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There exist many dataflow applications with timing constraints that require real-time guarantees on safe
execution without violating their deadlines. Extraction of timing parameters (offsets, deadlines, periods) from
these applications enables the use of real-time scheduling and analysis techniques, and provides guarantees
on satisfying timing constraints. However, existing extraction techniques require the transformation of
the dataflow application from highly expressive dataflow computational models, for example, Synchronous
Dataflow (SDF) and Cyclo-Static Dataflow (CSDF) to Homogeneous Synchronous Dataflow (HSDF). This
transformation can lead to an exponential increase in the size of the application graph that significantly
increases the runtime of the analysis.

In this article, we address this problem by proposing an offline heuristic algorithm called slack-based
merging. The algorithm is a novel graph reduction technique that helps in speeding up the process of timing
parameter extraction and finding a feasible real-time schedule, thereby reducing the overall design time of
the real-time system. It uses two main concepts: (a) the difference between the worst-case execution time of
the SDF graph’s firings and its timing constraints (slack) to merge firings together and generate a reduced-
size HSDF graph, and (b) the novel concept of merging called safe merge, which is a merge operation that
we formally prove cannot cause a live HSDF graph to deadlock. The results show that the reduced graph
(1) respects the throughput and latency constraints of the original application graph and (2) typically speeds
up the process of extracting timing parameters and finding a feasible real-time schedule for real-time
dataflow applications. They also show that when the throughput constraint is relaxed with respect to the
maximal throughput of the graph, the merging algorithm is able to achieve a larger reduction in graph size,
which in turn results in a larger speedup of the real-time scheduling algorithms.

CCS Concepts: � Theory of computation → Streaming models; � Computer systems
organization → Real-time system specification; � Software and its engineering → Data flow ar-
chitectures;
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1. INTRODUCTION

The Synchronous Dataflow (SDF) model of computation [Lee and Messerschmitt 1987]
is widely used for representing streaming applications. This is due to its simplicity and
ability to exploit parallelism in embedded streaming applications. SDF is a parallel
computation model that satisfies the high processing requirements of streaming ap-
plications, for example, H.264 video decoders [Kim et al. 2010], by enabling the use of
massive computational power of current multi- and many-core processors [Pankratius
et al. 2009].

The SDF model can be used to analyse and derive different parameters that define a
dataflow application. Examples of these parameters are throughput [Ghamarian et al.
2008; Damavandpeyma et al. 2012], latency [Ghamarian et al. 2007; Bamakhrama
and Stefanov 2012], scheduling [Moreira et al. 2007], and timing parameters (offsets,
deadlines, and periods) [Bamakhrama and Stefanov 2011; Saifullah et al. 2011; Ali et al.
2015; Bekooij et al. 2005; Liu et al. 2014; Hausmans et al. 2013]. Some of these analysis
algorithms operate directly on SDF graphs, while many others require transformation
to Homogeneous Synchronous Dataflow (HSDF) graphs prior to the analysis. This
transformation can lead to an exponential increase in the size of the original SDF
graph, which significantly increases the runtime of the analysis algorithm.

Timing parameter extraction algorithms for cyclic HSDF graphs (i.e., Ali et al. [2013,
2015], Moreira et al. [2007], and Hausmans et al. [2013]) are examples of algorithms
where the size of the HSDF graphs significantly affects the runtime. These algorithms
enable the use of a wide range of real-time scheduling and analysis techniques on
dataflow applications with timing constraints. There are other techniques that have
been proposed for extracting timing parameters directly from different dataflow com-
putational models [Bamakhrama and Stefanov 2011, 2012; Liu et al. 2014]. However,
these techniques are restricted to acyclic graphs. In all cases, the size of the input
graphs affects the runtime of the algorithms.

The problem of extracting timing parameters is not only restricted to dataflow appli-
cations with timing constraints. It can be generalised to cover parallel applications with
timing constraints. This problem has been addressed by several works [Saifullah et al.
2011; Lipari and Bini 2011; Qamhieh et al. 2013; Pinho et al. 2014], where the authors
model the parallel application as a graph of communicating tasks. They propose algo-
rithms for extracting timing parameters of these applications that allow them to apply
real-time scheduling and analysis techniques that provide guarantees on safe execu-
tion without violating timing constraints. Similarly to dataflow, the runtime of these
algorithms has a direct relation to the size of the input graphs. This shows the need for
graph reduction techniques to speed up the process of timing parameter extraction and
finding a feasible real-time schedule. The problem of generating reduced-size HSDF
graphs has been tackled before in Geilen [2009]. However, the generated graph is not
suitable for extracting timing parameters, as explained in detail in Section 2.

