′).

Theorem 1. ≈ is an equivalence relation on logistics automata.

Equivalent logistics automata encode the same languages, as stated in the following lemma.

Lemma 9. Let 𝐿1 and 𝐿2 be equivalent logistics automata. Then L(𝐿1) = L(𝐿2).

In correspondence to the equivalence relation we define a partial order (inclusion) relation on

logistics automata.

Definition 11 (Inclusion). Let 𝐿1 = ⟨S1,A𝑐𝑡1,
.−→1,S01

⟩ and 𝐿2 = ⟨S2,A𝑐𝑡2,
.−→2,S02

⟩ be logistics
automata. Then 𝐿1 is included in 𝐿2, written 𝐿1 ⊑ 𝐿2, if and only if A𝑐𝑡1 = A𝑐𝑡2 and either i) S1 = ∅
or ii) S01

= {𝑠01 } and S02
= {𝑠02 } and there exists an injective relation 𝑅 ⊆ S1 × S2 satisfying:

(1) (𝑠01 , 𝑠02 ) ∈ 𝑅;
(2) For all (𝑠1, 𝑠2) ∈ 𝑅 and 𝑎 ∈ A𝑐𝑡1 if 𝑠1

𝑎−→1 𝑠
′
1
(for some 𝑠 ′

1
∈ S1) then 𝑠2

𝑎−→2 𝑠
′
2
(for some 𝑠 ′

2
∈ S2)

and (𝑠 ′
1
, 𝑠 ′

2
) ∈ 𝑅;

(3) For all (𝑠1, 𝑠2) ∈ 𝑅 if 𝑠2
.−→2 then 𝑠1

.−→1.

Theorem 2. ⊑ is a partial order relation on logistics automata. In particular 𝐿1 ≈ 𝐿2 if and only if
𝐿1 ⊑ 𝐿2 and 𝐿2 ⊑ 𝐿1.

If a logistics automaton is included in another logistics automaton, the size of the state-space of the

former never exceeds that of the latter.

Lemma 10. Let 𝐿1 = ⟨S1,A𝑐𝑡1,
.−→1,S01

⟩ and 𝐿2 = ⟨S2,A𝑐𝑡2,
.−→2,S02

⟩ be logistics automata such
that 𝐿1 ⊑ 𝐿2. Then #S1 ≤ #S2, where operator # counts the number of states.
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Example 4. Consider logistics automata 𝐿ℎ and 𝐿𝑖 depicted in Figure 4. It is easy to check that 𝐿𝑖 is
included in 𝐿ℎ , but 𝐿ℎ is not included in 𝐿𝑖 . 𝐿ℎ and 𝐿𝑖 are thus not equivalent, even though they have
the same language. Note that our inclusion relation is stronger than Milner’s [14] simulation relation
≺ for which both 𝐿ℎ ≺ 𝐿𝑖 and 𝐿𝑖 ≺ 𝐿ℎ hold. ≺ is a pre-order but not a partial order in the sense that
𝐿𝑖 ≁ 𝐿ℎ , where ∼ denotes Milner’s strong bisimulation. The essential property that makes ⊑ into a
partial order is the property of injectivity (see Definition 11). Consider logistics automata 𝐿 𝑗 and 𝐿𝑘
depicted in Figure 4. Even though 𝐿 𝑗 ≺ 𝐿𝑘 holds, we have 𝐿 𝑗 ̸⊑ 𝐿𝑘 . This is because the inclusion relation
forces (by condition 3. of Definition 11) all activity sequences of L(𝐿 𝑗 ) to be included in L(𝐿𝑘 ).

4.2 Algebraic properties
We defined an algebra on (logistics and constraint) automata with composition (⊙), constraining
(↾), MaxPlus and Tree operators, together with a partial-order (⊑, ⊆) and equivalence relations (≈,
=). The algebra satisfies several properties of which the importance is demonstrated in Section 6.

Theorem 3. Let 𝐿1, 𝐿2 and 𝐿3 be logistics automata and let 𝐶1 and 𝐶2 be constraints. Then:
1. 𝐿1 ⊙ 𝐿2 ≈ 𝐿2 ⊙ 𝐿1 (commutativity ⊙).
2. (𝐿1 ⊙ 𝐿2) ⊙ 𝐿3 ≈ 𝐿1 ⊙ (𝐿2 ⊙ 𝐿3) (associativity ⊙).
3. (𝐿1 ↾ 𝐶1) ↾ 𝐶2 ≈ (𝐿1 ↾ 𝐶2) ↾ 𝐶1 if 𝐶1 and 𝐶2 are constraints on 𝐿1 (commutativity ↾).
4. (𝐿1 ⊙ 𝐿2) ↾ 𝐶1 ≈ (𝐿1 ↾ 𝐶1) ⊙ (𝐿2 ↾ 𝐶1) if𝐶1 is a constraint on both 𝐿1 and 𝐿2 (distributivity ↾).
5. 𝐿1 ⊑ 𝐿2 implies 𝐿1 ⊙ 𝐿 ⊑ 𝐿2 ⊙ 𝐿 (substitutivity ⊑ under ⊙).
6. 𝐿1 ≈ 𝐿2 implies 𝐿1 ⊙ 𝐿 ≈ 𝐿2 ⊙ 𝐿 (substitutivity ≈ under ⊙).
7. L(𝐿1) ⊆ L(𝐿2) implies L(𝐿1 ⊙ 𝐿3) ⊆ L(𝐿2 ⊙ 𝐿3) (substitutivity ⊆ under ⊙).
8. L(𝐿1) = L(𝐿2) implies L(𝐿1 ⊙ 𝐿3) = L(𝐿2 ⊙ 𝐿3) (substitutivity = under ⊙).
9. 𝐿1 ⊑ 𝐿2 implies 𝐿1 ↾ 𝐶1 ⊑ 𝐿2 ↾ 𝐶1 if 𝐶1 is a constraint on 𝐿1 and 𝐿2 (substitutivity ⊑ under ↾).
10. 𝐿1 ≈ 𝐿2 implies 𝐿1 ↾ 𝐶1 ≈ 𝐿2 ↾ 𝐶1 if 𝐶1 is a constraint on 𝐿1 and 𝐿2 (substitutivity ≈ under ↾).
11. L(𝐿1) ⊆ L(𝐿2) implies L(𝐿1 ↾ 𝐶1) ⊆ L(𝐿2 ↾ 𝐶1) if 𝐶1 is a constraint on 𝐿1 and 𝐿2 (substitu-

tivity ⊆ under ↾).
12. L(𝐿1) = L(𝐿2) implies L(𝐿1 ↾ 𝐶1) = L(𝐿2 ↾ 𝐶1) if 𝐶1 is a constraint on 𝐿1 and 𝐿2 (substitu-