In this article, we propose a heuristic algorithm called slack-based merging. It is an
offline graph reduction technique that aims to speed up the process of timing parameter
extraction and finding a feasible real-time schedule, thereby reducing the overall design
time of the real-time system. To achieve this goal, the algorithm combines two main
concepts: (a) the slack, which is the difference between the worst-case execution time
of the SDF graph’s firings and its timing constraints, and (b) the safe merge, which
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is a novel merging concept that we formally prove cannot cause a live HSDF graph
to deadlock. The output is a reduced-size HSDF graph that satisfies the throughput
and latency constraints of the original application graph. However, it may have a
decreased maximum throughput compared to the original one. This reduction is not
a problem because in real-time systems there is no need to do better than the timing
constraints (throughput and latency) and our algorithm exploits this to address the
scalability problem that comes from HSDF transformation. The experimental results
show that the generated reduced-size HSDF graphs speed up the process of extracting
their timing parameters and finding a feasible real-time schedule compared to using
the original HSDF graphs. Moreover, when the throughput constraint is relaxed with
respect to the maximal throughput of the application graph, the merging algorithm
is able to achieve a larger reduction in graph size, which in turn results in a larger
speedup in the parameter extraction and scheduling processes.

The remainder of this article is organized as follows. Section 2 provides an overview
of related work. Section 3 provides the necessary preliminaries to understand the
system model and the proposed algorithm. The slack-based merging algorithm and its
complexity analysis are detailed in Section 4. Section 5 provides experimental results.
Finally, we provide conclusions in Section 6.

2. RELATED WORK

This section reviews the state of the art related to timing parameter extraction algo-
rithms and reduction techniques for dataflow graphs.

There exist several works on extracting timing parameters of dataflow applications
with timing constraints. For example, Moreira et al. [2007] presents a method to cal-
culate individual deadlines of HSDF actors. The method is based on an Integer Linear
Programming (ILP) optimization problem that finds the amount of slack for each actor
that makes it able to extend its execution without violating the HSDF throughput and
timing constraints. However, their proposed method is restricted to strongly connected
HSDF graphs. In Hausmans et al. [2013], the authors propose a temporal analysis
for dataflow applications modelled as cyclic HSDF graphs under a nonstarvation-free
scheduler, that is, Static-Priority Preemptive scheduling (SPP). To apply their analy-
sis, they extract timing properties like offsets, periods, and execution times, but not
deadlines. In Ali et al. [2015], the authors proposed a generalised algorithm for de-
riving timing parameters (offsets, deadlines, and periods) of actors of cyclic HSDF
applications with multiple inputs and outputs. The proposed algorithm enables apply-
ing a wide range of real-time scheduling (static and dynamic priorities) and analysis
techniques. In Bamakhrama and Stefanov [2011, 2012] and Liu et al. [2014], the au-
thors provide an analytical framework for computing timing parameters for actors of
Cyclo-Static Dataflow (CSDF) applications with a single input. Although these works
use expressive computational models as input, their approaches are limited to acyclic
graphs. In Bouakaz et al. [2012], the authors present a new dataflow computational
model that is a superset of SDF/CSDF application graphs called Affine Dataflow (ADF).
The ADF is a time-triggered dataflow model that explicitly represents each firing of
each actor in a complete iteration of the graph as a so-called clock tick. These clock ticks
are related to each other using firing relations called affine relations. These relations
maintain precedence constraints between different firings of actors in the graph, since
it ensures the correct execution order of different clock ticks. Based on this framework,
they present an algorithm that computes affine schedules for these clock ticks, where it
enables applying real-time scheduling algorithms, for example, earliest deadline first
or rate monotonic. However, the use of clock tick representation and affine relations
to represent the firing behaviour of actors does not speed up the process of finding a
feasible schedule, because it indirectly transforms the ADF to an HSDF graph (using
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the clock tick representation) to be able to find a feasible schedule. In addition, the
presented algorithm does not support end-to-end latency constraints, since it assumes
an implicit-deadline task model.

The problem of extracting timing parameters is not restricted to dataflow applica-
tions with timing constraints. It also extends to cover general parallel applications
with timing constraints. In Lipari and Bini [2011], the authors present a deadline as-
signment approach called ORDER for dependent tasks composing real-time pipeline
applications executing on a multicore system. The proposed approach considers the
problem of scheduling a pipeline such that the end-to-end deadline is met and the
amount of required resource capacity is minimal. In Saifullah et al. [2011], the authors
also address the problem of scheduling periodic tasks, each consisting of subtasks form-
ing an acyclic graph. They are assigned individual deadlines and release times such
that all subtasks have equal densities. Another approach presented in Qamhieh et al.
[2013] calculates offsets and deadlines for subtasks in an acyclic task graph based on
computing the interference between each subtask and the higher-priority subtasks of
all tasks in an acyclic graph running on the system.