tivity = under ↾).
13. 𝐿1 ⊑ 𝐿2 implies MaxPlus(𝐿1) ⊑ MaxPlus(𝐿2) (substitutivity ⊑ under MaxPlus).
14. 𝐿1 ≈ 𝐿2 implies MaxPlus(𝐿1) ≈ MaxPlus(𝐿2) (substitutivity ≈ under MaxPlus).
15. 𝐿1 ⊑ 𝐿2 implies Tree(𝐿1) ⊑ Tree(𝐿2) (substitutivity ⊑ under Tree).
16. 𝐿1 ≈ 𝐿2 implies Tree(𝐿1) ≈ Tree(𝐿2) (substitutivity ≈ under Tree).
17. L(𝐿1) ⊆ L(𝐿2) implies L(MaxPlus(𝐿1)) ⊆ L(MaxPlus(𝐿2)) (substitutivity ⊆ under MaxPlus).
18. L(𝐿1) = L(𝐿2) implies L(MaxPlus(𝐿1)) = L(MaxPlus(𝐿2)) (substitutivity = under MaxPlus).
19. L(𝐿1) ⊆ L(𝐿2) implies L(Tree(𝐿1)) ⊆ L(Tree(𝐿2)) (substitutivity ⊆ under Tree).
20. L(𝐿1) = L(𝐿2) implies L(Tree(𝐿1)) = L(Tree(𝐿2)) (substitutivity = under Tree).
21. 𝐿1 ⊑ MaxPlus(𝐿1) ⊑ Tree(𝐿1) (optimization-space bounds).
22. L(𝐿1) = L(MaxPlus(𝐿1)) = L(Tree(𝐿1)) (MaxPlus and Tree preserve language).
23. 𝐿1 ⊑ 𝐿2 implies L(𝐿1) ⊆ L(𝐿2) (⊑ implies ⊆).
24. 𝐿1 ≈ 𝐿2 implies L(𝐿1) = L(𝐿2) (≈ implies =).

5 OPTIMIZATION-SPACE REDUCTION
In the previous section we introduce an algebra on logistics automata that is able to relate their

languages and state-space sizes. In this section we discuss how to apply this algebra to reduce
3

the optimization-space by constraining logistics automata. For this purpose we establish sufficient

3
With state-space reduction we mean that the state-space will not grow.
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𝐿𝑘 ↾ 𝐶 which is not included in 𝐿𝑘 . The same is true for their (𝑚𝑎𝑥, +) and tree counterparts.

conditions on 𝐿 and 𝐶 so that 𝐿 ↾ 𝐶 ⊑ 𝐿. First recall from Lemma 3 that L(𝐿 ↾ 𝐶) ⊆ L(𝐿).
This does not imply however that 𝐿 ↾ 𝐶 is included in 𝐿. In general even MaxPlus(𝐿 ↾ 𝐶) is not
included in MaxPlus(𝐿) and Tree(𝐿 ↾ 𝐶) is not included in Tree(𝐿). This implies that constraining

does not in general lead to optimization-space reduction, not even a reduction of the worst-case

optimization-space. This is demonstrated in Example 5.

Example 5. Consider logistics automaton 𝐿𝑘 , constraint automaton𝐶1 and constrainted automaton
𝐿𝑘 ↾ 𝐶1 depicted in Figure 5. Obviously 𝐿𝑘 ↾ 𝐶1 ̸⊑ 𝐿𝑘 , MaxPlus(𝐿𝑘 ↾ 𝐶) ̸⊑ MaxPlus(𝐿𝑘 ) and
Tree(𝐿𝑘 ↾ 𝐶) ̸⊑ Tree(𝐿𝑘 ). This is caused by constraint 𝐶1 which is non-deterministic.

Example 5 shows that non-deterministic constraints can increase the worst-case optimization space

(which is the state-space of the Tree automaton). On the other hand, if a constraint is deterministic

this worst-case optimization space will not increase, which follows from the following lemma.

Lemma 11. Let 𝐿 = ⟨S1,A𝑐𝑡1,
.−→1, 𝑆01⟩ be a logistics automaton and 𝐶 = ⟨S2,A𝑐𝑡2,

.−→2, 𝑆02⟩ a
constraint on 𝐿. If 𝐶 is deterministic, then Tree(𝐿 ↾ 𝐶) ⊑ Tree(𝐿).

Example 6. Consider logistics automaton 𝐿𝑚 , constraint 𝐶2, and constrained automaton 𝐿𝑚 ↾ 𝐶2

depicted in Figure 6. Since 𝐶2 is deterministic we have Tree(𝐿𝑚 ↾ 𝐶2) ⊑ Tree(𝐿𝑚) (consistent with
Lemma 11). On the other hand, we also see that 𝐿𝑚 ↾ 𝐶2 ̸⊑ 𝐿𝑚 and that MaxPlus(𝐿𝑚 ↾ 𝐶2) ̸⊑
MaxPlus(𝐿𝑚). Notice in particular that constraining led to an increased size of the (max,+) state-space.

5.1 Nonpermutation-repulsing and permutation-attracting Automata
From Lemma 11 and Example 6 we learn that deterministic constraints lead to a reduction of the

worst-case optimization-space. Unfortunately, the optimization-space itself may still grow when

deterministic constraints are applied. To achieve our goal in reducing the optimization-space we

recall Theorem 3.13 stating that 𝐿 ↾ 𝐶 ⊑ 𝐿 implies MaxPlus(𝐿 ↾ 𝐶) ⊑ MaxPlus(𝐿). We thus want

to make sure that 𝐿 ↾ 𝐶 ⊑ 𝐿. In the remainder of this section we establish sufficient conditions (on

𝐿 and 𝐶) for this to be true. We start by defining the two fundamental properties of automata.

Definition 12 (Nonpermutation-repulsing). Let 𝐿𝐶 = ⟨S,A𝑐𝑡 , .−→,S0⟩ be either a logistics
automaton or a constraint. Then 𝐿𝐶 is called nonpermutation-repulsing (or np-repulsing for short) if
either S = ∅ or S = {𝑠0} and the following condition holds:

(1) For all 𝑠 ∈ S and 𝑎, 𝑎′ ∈ A𝑐𝑡∗, if 𝑠0
𝑎
−→ 𝑠 and 𝑠0

𝑎′

−→ 𝑠 then 𝑎 ∼𝑝 𝑎′.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:13

a

b

c

d

c

d

t 5

t 6

t 0

t 1

t 2

t 3

t 4

a

bs0 s1

c

d s2

a c

s0 s1 s2

a

b

c

d

d

a

b

c

d

d s  20

s00

s   11

s  10

s  22

s  21

a

b

c

d

d

m00

m11

m10 m20

m21

m22 t 00

t 11

t 10 t 20

t 21

t 22

Lm

Lm � C2

MaxPlus(Lm)

MaxPlus(Lm � C2)

Tree(Lm � C2)Tree(Lm)

C2

a

b

c

dm 0 m 1 m  2

𝑀𝑎 = 𝑀𝑏 =

[
2 −∞

−∞ 2

]
𝑀𝑐 = 𝑀𝑑 =

[
3 5

−∞ 1

]
Fig. 6. Example showing that in the case of a deterministic constraint𝐶2 the tree of the constrained automaton
(Tree(𝐿𝑚 ↾ 𝐶2)) is included in tree of the logistics automaton (Tree(𝐿𝑚)), while this inclusion does in general
neither hold for the constrained automaton nor for the MaxPlus automaton.

a

b

c
a

a

b

b
a

b

s0 s1 s2
s0

s1

s2

s3

s4 s5

a

a

b

b
s0

s1

s2

s3

a

b

c

s0 s1 s2

a

Lq Lr Ls Lt
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np-repulsing but not p-attracting. 𝐿𝑡 is both np-repulsing and p-attracting.

Here 𝑎 ∼𝑝 𝑎′ denotes that activity sequences 𝑎 and 𝑎′ are permutations.

Intuitively an automaton is np-repulsing if all sequences running to a certain state are permutations

of one another. This state ‘repulses’ sequences that are not permutations (of the sequences that

lead to this state). Notice that permuting sequences do not necessarily lead to the same state. In

case they do, we call the automaton permutation-attracting:

Definition 13 (Permutation-attracting). Let 𝐿𝐶 = ⟨S,A𝑐𝑡 , .−→,S0⟩ be either a logistics
automaton or a constraint. Then 𝐿𝐶 is called permutation-attracting (or p-attracting for short) if either
S = ∅ or S = {𝑠0} and the following condition holds:

(1) For all 𝑠, 𝑠 ′ ∈ S and 𝑎, 𝑎′ ∈ A𝑐𝑡∗ with 𝑎 ∼𝑝 𝑎′, if 𝑠0
𝑎
−→ 𝑠 and 𝑠0

𝑎′

−→ 𝑠 ′ then 𝑠 = 𝑠 ′.

Thus all permuting sequences in the language of a p-attracting automaton, lead to the same state.

This single state ’attracts’ all these permutations so to say.

Example 7. Consider the automata 𝐿𝑞 , 𝐿𝑟 , 𝐿𝑠 and 𝐿𝑡 of Figure 7. 𝐿𝑞 is neither np-repulsing nor
p-attracting. When leaving out the transition from the initial state to state 𝑠2 we are left with automaton
𝐿𝑟 which is p-attracting but not np-repulsing since both sequences 𝑎 and 𝑏 lead to state 𝑠1. Automaton
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𝐿𝑠 , on the other hand, is np-repulsing but not p-attracting. If states 𝑠4 and 𝑠5 are removed from 𝐿𝑠 we
are left with 𝐿𝑡 which is both np-repulsing and p-attracting.

Notice that the notions of np-repulsiveness and p-attractiveness are independent. Interestingly

both notions are preserved by the composition operator:

Lemma 12. Let 𝐿1 and 𝐿2 be logistics automata. If 𝐿1 and 𝐿2 are both np-repulsing then so is 𝐿1 ⊙ 𝐿2.
If 𝐿1 and 𝐿2 are both p-attracting then so is 𝐿1 ⊙ 𝐿2.

We further have that np-repulsiveness is preserved by general contraining:

Lemma 13. Let 𝐿 be an np-repulsing logistics automata and let 𝐶 be any constraint. Then 𝐿 ↾ 𝐶 is
np-repulsing.

Example 8. Consider automaton 𝐿𝑢 and constraint 𝐶 depicted in Figure 8. 𝐿𝑢 is both np-repulsing
and p-attracting and 𝐶 is nondeterministic. Constrained automaton 𝐿𝑢 ↾ 𝐶 is np-repulsing (consistent
with Lemma 13), but not p-attracting.

From the previous example we learn that p-attractiveness is not preserved by general constraining.

However, if both the logistics automaton and the constraint are p-attractive, the constrained

automaton is p-attractive as well, which is stated in the following lemma.

Lemma 14. Let 𝐿 be a p-attracting logistics automaton and let 𝐶 be a p-attracting constraint. Then
𝐿 ↾ 𝐶 is p-attracting.

Example 9. Consider again automaton 𝐿𝑢 and constraint 𝐶 depicted in Figure 8. Since 𝐶 is nonde-
terministic it is not p-attracting. Removing any of the nondeterministic branches from 𝐶 would render
both the constraint and the constrained automaton p-attracting.

We now arrive at the main theorem of this paper. It establishes sufficient conditions on 𝐿 and 𝐶 for

𝐿 ↾ 𝐶 ⊑ 𝐿 to hold, thereby ensuring the constraining to imply optimization-space reduction.

Theorem 4. Let 𝐿 be an np-repulsing logistics automata and let 𝐶 be a p-attracting constraint.
Then 𝐿 ↾ 𝐶 ⊑ 𝐿.

Example 10. Consider the np-repulsing logistics automaton 𝐿𝑣 and the p-attracting constraint 𝐶
as shown in Figure 9. Consistent with Theorem 4 we observe that 𝐿𝑣 ↾ 𝐶 ⊑ 𝐿𝑣 . Further from Lemmas
3.13 and 3.15 we know that both MaxPlus(𝐿𝑣 ↾ 𝐶) ⊑ MaxPlus(𝐿𝑣) and Tree(𝐿𝑣 ↾ 𝐶) ⊑ Tree(𝐿𝑣).
Consequently from Lemma 10 we know that the both the (max,+) optimization space and the worst-case
optimization space are reduced, which is also obvious from the Figure 9.

The reader may have wondered about the relations between np-repulsiveness and p-attractiveness

and the well-known concept of confluence. Indeed the automaton 𝐿𝑣 depicted in Figure 9 is confluent

since it has the so-called diamond property. In the remainder of this section we will show that a

confluent logistics automaton is both np-repulsing and p-attracting, but not vice versa. We will also
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show that a confluent constraint automaton is p-attracting, but not necessarily np-repulsing. If a

confluent constraint is non-recursive, it is also np-repulsing. As a consequence, our main Theorem

4 applies when both the logistics automaton and the constraint automaton are confluent. To prove

this, we define the notion of confluence based on Milner’s work on CCS [14] in which confluence

is defined for labeled transition systems. To this end, we first define (following the definition in

[14]) for two activity sequences 𝑏 and 𝑐 , the excess of 𝑏 over 𝑐 which is written as 𝑏/𝑐 . We obtain

𝑏/𝑐 by working through 𝑏 from left to right deleting any activity which occurs in 𝑐 , taking into

account the multiplicity of occurrence.