In all previous work, the runtime of the proposed timing parameter extraction al-
gorithms has a direct relation with the size of the input graph. Reducing the size of
the input graph will likely have a positive effect on the algorithm runtime. This is be-
cause these algorithms will have less number of actors/tasks for which to extract timing
parameters, which is the main goal of our proposed algorithm.

In Geilen [2009], the authors propose a SDF graph reduction technique based on
maxplus algebra. It transforms an SDF graph into a smaller HSDF graph with equiv-
alent maximal throughput and latency, which is faster to analyse. However, the output
HSDF graph of this technique hides the actual execution behaviour of the original SDF
graph, because a single firing of an SDF actor can exist in multiple actors of the output
HSDF graph. This means that a single firing in the SDF graph is executed multiple
times in the output HSDF graph, which complicates extracting timing parameters
and finding a feasible schedule. In contrast, we propose a reduction algorithm that
generates a reduced-size HSDF graph that speeds up the process of extracting timing
parameters, as shown in the experiments. In addition, having a reduced-size graph
speeds up the process of finding a feasible mapping and schedule for the application,
since the number of tasks in the generated graph is smaller compared to the original
HSDF graph. Also, the generated graph represents the actual execution behaviour of
the original graph, avoiding the problem with the approach in Geilen [2009]. It also en-
sures that the throughput and latency constraints are met, although with a possibility
of having a lower maximum throughput compared to the original graph. This is not a
problem, because the main goal for real-time systems is satisfying timing constraints.

Also, having a reduced-size graph speeds up the process of finding a feasible mapping
and schedule for the application, since its number of tasks is smaller compared to the
original HSDF graph.

3. PRELIMINARIES

In this section, we present background material that is essential for understanding the
computational model, the system model, and the proposed algorithm.

3.1. Synchronous Dataflow

The Synchronous Dataflow (SDF) model of computation [Lee and Messerschmitt
1987] is widely used in modelling and analysing streaming, Digital Signal Processing
(DSP), and concurrent multimedia applications [Bhattacharyya et al. 1999; Sriram and
Bhattacharyya 2000]. Its use is considered for designing applications for multi- and
many-core processors [Poplavko et al. 2003; de Dinechin et al. 2013]. A synchronous
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Fig. 1. An SDF graph and its HSDF representation.

dataflow application graph, shown in Figure 1(a), is a data-driven network of actors
(nodes), where the same behaviour repeats in each actor every time it is executed.
An actor fires (executes) once all its input ports have the required tokens (data) for
consumption. Each actor has production and consumption rates associated with its
ports that determine the number of input and output tokens atomically produced and
consumed in the firing process. Also, they determine the number of firings of each actor
in a complete graph iteration, which is called a repetition vector. In SDF, the network
that connects the actors (channels) can have initial tokens. Every initial token repre-
sents a delay between the token that is produced and consumed at the other end of the
channel. Tokens are always consumed in a First In First Out (FIFO) order.

3.2. Homogeneous Synchronous Dataflow

Homogeneous Synchronous Dataflow (HSDF) [Lee and Messerschmitt 1987], as shown
in Figure 1(b), is a special case of SDF graphs in which all production and consumption
rates associated with actor ports are equal to 1. Therefore, when each actor is fired
once, the distribution of tokens on all channels return to their initial state completing
a graph iteration.

Every SDF [Lee and Messerschmitt 1987] graph can be converted to an equivalent
HSDF graph. Figure 1 shows an example of an SDF graph and its equivalent HSDF
graph. The conversion can be done using several algorithms, such as the one presented
in Sriram and Bhattacharyya [2000]. The conversion to HSDF is fundamental, since
many dataflow analysis algorithms depend on it.

3.3. Buffer Modelling in SDF Graphs

In theory, SDF channels have infinite buffer sizes. However, in practice SDF channel
buffer sizes must be finite. Finite buffer sizes for channels can be modelled by adding
back-edges carrying a number of initial tokens. These initial tokens on each back-edge
represent the buffer size (in tokens) available to the corresponding channel. Figure 2(a)
shows the example application from Figure 1(a), considering finite buffer sizes. As we
can see, the channels (ab, bc, cd) have buffer sizes of (3, 1, 3) tokens, respectively. These
buffer sizes are modelled as back-edges (ba, cb, dc) carrying initial tokens equivalent to
the corresponding channel buffer size, as shown in Figure 2(a). The modelling of buffers
in an SDF graph affects its execution behaviour, because it adds extra dependencies
between firings of different actors, limiting the set of possible firing sequences of the
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Fig. 2. An SDF graph and its HSDF representation with finite-size buffers.

graph. Figure 2(b) shows an HSDF graph representation of the SDF graph shown in
Figure 2(a). As we can see, firing b1 is dependent on the three firings a0, b0, and c0.
However, in the infinite buffer case shown in Figure 1(b) the same firing b1 is only
dependent on firings a0 and b0, which gives the application the freedom to fire b1 and
c0 in parallel.