Definition 14 (Excess). Let 𝑏, 𝑐 ∈ A𝑐𝑡∗ be activity sequences. Then 𝑏/𝑐 is defined recursively
upon 𝑏 as:

𝜖/𝑐 = 𝜖

(𝑎𝑏)/𝑐 =
{
𝑎(𝑏/𝑐) if 𝑎 does not occur in 𝑐
𝑏/(𝑐/𝑎) if 𝑎 occurs in 𝑐

This excess operator has a number of important properties.

Lemma 15. Let 𝑏, 𝑐 ∈ A𝑐𝑡∗ be activity sequences and let 𝑎 ∈ A𝑐𝑡 be an activity. Then
(1) #𝑎 (𝑏/𝑐) =𝑚𝑎𝑥 (#𝑎 (𝑏) − #𝑎 (𝑐), 0), where #𝑎 (𝑏) denotes the number of occurrences of 𝑎 in 𝑏;
(2) 𝑏 ∼𝑝 𝑐 if and only if 𝑏/𝑐 = 𝜖 and 𝑐/𝑏 = 𝜖 ;
(3) 𝑏/𝑐 = 𝑏 if 𝑏 and 𝑐 have no activities in common;
(4) (𝑏/𝑐)/(𝑐/𝑏) = 𝑏/𝑐 .

We will now define the notion of confluence on logistic and constraint automata.

Definition 15 (Confluence). Let 𝐿𝐶 = ⟨S,A𝑐𝑡 , .−→,S0⟩ be either a logistics automaton or a
constraint. Then 𝐿𝐶 is called confluent if either S = ∅ or S = {𝑠0} and the following condition holds:

• For all 𝑠, 𝑠1, 𝑠2 ∈ S and 𝑏, 𝑐 ∈ A𝑐𝑡∗, if 𝑠
𝑏
−→ 𝑠1 and 𝑠

𝑐
−→ 𝑠2, then for some 𝑠 ′ ∈ S, 𝑠1

𝑐/𝑏
−−→ 𝑠 ′ and

𝑠2
𝑏/𝑐
−−→ 𝑠 ′.

Every confluent logistics automaton or constraint is p-attracting which is claimed by the following

lemma.

Lemma 16. Let 𝐿𝐶 = ⟨S,A𝑐𝑡 , .−→,S0⟩ be a confluent logistics automaton or constraint. Then 𝐿𝐶 is
p-attracting.

With respect to np-repulsiveness a similar relation holds, but only for logistics automata. A confluent

constraint is not necessarily np-repulsing, which is shown in the following example.

Example 11. Consider constraint𝐶 depicted in Figure 10.𝐶 is confluent and p-attracting (consistent
with Lemma 16). 𝐶 is not np-repulsing however, since the nonpermuting sequences 𝑎 and 𝑎𝑏 both lead
to state 𝑠0.

A confluent logistics automaton, on the other hand, is always np-repulsive. This also holds for

constraints that are non-recursive. This is posed in the following lemma.

Lemma 17. Let 𝐶 = ⟨S,A𝑐𝑡 , .−→,S0⟩ be a confluent logistics automaton or non-recursive constraint.
Then 𝐶 is np-repulsing.
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From Lemmas 16 and 17 we thus know that every confluent logistics automaton and non-recursive

constraint is both np-repulsing and p-attracting. The opposite is not true, which is demonstrated in

the following example.

Example 12. Consider automaton 𝐿 depicted in Figure 10. 𝐿 is both np-repulsing and p-attracting.
But for instance since 𝑠1 cannot make a transition with label 𝑐 , 𝐿 is not confluent.

For our our main reduction Theorem 4 to apply, the logistics automaton should be np-repulsing

and the constraint should be p-attracting. From From Lemma’s 16 and 17 we thus know this holds

in case of a confluent automaton and constraint.

6 EXPLOITING THE ALGEBRA
We defined equivalence and inclusion relations on logistics automata and their languages, and

proved that these relations are substitutive under all operators. In addition we proved commutativity,

associativity and distributivity properties and defined the notions of np-repulsiveness and p-

attractiveness. With this we defined an algebra on logistics automata. This algebra allows us
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to compare logistics specifications in a modular (algebraic) way, by systematically relating their

languages, their state-space and optimization-space sizes and their solutions to the BMO problem. In

addition it allows the exploitation of over-specification by the systematic introduction of constraints

to solve the BMO problem (for the constrained system) or BMO bounds (for the unconstrained

system). Hence the algebra facilitates a specification style and approach to keep the makespan

optimization problem in check. This is illustrated by the following examples.

Example 13. Assume that we want to compare specifications (((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3) ↾ 𝐶2 and
((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3 where 𝐶2 is a constraint on 𝐿1, 𝐿2 and 𝐿3 and 𝐿1, 𝐿2 and 𝐿3 are np-repulsing
automata and 𝐶2 is p-attracting. We can use our algebra to "massage" specification (((𝐿1 ⊙ 𝐿2) ↾
𝐶1) ⊙ 𝐿3) ↾ 𝐶2 as follows:

(((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3) ↾ 𝐶2

≈ {Distributivity of ↾ (Theorem 3.4)}(
(𝐿1 ⊙ 𝐿2) ↾ 𝐶1 ↾ 𝐶2

)
⊙ (𝐿3 ↾ 𝐶2)

≈ {Commutativity of ↾ (Theorem 3.3), substitutivity of ≈ under ⊙ (Theorem 3.6)}(
(𝐿1 ⊙ 𝐿2) ↾ 𝐶2 ↾ 𝐶1

)
⊙ (𝐿3 ↾ 𝐶2)

≈ {Distributivity of ↾ (Theorem 3.4), substitutivity of ≈ under ↾ (Theorem 3.10)

and substitutivity of ≈ under ⊙ (Theorem 3.6)}(
(𝐿1 ↾ 𝐶2 ⊙ 𝐿2 ↾ 𝐶2) ↾ 𝐶1

)
⊙ (𝐿3 ↾ 𝐶2)

⊑ {𝐿1 ↾ 𝐶2 ⊑ 𝐿1, 𝐿2 ↾ 𝐶2 ⊑ 𝐿2 and 𝐿3 ↾ 𝐶2 ⊑ 𝐿3 by Theorem 4,

substitutivity of ⊑ under ↾ (Theorem 3.9) and ⊙ (Theorem 3.5) and

commutativity of ⊙ (Theorem 3.1)}
((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3

Hence by Theorem 3.23 L((((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3) ↾ 𝐶2) ⊆ L(((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3). Therefore a
solution to the BMO problem of (((𝐿1 ⊙ 𝐿2) ↾ 𝐶1

)
⊙ 𝐿3) ↾ 𝐶2 is a suboptimal solution to the BMO

problem of ((𝐿1⊙𝐿2) ↾ 𝐶1) ⊙𝐿3 establishing a makespan bound thereof (Lemma 5). Further by Lemma
10 the state-space of

(
((𝐿1 ⊙ 𝐿2) ↾ 𝐶1

)
⊙ 𝐿3) ↾ 𝐶2 is at most as large as that of ((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3

and by Theorem 3.13 and Lemma 10 the optimization-space of (((𝐿1 ⊙ 𝐿2) ↾ 𝐶1

)
⊙ 𝐿3) ↾ 𝐶2 is

at most as large as that of ((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3. Since the optimization-space of the constrained
specification (((𝐿1 ⊙ 𝐿2) ↾ 𝐶1

)
⊙ 𝐿3) ↾ 𝐶2 is at most as large as that of the unconstrained specification

((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3, the effort to compute a solution is either smaller or equal to that of computing a
solution of the unconstrained specification ((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3. Therefore, the suboptimal solution
and makespan bound of the BMO problem of ((𝐿1 ⊙ 𝐿2) ↾ 𝐶1) ⊙ 𝐿3 is therefore easier to compute than
the optimal solution and makespan thereof.