3.4. System Model

Any SDF application can be formally represented by a Directed Cyclic Graph (DCG)
G = 〈V, E, d〉, where V is the set of nodes, E is the edges connecting them, and d is
the set of delays (initial tokens) on the edges of the graph. Each node in this graph
is an actor vi and each edge is a communication channel. An SDF graph G has a
repetition vector �q that determines the number of firings qi of each actor vi ∈ V in
one complete graph iteration (i.e., minimal number of firings to return to same token
distribution). Each actor vi ∈ G has a computation time denoted by Ci. The jth firing
of an SDF actor vi in G is denoted by vi j and executes for Ci time units. An SDF
application has throughput and latency requirements that must be satisfied for the
correct execution of the application. The throughput requirement ζ is a performance
measure that determines the minimum output data rate of the application (graph
iterations per time unit). The latency requirement L is an end-to-end timing constraint
that defines the latest possible time a complete graph iteration of G could finish its
execution. In case the end-to-end deadline constraint of G is not defined, L can be set
to any value such that L is greater than or equal to the execution time of the Critical
Path (CP) in G, defined as follows:

L ≥
∑

∀vi j ∈C P

Ci. (1)

Intuitively, the CP is the longest path of firings vi j , in terms of execution time Ci, from
the input to the output of G.

In this model, we assume that all the SDF applications have periodic input sources
and all actors computation time Ci are equal to the Worst Case Execution Time (WCET),
which can be determined using methods and tools detailed in Wilhelm et al. [2008].
Therefore, each firing vi j of an actor vi in any SDF application can be considered a
periodic task with an execution time Ci equal to WCET. The choice of WCET is safe,
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because the dataflow model of computation is monotonic, which means faster execution
of actors does not result in a worse performance.

4. PROPOSED ALGORITHM

In this section, we present the slack-based merging algorithm intended to reduce the
size of an HSDF graph with timing constraints. In the following sections, we introduce
some definitions required to specify the proposed algorithm (Section 4.1). Then, we
detail the merging strategy of our algorithm (Section 4.2), as well as the conditions for
guaranteeing a valid merge (Section 4.3). Finally, we present the slack-based merging
algorithm (Section 4.4) followed by its complexity analysis (Section 4.5) and an example
illustrating how it works (Section 4.6).

4.1. Definitions

In this section, we define parameters and concepts essential to our proposed algorithm.
They are (1) the earliest start time of a firing vi j , (2) the latest finish time of a firing
vi j , (3) a topologically ordered set of actors, (4) the concept of dependent/independent
firings, and (5) the safe merge concept, which is fundamental for understanding the
slack-based merging algorithm. We also prove that a safe merge is a deadlock-free
operation.

Firstly, the earliest start time of a firing parameter defines the earliest possible time
instance a firing vi j can start its execution. It is defined as follows:

Definition 4.1 (Earliest Start Time of a Firing). In an SDF application G, the earliest
start time of the jth firing vi j of an actor vi occurs once all of its input ports have the
required input tokens. The required input tokens are available when the latest firing
in the set of predecessor firings �(vi j ) occur, which contains all the firings that must
execute before to enable the firing vi j . The set of predecessor firings �(vi j ) represents
the set of precedence constraints that must be satisfied before the vi j firing. Therefore,
the earliest start time ϑi j of a firing vi j is expressed as follows:

ϑi j =
{

0 if �(vi j ) = ∅

max∀vlk∈�(vi j ) (ϑlk + Cl) if �(vi j ) 	= ∅,
(2)

where Cl is the WCET of actor vl and ∅ is the empty set.

Secondly, the latest finish time of a firing parameter defines the latest possible time
instance a firing vi j can finish its execution. It is defined as follows:

Definition 4.2 (Latest Finish Time of a Firing). The latest finish time of the jth firing
vi j of an actor vi in an SDF graph G defines the latest possible time it finishes its
execution such that the latency constraint L of the graph G is satisfied. Therefore, θi j

is expressed as follows:

θi j =
{

L if �(vi j ) = ∅

min∀vlk∈�(vi j ) (θlk − Cl) if �(vi j ) 	= ∅,
(3)

where �(vi j ) is the set of successor firings, which contains all the firings (dependencies)
that cannot execute before the firing vi j .

Thirdly, a topologically ordered set of actors defines the order in which firings are
selected for a merge. It is defined as follows:

Definition 4.3 (Topologically Ordered Set of Actors). The topologically ordered set
of actors V̂ is a set in which the actor set V is sorted in a breadth-first traversal
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Fig. 3. A safe merge operation of two independent firings (vi j , vkl ) into a new cluster V.

sequence, where the input actors (parents) are in the beginning of the set followed by
their successor actors (children). To get that ordered set V̂ , we deal with the SDF graph
as an acyclic graph by ignoring all the back edges carrying initial tokens. Then, the
SDF graph is traversed in a breadth-first fashion, listing the parent actors followed by
their successors. In the case in which a group of actors are on the same level in the
graph, they are listed in V̂ in arbitrary order. The only order considered in V̂ is parents
followed by children.

For example, in the case of the graph shown in Figure 2(a), the topological ordered
set of actors V̂ is (va, vb, vc, vd).

Fourthly, the dependent/independent firings is a term that describes the connectivity
relation between two firings, which helps in deciding whether a merge is safe or not. It
is defined as follows:

Definition 4.4 (Dependent/independent Firings). Two firings are dependent if and
only if there is a sequence of edges (not a single edge) connecting them carrying zero
initial tokens. Otherwise, they are independent firings.

For example, the firings vb0 and vb1 of actor vb in the cases with infinite and finite
buffers shown in Figures 1(b) and 2(b), respectively. In the case of infinite buffers,
these firings are independent, since there is no path between them other than the
direct edge (eb0,b1 ), as shown in Figure 1(b). However, in the case of finite buffers, they
are considered dependent firings due to the existence of a path between the firings
vb0 and vb1 that consists of the firings (vb0 , vc0 , vb1 ) connected by the sequence of edges
(eb0,c0 , ec0,b1 ) that have zero initial tokens, as shown in Figure 2(b).

Lastly, a safe merge is a merging operation of any two firings that is defined as
follows:

Definition 4.5 (Safe Merge). A safe merge operation is an act of combining two
independent firings (vi j , vkl ) creating a new cluster V with an execution time equal to
the sum of execution time of both firings. The new cluster V has the same input/output
ports and channels of both firings except the ports and channels are carrying zero
initial tokens between both firings (vi j , vkl ). A safe merge operation keeps all the initial
tokens in the graph distributed on the same edges without change.

Figure 3 shows a merging operation between two independent firings (vi j , vkl ) into a
new cluster V. The two firings are independent according to Definition 4.4, because the
only path connecting them (other than the direct edge that carries the initial token d0)
consists of a sequence of edges that carry the initial token d1. As we can see, the safe
merge operation kept the distribution of the initial tokens (d0, d1, d2) the same after the
merge.
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Applying safe merge operations on the graph ensures that the resulting graph is
deadlock-free, as stated by the following theorem (the proof is in Appendix A):

THEOREM 4.6. A safe merge operation on a consistent and live HSDF graph results
in a new consistent and live HSDF graph.

However, a safe merge operation may cause timing constraints to be violated. There-
fore, the slack-based merging algorithm has an additional method to ensure that timing
constraints are satisfied called valid merge, which is detailed in Section 4.3.

4.2. Merging Strategy

The proposed algorithm combines two ideas: (1) slack-based merging and (2) merging
firings of the same actor. Before introducing the complete algorithm, we will first
discuss the idea of slack-based merging. For this purpose, we formalize the definition
of slack.

Definition 4.7 (Slack). The slack of a firing j of actor i, vi j , is the difference between
its latest finish time θi j and its earliest start time ϑi j minus its computation time Ci. It
is defined as follows:

σi j = θi j − ϑi j − Ci. (4)

For example, consider two firings vi j and vil of an actor vi. If vi j has σi j greater than or
equal to the computation time of vil (σi j ≥ Ci) and the reverse (σil ≥ Ci), the algorithm
can merge both firings together in one cluster. This strategy allows having a reduced-
size graph without elongating the Critical Path (CP) larger than L, satisfying the
graphs end-to-end latency constraint. However, this is not the only condition to have a
valid merge. Section 4.3 lists all the conditions in detail.

The second strategy aims to merge the firings vi j of the same actor vi together in the
minimum number of clusters. This helps in generating a reduced-size graph that is
suitable for mapping on a message-passing multicore architecture, because the firings
vi j of the same actor vi will be mapped on the minimum number of cores. This results
in a smaller memory footprint on the platform and less communication overhead.