Example 14. Now assume that we want to reduce the state-space and optimization-space of (𝐿1 ↾
𝐶1 ⊙ 𝐿2) ↾ 𝐶2 where 𝐿2 is an np-repulsing automaton. We can do so by applying some p-attracting
constraint 𝐶3 to 𝐿2. Then by Theorem 4 we know that 𝐿2 ↾ 𝐶3 ⊑ 𝐿2. Subsequently by applying
substitutivity of ⊑ under ⊙ (Theorem 3.5) we have (𝐿1 ↾ 𝐶1 ⊙ 𝐿2 ↾ 𝐶3) ⊑ (𝐿1 ↾ 𝐶1 ⊙ 𝐿2). But then
by applying substitutivity of ⊑ under ↾ (Theorem 3.9), we have (𝐿1 ↾ 𝐶1 ⊙ 𝐿2 ↾ 𝐶3) ↾ 𝐶2 ⊑ (𝐿1 ↾
𝐶1⊙𝐿2) ↾ 𝐶2. Similar to Example 13 we can now compute the BMO solution to (𝐿1 ↾ 𝐶1⊙𝐿2 ↾ 𝐶3) ↾ 𝐶2.
This gives a suboptimal solution to the BMO problem of (𝐿1 ↾ 𝐶1 ⊙ 𝐿2) ↾ 𝐶2, but it can be computed
more efficiently then the optimal solution.

Using our algebra of logistics automata we can define a systematic approach for the batch-oriented

specification and optimization of the logistics of flexible manufacturing systems as follows:
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(1) For each product in a batch, we write its product flow as an np-repulsing logistics automaton.

Note that this can always be done, since any logistics automaton can be written as a language-

equivalent automaton which is np-repulsing. For example, any logistics automaton 𝐿 can be

written in its tree form Tree(𝐿) which has the same language and is np-repulsing. In some

cases the product automata are actually confluent, and also np-repulsing (Lemma 17).

(2) The automaton describing a batch is then obtained via the composition of all individual

product automata. By Lemma 12 we know that the resulting automaton is also np-repulsing.

(3) Each system constraint should preferably be written as a p-attracting (or even confluent)

constraint automaton. This is important since by Theorem 4 and Lemma 10 the constraining

of an np-repulsing automaton with a p-attracting constraint automaton leads to a reduction

of the state-space and optimization-space of the logistics automaton. If a system constraint

cannot be written (or conveniently written) as a p-attracting automaton step 4 (applying

heuristics) is still applicable. This is because the constraining of a logistics automaton with

any constraint preserves its np-repulsiveness (Lemma 13).

(4) In some cases the optimization-space is still too large to efficiently compute a solution to the

BMO problem. In these cases we can introduce additional (non-essential) constraints to the

specification. These should be written as p-attracting (or even confluent) constraint automata

such that the optimization-space is effectively pruned, following Theorem 4 and Lemma 10.

Using this systematic approach to the specification of batch-oriented logistics one can keep the

makespan optimization problem in check. Further, it allows the exploitation of over-specification

by the systematic introduction of additional requirements to solve the BMO problem (for the

over-constrained system) or to find BMO makespan bounds (for the initial system specification).

Notice that the technique does not allow us to make a quantitative statement about the quality of

the solution obtained, if the unconstrained optimization-space can not be computed.

7 CASE STUDY
This section presents a case study in which we apply our framework to specify a wafer handling

controller and optimize its makespan. The wafer handling controller is one of the controllers of

an ASML TWINSCAN™ lithography scanner. These are manufacturing systems responsible for

the photo-lithography step in the semiconductor manufacturing process where circuit patterns

are exposed onto silicon wafers. Before this expose operation can occur, wafers must be correctly

conditioned (for temperature and orientation) and measured to detect defects on its surface. In the

case of the TWINSCAN™ , the measure and expose operations are decoupled which allows the

system to increase productivity by executing them in parallel. To achieve this, the scanner contains

two chucks that can change locations to perform either the measure or the expose operation.

We consider the input of the system to be a batch of 25 wafers which is the typical number

of wafers stored in a Front Opening Unified Pod (FOUP) [10]. In the next section we describe

the system in terms of its resources, activities, logistics and system requirements. We omit any

specification in terms of locations, layout, actions and execution times for confidentially reasons.

(a) Track_2_SUB (b) SUB_Conditioning (c) SUB_2_UR (d) UR_2_PA (e) PA_PreAlign
(f) PA_2_LR (g) LR_2_CH0 (h) CH0_Measure (i) CH0_Expose (j) CH0_2_UR
(k) LR_2_CH1 (l) CH1_Measure (m) CH1_Expose (n) CH1_2_UR (o) UR_2_DU
(p) CH0_M_2_E (q) CH1_M_2_E (r) CH0_E_2_M (s) CH1_E_2_M

Table 1. Set of activities of the wafer handling controller.
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7.1 Resources and Activities
For wafer handling eight resources are utilized which are depicted in Figure 11 by annotated circles.

Circles with a white background represent the production resources SUB, DU, PA, CH0 and CH1,

while darkened circles represent transport resource TR, LR and UR. There are two robots which

are used to transport wafers between the different processing units, the Load Robot (LR) and the

Unload Robot (UR). The Storage Unit (SUB) ensures that each wafer is conditioned to a predefined

temperature. The Pre-Aligner (PA) accurately aligns a wafer with respect to a reference position.

The Discharge Unite (DU) is an output buffer. The Track (TR) is a system external to the system

responsible for the input and output to and from the scanner. Finally, we have two chucks (CH0

and CH1) which are able to perform the scanner operations measure and expose.

Table 1 lists all the activities necessary to capture the good-weather manufacturing of a batch

of wafers. In this context good-weather means that we do not account for error or test scenarios.