4.3. Valid Merge

In this section, we present the concept of a valid merge that is used by the slack-
based merging algorithm (Section 4.4) to decide whether to accept or reject a merging
operation. It is defined as follows:

Definition 4.8 (Valid Merge). A valid merge is a safe merge operation between two
firings vi j and vil of the same actor vi ∈ G, resulting in a new graph Gm that satisfies
the following two constraints:

(1) the throughput constraint ζ such that,

ζm ≥ ζ ; (5)

(2) the end-to-end latency constraint L such that,

L ≥
∑

∀vi j ∈CP∈Gm

Ci. (6)

To satisfy the throughput constraint, Gm must fulfil two conditions:

(a) Gm must be live, that is, deadlock-free, defined as follows:

ζm 	= 0; (7)
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(b) the execution time of each cycle Ck ∈ Gm and each merged cluster Vo ∈ Gm must
not exceed the period constraint T , which is equal to the inverse of the throughput
constraint ζ , T = 1/ζ . This is defined as follows:

(∀Ck ∈ Gm) ∧ (∀V ∈ Gm), T ≥
∑

∀vi j ∈Ck

Ci, T ≥
∑

∀vi j ∈Vo

Ci. (8)

The first condition is satisfied by the safe merge operation (Theorem 4.6). It ensures that
the merge operation does not create a cycle without an initial token in the generated
graph Gm (a deadlock situation). Therefore, we implemented a function that searches
for a path between the two firings about to be merged, other than the direct edge
connecting them. The function searches for a path that consists of firings connected by
edges carrying zero initial tokens (dependent firings). If a path is found, then the merge
is not valid, because the merging process will create an extra illegal cycle that does
not have an initial token and leads to deadlock in the application graph. Otherwise,
the graph Gm is live. Consider as an example the scenarios in which we would like
to merge the firings vb1 and vb2 of actor vb in the cases with infinite and finite buffers
shown in Figures 1(b) and 2(b), respectively. In the case of infinite buffers, merging
the firings vb1 and vb2 satisfies the first condition (independent firings), since there
is no path between them other than the direct edge (eb1,b2 ), as shown in Figure 1(b).
Contrarily, in the case of finite buffers, this merge does not satisfy the first condition
(dependent firings), because it will create an illegal cycle without an initial token. This
is due to the existence of a path between the firings vb1 and vb2 that consists of the
firings (vb1 , vc1 , vb2 ) connected by the edges (eb1,c1 , ec1,b2 ) that have zero initial tokens,
as shown in Figure 2(b). In this case, the merge between (vb1 , vb2 ) into a single cluster
Vb1,b2 creates an illegal cycle without an initial token between the cluster Vb1,b2 and the
firing vc1 , which would result in deadlock.

The second condition is ensured by implementing a function that checks that both
the execution time of each cycle Ck and each merged cluster Vo is not exceeding the
application period constraint T. The algorithm identifies all cycles in the application
graph and saves them in a lookup table. Each entry in the lookup table contains the
cycle and its total execution time. When merging any actor involved in a cycle, the
cycle is updated by replacing the actors with the new cluster and calculating the new
execution time of the cycle. If the execution time of the cycle exceeds the period of the
application, the merge is not valid. Otherwise, the merge is approved. In the case of
merged clusters, the algorithm checks the execution time of every merged cluster and
guarantees that it does not exceed the application period.

The slack-based merging algorithm merges as long as each firing vi j of every actor
vi ∈ G has positive slack (σi j ≥ 0). This means that the execution time of the critical
path of the application cannot exceed the application end-to-end latency constraint L.
This guarantees that the second constraint is satisfied.

4.4. Slack-Based Merging Algorithm

The slack-based merging algorithm, shown in Algorithm 1, aims to generate a simpler,
smaller size graph Gm that reduces the runtime of its analysis. The proposed algorithm
starts by calculating the earliest start time ϑi j and the latest finish time θi j for each firing
vi j in the SDF graph G using Equations (2) and (3), respectively. Then, it computes the
slack σi j for each firing using Equation (4). If all the firings vi j in G have slack σi j

greater than or equal to zero (∀vi j ∈ G, σi j ≥ 0), a merging operation can possibly be
applied. Otherwise, the merging algorithm terminates. When all firings have positive
slack, the algorithm needs to determine which firings to merge. An optimal algorithm
would try all possible combinations of firings from the same actor, for each actor,
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ALGORITHM 1: Slack-Based Merging Algorithm
Input:
G: SDF application graph, G = 〈V, E, d〉.
Output:
Gm: merged HSDF application graph.
Variables:
n: number of actors in G.
V : set of SDF actors, V = {v1, v2, . . . , vn}.
V̂ : breadth-first topologically ordered set of actors.
�q: repetition vector for G, �q = {q1, q2, . . . , qn}, where qi is the corresponding number of firings of

vi .
vi j : is the jth firing of actor vi , where { j : j ∈ Z, j ∈ [1, qi]}.
Ghsdf : HSDF graph representation of G, where Ghsdf = 〈Vh, Eh, d〉 and vi j ∈ Vh.

begin
Convert G to Ghsdf .
Calculate ϑi j , {ϑi j : ∀vi j ∈ G, Equation (2)}.
Calculate θi j , {θi j : ∀vi j ∈ G, Equation (3)}.
{σi j : ∀vi j ∈ G, σi j = θi j − ϑi j − Ci}.
Gm = G.
if (∀vi j ∈ Gm, σi j ≥ 0) then

foreach vi in V̂ do
{vi j , vil : j 	= l, σi j ≥ Ci and σil ≥ Ci}.
if (valid merge(vi j , vil )) then

merge vi j and vil .
Calculate ϑi j , {ϑi j : ∀vi j ∈ Gm, Equation (2)}.
Calculate θi j , {θi j : ∀vi j ∈ Gm, Equation (3)}.
{σi j : ∀vi j ∈ Gm, σi j = θi j − ϑi j − Ci}.
if (∀vi j ∈ Gm, σi j ≥ 0) then

G = Gm
else

Gm = G
end

else
// No Merge

end
end

else
// Stop Merge

end
end

although this approach does not scale to applications of realistic complexity. Instead,
our heuristic algorithm picks the actors vi in sequence from the topologically ordered
set V̂ to begin merging different firings. This particular way of selection of firings to
be merged is not formally proven to be better than others, but we have experimentally
determined that it works rather well. For each actor vi, the algorithm tries each possible
combination of two firings (vi j , vil ) for merging, such that σi j ≥ Ci and σil ≥ Ci, and
generates a new graph Gm. After merging them, the algorithm checks the validity of
the merging operation of (vi j , vil ) using the valid_merge() function previously explained
in Section 4.3. If all the conditions of a valid merge are satisfied, the merge operation is
valid. Otherwise, the algorithm will undo the last merging operation and pick up two
new firings for merging.
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Fig. 4. Example of slack-based merging.

When the merge operation is considered a valid merge, the algorithm recalculates
the earliest start time ϑi j , the latest finish time θi j , and the slack σi j for each firing vi j in
the new output merged graph Gm. If the slack of all firings in the Gm are greater than
or equal to zero (∀vi j ∈ Gm, σi j ≥ 0), the merge operation of (vi j , vil ) is approved and
the algorithm continues to try merging different firings. Otherwise, the algorithm will
undo the last merging operation and move forward by picking up two new firings for
merging. The algorithm iterates until no possible merges can be done. Reaching that
stage, it generates a new small size compact HSDF graph Gm that reduces the analysis
time, as shown in Section 5.

4.5. Complexity Analysis

In this section, we provide a complexity analysis for the slack-based merging algorithm,
previously presented in Algorithm 1. The algorithm starts by calculating earliest start
time ϑi j and latest finish time θi j of all firings, each having a complexity of O(|Vh|+|Eh|),
since they are based on a Breadth First Search (BFS) [Lynch 1996]. Then, it continues
with the calculation of the slack σi j , which has a complexity of O(|Vh|). The next part of
the algorithm is a loop (foreach statement) that runs |Vh| times (in the worst case) and
contains earliest start time ϑi j , latest finish time θi j , and slack σi j calculations, with
the previously stated complexities. Therefore, the complexity of the loop is equivalent
to O(|Vh| · ((|Vh| + |Eh|) + (|Vh| + |Eh|) + (|Vh|))) = O(3|Vh|2 + 2|Vh||Eh|). Hence, the
final complexity of the slack-based merging algorithm is O(|Vh|2 + |Vh||Eh|), which is
polynomial and depends on both |Vh| and |Eh|.
4.6. Example

In this section, we present an example that illustrates how to apply the slack-based
merging algorithm on an SDF/HSDF graph, shown in Figure 1, until reaching the
reduced-size HSDF graph Gm, shown in Figure 4(c). Here, we demonstrate the algo-
rithm for a single iteration for brevity, because it is a repeated process and it takes
several iterations to reach the final output graph Gm. The following paragraphs explain
this in detail.