Therefore many of the possible movement operations between resources, depicted by the directional

arrows in Figure 11, are not utilized. To avoid clutter in the figures and text we will refer to these

activities using bold-case letters as indicated in Table 1 (e.g. activity Track_2_SUB is referred by

letter a). To denote an activity that is performed on behalf of wafer 𝑖 we attach a corresponding

subscript to the activity name. For example, activity a_3 represents activity Track_2_SUB on behalf

of wafer 3. Activity a captures the input operation during which a wafer is loaded into the scanner

by the TR resource. Similarly, activity o captures the output of an exposed wafer from the system by

placing it on the DU resource. Activities b and e capture the pre-processing operations concerning

conditioning and pre-aligning. Activity b conditions the wafer temperature for an accurate exposure

and activity e aligns the wafer to minimize the overlay error of multiple exposures. Activities l and
h capture the measure operations on the CH0 and CH1 resources, respectively, and activitiesm
and i capture the expose operations on the CH0 and CH1 resources, respectively. Resources CH0

and CH1 need to be in specific locations to perform the measure and expose operations. Activities

p, q, r and s capture the movement of resources CH0 and CH1 from and to the measure and expose

locations. For example activity CH0_M_2_E (p) captures the moving of resource CH0 from the

measure location (M) to the expose location (E). Activities c, d, f, j, g, k, n and o capture the

movement of wafers across the system using resources LR and UR. These are always described by

an initial and destination resource. For example, activity PA_2_LR (f) captures the movement of a

wafer from the PA resource to the LR resource.

7.2 Wafer Logistics
For every wafer we define its life-cycle (wafer product flow). Figure 12 depicts logistics automaton

𝐿LC𝑖
which captures the life-cycle of wafers 𝑖 in a batch of wafers. This life-cycle starts with

the input of a wafer into the scanner by placing it on the SUB resource. This is done by the TR

resource (activity a_i). Once on the SUB resource, the wafer is conditioned to a pre-defined range

of temperatures (activity b_i). After conditioning, the wafer is moved from the SUB resource to

the PA resource using the UR resource as an intermediary (activities c_i and d_i). The PA resource

accurately aligns the wafer to a reference (activity e_i). Once aligned, the wafer is picked by the LR

resource from the PA (activity f_i). At this point the controller has a choice to either load the wafer
on chuck resource CH0 or on chuck resource CH1, (activity g_i or activity k_i respectively). This is
visible in automata 𝐿LC𝑖

by the branching after activity f_i. Assume that the controller picks the

CH0 resource (upper branch). In this case, the wafer is measured and then exposed using resource

CH0. After measuring (activity h_i), resource CH0 moves from the measure location to the expose

location (activity p_i). Once in the expose location the wafer is exposed with a certain circuit

pattern (activity i_i). Then resource CH0 moves from the expose location to the measure location
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a_i b_i c_i d_i e_i f_i
g_i h_i r_i j_i

k_i

l_i s_i n_i

o_ip_i i_i

q_i m_i o_i

LLCi

j_s0 o_s0

LLCs0

s_s1 n_s1m_s1 o_s1

LLCs1 LLCc1

LLCc0

a_c1 b_c1 c_c1 d_c1 e_c1 f_c1
g_c1 h_c1

k_c1

l_c1

p_c1

q_c1

a_c0 b_c0 c_c0 d_c0 e_c0 f_c0
g_c0

k_c0

Fig. 12. Logistics automaton 𝐿LC𝑖
capturing the life-cycle for a wafer 𝑖 of a batch of wafers and logistics

automata 𝐿LC𝑠0
, 𝐿LC𝑠1

, 𝐿LC𝑐1
and 𝐿LC𝑐0

capturing the life-cycle of dummy wafers s0, s1, c1 and c0 respectively.

(activity r_i). Once returned at the measure location, the wafer is moved from the CH0 resource to

the UR resource and finally placed on the DU resource to be outputted by the TR resource (activities

j_i and o_i, respectively). In case the controller picks the CH1 the product flow remains similar,

however, the activities for the CH1 resource would be executed k_i, l_i, q_i,m_i, s_i and n_i.
Whenever the system is not in production, dummy wafers are loaded on the chuck resources

for safety reasons. For this case-study we take this into account by modeling four dummy wafers

s0, s1, c0 and c1. Dummy wafers s0 and s1 represent the dummy wafers already in the system

before the processing of a FOUP, while c0 and c1 represent the dummy wafers that should be

loaded once the FOUP is processed. We assume that CH0 starts at the measure location and that

CH1 starts at the expose location. This is enforced in the life-cycle of dummy wafers s0 and s1

captured by logistics automata 𝐿LC𝑠0
and 𝐿LC𝑠1

depicted in Figure 12. The life-cycle of s0 starts with

the unloading of the dummy wafer from the CH0 resource to the UR resource (activity j_s0) and
ends with its placement on the output buffer DU (activity o_s0). The life-cycle of s1 starts with the

expose activity of dummy wafer s1 (activity m_s1) followed by the movement of the CH1 resource

to the measure location (activity s_s1), its unloading to the UR resource (activity n_s1) and finally

its placement on the output buffer DU (activity o_s1). The life-cycle of dummy wafers c0 and c1

follows the same flow as the life-cycle of a production wafer but ends in different final states. These

are captured by logistics automata 𝐿LC𝑐0
and 𝐿LC𝑐1

depicted in Figure 12. The life-cycle of c0 ends

once the dummy wafer is loaded onto either the CH0 resource or the CH1 resource (activity g_c0
or k_c0). The life-cycle of c1 ends once the dummy wafer is moved to the expose location placed

either on the CH0 resource and CH1 resource (activity p_c1 or q_c1).
The batch specification of a batch of 25 wafers is given by the following logistics expression:

𝐿LC𝑠0
⊙ 𝐿LC𝑠1

⊙ (𝐿LC1
⊙ 𝐿LC2

⊙ · · · ⊙ 𝐿LC25
) ⊙ 𝐿LC𝑐1

⊙ 𝐿LC𝑐0
. For brevity we will refer to this composite

automaton as 𝐿LC. Note that each of the life-cylce automata in Figure 12 is np-repulsing and that

by Lemma 12 the composition 𝐿LC is therefore also np-repulsing.

7.3 System Requirements
On top of the product flow there are certain functional requirements on the manufacturing of a

batch of wafers. These are listed and explained below:

(1) Products shall enter and leave the system in a First-In-First-Out (FIFO) order.
(2) There shall only be one product at a time in each resources (unary capacity).
(3) Wafers shall not collide (i.e. products shall not be be placed on a occupied resource).
(4) Chucks must swap positions in between every measure and expose activity (Swap).
(5) Chucks must be loaded and unloaded at the measure location.
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Fig. 13. Constraint automata 𝐶SUB,𝐶UR,𝐶LR,𝐶PA,𝐶CH0 and 𝐶CH1 capturing capacity requirements for the
wafer handling resources and constraint automata 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 capturing the FIFO input and output ordering

Requirement 1 is captured by constraint automata 𝐹in and 𝐹out depicted in Figure 13. This is done

by ordering input and output activities a and o for all wafers in the FOUP and dummy wafers s0,

s1, c0 and c1. Requirements 2 and 3 are satisfied by enforcing that activities that place a wafer on a

resource can only occur after a corresponding activity that picks a wafer from that resource and

vice-versa. This is captured by p-attracting constraint automata 𝐶SUB,𝐶UR,𝐶LR,𝐶PA,𝐶CH0 and 𝐶CH1

depicted in Figure 13. For example, consider automata𝐶SUB. The initial state represents the resource

to be empty and the other state represents the resource to be occupied. To avoid cluttering the

automata figures we write act_∗ to represent 25 different transitions with labels act_1, · · · , act_25
corresponding to the 25 production wafers in a FOUP (where act denotes the name of an activity).

If the resource is empty, activities a_∗, a_c1 and a_c0 are enabled since these imply the placing

of wafer on the SUB. If an activity a_∗, a_c1 or a_c0 is executed, then it is enforced that another

activity a_∗, a_c1 or a_c0 can only occur if an activity c_∗, c_c1 or c_c0 occurs in between.

Requirements 4 and 5 are partially enforced by the logistics product flow 𝐿LC𝑖
and partially by p-

attracting constraint automata 𝐶Swap, 𝐶UnloadLoad0
and 𝐶UnloadLoad1

depicted in Figure 14. Constraint

automaton 𝐶Swap enforces that after every execution of the measure and expose activities, chuck

resources CH0 and CH1 swap positions. The initial state of𝐶Swap considers two initial situations: 1)

CH0 is at the measure location and CH1 is at the expose location or 2) CH1 is at the measure location

and CH0 is at the expose location. Situation 1) is captured by the lower branches and 2) by the top

branches. After executing the corresponding measure and expose operation the chuck resources

CH1 and CH0 swap locations. In situation 1) CH0 moves from measure to expose (activities p_*
and p_c1) and CH1 from expose to measure (activities s_* and s_s1) and in 2) CH1 moves from

measure to expose (activities q_* or q_c1) and CH0 from expose to measure (activities r_*). This
flow is then repeated for each of the initial situations captured by cases 1) and 2). P-attracting

constraint automata 𝐶UnloadLoad0
and 𝐶UnloadLoad1

enforce that the loading and unloading of a chuck

to and from resources CH0 and CH1, respectively, only occurs if the respective chuck resource is at

the measure location. In the case of resource CH0 (captured by 𝐶UnloadLoad0
), its starting position

is at the measure location and therefore the initial state enables both the loading (activities n_*
or n_s1) and the unloading (activities k_*, k_c0 or k_c1) of a wafer. If the wafer is unloaded the

automaton moves to a state where it still enables the loading of another wafer. Once a wafer is

loaded onto the resource then the automata moves to a state where it first requires that the chuck

resource moves again to the measure location before allowing it to load or unload a wafer again.

The flow is similar for CH1 with the difference that the CH1 resource starts at the expose location.
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Fig. 14. Constraint 𝐶Swap capturing the exchange of chuck positions after measure and expose operations;
constraint𝐶UnloadLoad0 and𝐶UnloadLoad1 enforce that the load/unload of wafers occurs at the measure location
and constraint 𝐶Exchange captures a specific order of the exchange of wafers from and to CH0 and CH1.

Table 2. Size of the state-space and optimization-space, and computed makespan for a FOUP (25 wafers and
4 dummy wafers).

State-Space Optimization-Space

Model N. States N. Transitions N. States N. Transitions Makespan (s)

Logistics - - - - -

+Capacity - - - - -

+FIFO 65823 216611 - - -

+Swap 13630 39738 772806 2200049 331.7

+Exchange 9778 28225 264854 737499 331.7

The specification of a batch of 25 wafers is now obtained by constraining logistics automaton

𝐿LC with all of the (p-attracting) constraints described above: 𝐿LC ↾ 𝐶COND ↾ 𝐶UR ↾ 𝐶LR ↾ 𝐶PA ↾
𝐶CH0 ↾ 𝐶CH1 ↾ 𝐹𝑖𝑛 ↾ 𝐹𝑜𝑢𝑡 ↾ 𝐶Swap ↾ 𝐶UnloadLoad1

↾ 𝐶UnloadLoad1
.

7.4 Wafer Logistics Optimization
Now that we have introduce the wafer handling controller its logistics requirements and system

constraints we compute the optimization-space and the solution to the BMO for a batch of 25

wafers (including the 4 dummy wafers 𝑠0, 𝑠1, 𝑐0 and 𝑐1). The values presented in this section are

computed in a system with an Intel i7 920@2.67Ghz with 8 cores and 32GB of RAM memory. We

use the CIF tool [18] to compute the state-spaces of logistics automata and the algorithms of [6, 19]

to compute the corresponding optimization-spaces and optimal activity sequences.

Table 2 shows the results in terms of the number of states (N. States) and transitions (N. Tran-

sitions) of the state-space and optimization-space as well as the obtained minimal makespan

(Makespan) for the processing of a FOUP by the wafer handler. In case we are not able to compute

the state-spaces this is noted with a (-) symbol. The values for the state-space and optimization-

space sizes of 𝐿LC are shown in the first row (Logistics) of Table 2. Each additional row of the table

represents the cumulative addition of another requirement (indicated by the + symbol). Where

+Capacity refers to automaton (𝐿LC) ↾ 𝐶COND ↾ 𝐶UR ↾ 𝐶LR ↾ 𝐶PA ↾ 𝐶CH0 ↾ 𝐶CH1, +FIFO to

automaton (𝐿LC ↾ 𝐶COND ↾ 𝐶UR ↾ 𝐶LR ↾ 𝐶PA ↾ 𝐶CH0 ↾ 𝐶CH1) ↾ 𝐹𝑖𝑛 ↾ 𝐹𝑜𝑢𝑡 and +Swap to automaton
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(𝐿LC ↾ 𝐶COND ↾ 𝐶UR ↾ 𝐶LR ↾ 𝐶PA ↾ 𝐶CH0 ↾ 𝐶CH1 ↾ 𝐹𝑖𝑛 ↾ 𝐹𝑜𝑢𝑡 ) ↾ 𝐶Swap ↾ 𝐶UnloadLoad1
↾ 𝐶UnloadLoad1

.

We observe that the cumulative constraining of the system with Capacity, FIFO and Swap require-

ments systematically reduces the size of the state-space and optimization-space until the point that

the optimization-space can be explicitly constructed and a solution to the BMO problem can be

computed, yielding a minimal makespan of 331.7 seconds. For the specifications which we are able

to compute the logistics automaton, a solution to the BMO problem is computed within 2 minutes.

Even though it is sufficient to apply all system constraints to compute the makespan optimal activity

sequence, we demonstrate the effectiveness of the heuristics approach by further pruning the state-

space and optimization-space. Since the Capacity, FIFO and Swap requirements are p-attracting,

we know that their application to 𝐿LC resulted in an np-repulsing automaton. The optimization

space can thus be pruned further by applying additional p-attracting automata. To illustrate this

we will use over-specification by subsequently formalizing a non-essential requirement.

Each wafer must eventually be placed on either the CH0 or CH1 resource of the expose stage

for the measure and expose activities to take place. This is realized by a combination of activities

j_i and g_i or n_i and k_i. The process of loading and unloading a wafer to and from CH0 and

CH1 always takes place from the measure location. Therefore, chucks CH0 and CH1 must always

move first to the measure location before exchanging an exposed wafer for a new wafer. Further,

to maximize productivity both chucks should be utilized in an effort to parallelize the measure

and expose activities. For these reasons an exchange should always consider an exposed wafer

𝑖 and an non-exposed wafer 𝑖 + 2. Due to this, we figured that a proper heuristic is defined by

p-attracting constraint automaton 𝐶Exchange𝑖
(depicted in Figure 14) which enforces a specific order

between unload of wafer 𝑖 from either CH0 or CH1 and the load of wafer 𝑖 + 2 to the corresponding

chuck resource. This constraint is instantiated for each wafer 𝑖 where 1 ≤ 𝑖 ≤ 25. For the last two

dummy wafers this requirement is not enforced. The results are shown in Table 2 in the +Exchange

row. Because we could already compute the optimal solution without over-specification, we can

compare quantitatively the impact of the additional constraint: it reduces the optimization-space

by more than 60%. Note that the optimal result is preserved even though the system is further

constrained with over-specification in this case.

8 RELATEDWORK
To the best of our knowledge, this is the first work in which an algebraic framework is developed

to systematically reason about state-space sizes. This work combines the ingredients from the

modular constraint-oriented approach of the LOTOS framework [8] and of Supervisory Control

Theory (SCT) [16] developed in [19] and applied in [12]. We build upon the general concepts of

SCT, but refine this framework by allowing only non-recursive requirements and by explicitly

distinguishing logistics automata from constraint automata.

To get insight in the impact of automata composition on the state-space sizes we took inspiration

from the Calculus of Communication Systems (CCS) [14], in particular from Milner’s simulation

relation ≺. This relation captures behavior but abstracts from all structural information of the

automata. We strengthen this relation by adding structural information (in the form of an injectivity

requirement) to allow qualitative reasoning about state-space sizes. In addition it benefits from the

effective proof technique of establishing simulation relations. The strengthening of pre-order ≺
makes ⊑ into a partial-order. As far as we have been able to verify, this is the first work in which

the inclusion relation ⊑ (to compare transitions systems in both a behavioral and in a structural

way) is established, together with its algebraic properties.

It is important to mention that for some instances of the BMO problem other heuristics-based

and approximation techniques could be applicable. For example by using heuristics from different

job-shop [2] or vehicle routing [7] problems.
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In addition to our approach, some of these solutions include deadlines and due dates [21–

23] and other types of timing constraints [3, 4]. However, they do not focus on expressing or

guaranteeing the satisfaction functional requirements. Moreover, the application of such techniques

and algorithms is quite dependent on the actual instance of the problem we might be trying to

solve. In [2] a survey of different solutions to diverse flexible job-shop formulation is carried out,

considering systems with multiple operation assignments, multiple transport routing choices,

resource sharing, setup times and other system requirements. We conjecture that our work can

specify and optimize all of these variants, except those dealing with timing constraints (e.g. deadlines

and due dates). Notice that a direct comparison of these optimization approaches to the design

framework presented would not be a fair, since it would focus solely on the makespan computation

and not on other features such as the specification methodology and the algebraic framework or

guaranteeing the satisfaction of functional requirements.

9 CONCLUSIONS
In this paper we extended the framework of [6, 19] by introducing an algebra on logistics automata.

This algebra allows us to compare logistics specifications in a modular (algebraic) way, by relating

their languages, their state-space and optimization-space sizes and their solutions to the BMO

problem. To this end we defined equivalence and inclusion relations on logistics automata and their

languages and established important algebraic properties for the composition (⊙), constraining (↾),
MaxPlus and Tree operators. We showed that our inclusion relation is a partial-order relation and

that if a logistics automaton is included in another, the state-space of the former never exceeds that

of the later. Further, we showed that a logistics automaton is always included in its corresponding

(max,+) automaton.

We also established sufficient conditions to ensure that the constraining of a logistics automaton

leads to the pruning of its state-space. To this end, we defined the notions of np-repulsiveness and

p-attractiveness and showed: 1) that np-repulsiveness and p-attractiveness are preserved under the

composition operator; 2) that np-repulsiveness is preserved by general constraining and 3) that

the constraining of an np-repulsing logistics automaton with a p-attracting constraint automaton

effectively reduces the size of the state-space and optimization-space of the logistics automaton.

Further we related the notions of np-repulsiveness and p-attractiveness to the notion of confluence

and showed that: 1) a confluent logistics automaton is both np-repulsing and p-attracting, but not

vice versa; 2) a confluent constraint automaton is p-attracting, but not necessarily np-repulsing.

Using the algebra of logistics automata and its properties we defined a method for the batch-

oriented specification of the logistics of flexible manufacturing systems. In essence, logistics re-

quirements should be written as np-repulsing logistics automata and constraints as p-attracting

constraint automata. Satisfying these conditions ensures that constraining the logistics automaton

effectively reduces the size of its state-space and optimization-space. Furthermore, it also allows

the exploitation of over-specification by the systematic introduction of additional requirements to

solve the BMO problem (for the over-constrained system) or to find BMO makespan bounds (for

the initial non over-constrained system specification). This method facilitates a specification style

and optimization approach to keep the makespan optimization problem in check.

We demonstrated the applicability of the algebra and of the specification method by solving

the BMO problem of an industrial case study of a wafer handling controller as well as to the

xCPS system in [11]. Further we formalized a non-essential requirement of the wafer handler as a

p-attracting constraint automaton and showed that its addition to the specification results in the

reduction of the optimization-space of 60% compared with the original state-space and for which

the optimal result was preserved.
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There are a number of research directions to extend this work. An interesting direction would be

perform state-space and optimization-space expansion in tandemwith makespan optimization. Such

an on-the-fly approach would avoid the explicit construction of the state-space and optimization-

space of a logistics automaton. Furthermore, partial-order reduction techniques, such as the one

proposed in [20], could be applied to avoid the exploration of redundant sequences. Another

interesting research direction would be the generalization of this algebra and its application to

finite-state automata. Moreover, the specification of latency requirements has not been explored in

the work presented, which constitutes an important research direction to allow a broader class

of flexible manufacturing systems to be specified. Finally, more case studies (e.g. in the printing

domain) would help to investigate the limitations of the approach and to generalize it.
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