Consider the SDF graph and its HSDF representation shown in Figure 1. Let us
assume all the execution times of all actors equal to 1, the throughput requirement ζ =
1/3, and the end-to-end latency constraint L = 8. The period T of this graph is equal to 3
and the total execution time of its CP (va0 , vb0 , vb1 , vb2 , vc2 , vd0 ) is equal to 6. Calculating
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Table I. SDF3 Benchmark Applications

Application Number of Actors Number of Channels
Infinite Buffer Finite Buffer

h263decoder 1,190 2,378 4,160
h263encoder 201 399 785
modem 48 109 170
samplerate 612 1,633 2,654
satellite 4,515 11,619 18,723
mp3playback 10,000 32,237 32,237

〈ϑi j , θi j , σi j 〉 for every firing vi j in the graph results in va0 = 〈0, 3, 2〉, vb0 = 〈1, 4, 2〉,
vb1 = 〈2, 5, 2〉, vb2 = 〈3, 6, 2〉, vc0 = 〈2, 7, 4〉, vc1 = 〈3, 7, 3〉, vc2 = 〈4, 7, 2〉, vd0 = 〈5, 8, 2〉. As
we see, every firing vi j has positive slack σi j , which allows going forward in the merging
process. From Figure 1(a), we can get the topologically ordered set V̂ = {va, vb, vc, vd}.
The algorithm will skip actor va and move on to actor vb, because va consists of a single
firing va0 . It picks up the two firings (vb0 , vb1 ), because they have positive slack that
satisfy the two conditions σb0 ≥ Cb and σb1 ≥ Cb. Then, it merges them into a single
cluster Vb0,b1 with execution time Cb0,b1 = 2, as shown in Figure 4(a). This merging
operation is a valid merge, because it satisfies the throughput ζ and the end-to-end
latency L constraints defined by Equations (5) and (6), respectively. The throughput
constraint ζ is satisfied, because the total execution time of the maximum cycle in
the graph (Vb0,b1 , vb2 ) is equal to 3, which means that ζm of the resulting graph, shown
in Figure 4(a), did not change (ζm = 1/3). Also, the end-to-end latency L constraint
is satisfied, because the total execution time of the CP of the resulting graph did not
change (equal to 6). Then, the algorithm recalculates 〈ϑi j , θi j , σi j 〉 for every firing vi j and
repeats the process again. Figure 4(b) shows the output of a late step of the merging
algorithm, while Figure 4(c) shows the final output HSDF graph Gm of the merging
algorithm.

The final output HSDF graph Gm consists of four actors (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 , vd0 )
with execution times (1, 3, 3, 1), respectively. Its throughput ζm is equal to 1/3, while
the total execution time of its CP (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 , vd0 ) is equal to 8. Therefore, Gm
satisfies the throughput ζ and the end-to-end latency L constraints of the original
SDF/HSDF graph. As we see, Gm has a single path (va0 ,Vb0,b1,b2 ,Vc0,c1,c2 , vd0 ) compared
to the original HSDF graph, shown in Figure 1(b). This speeds up the timing parameter
extraction process since it depends on the number of paths that exist in the graph. We
experimentally demonstrate this in Section 5.

5. EVALUATION AND RESULTS

In this section, we evaluate the slack-based merging algorithm using two experiments.
The first experiment evaluates the runtime of the algorithm with several applications
and the effect of different buffer sizes on the performance of the algorithm. The second
experiment measures the runtime of the Timing Parameter Extraction (TPE) algorithm
proposed in Ali et al. [2015] with merged and nonmerged graphs as inputs and com-
pares their runtimes. Also, it shows the effect of changing the application throughput
constraint and the buffer sizes on the size of the merged output graph.

5.1. Evaluation of Slack-Based Merging

In this experiment, we evaluated our proposed algorithm on SDF applications from the
SDF3 benchmarks [Stuijk et al. 2006], shown in Table I. The main goal is to evaluate
its runtime with SDF graphs of different sizes, but also to show the impact of different
buffer sizes on the performance of the slack-based merging algorithm. The buffer sizes
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Table II. Runtime (Seconds) of the Algorithm

Application
Runtime (sec)

Infinite Buffer Sizes Minimum Buffer Sizes
ζmax ζmin

h263decoder 264 495 11,824
h263encoder 0.55 8.9 11.13
modem 0.215 0.47 0.65
samplerate 38 51 53
satellite 14,390 20,917 26,334
mp3playback 5 (days) ∞ ∞

Table III. Number of Actors Before and After Merging

Application

Number of Actors

Before Merge
After Merge

Infinite Buffer Sizes Minimum Buffer Sizes
ζmax ζmin

h263decoder 1,190 4 71 300
h263encoder 201 5 11 181
modem 48 16 31 31
samplerate 612 6 127 263
satellite 4,515 22 988 1,972
mp3playback 10,000 5,000 N/A N/A

used in this experiment are infinite buffers, minimum buffers for maximum throughput
ζmax, and minimum buffers for minimum throughput ζmin. The throughput constraint
ζ for the input applications is set to the minimum ζmin, ζ = ζmin, while their latency
constraint L is set to the inverse of their throughput constraint, L = 1/ζ = 1/ζmin. This
choice is made to provide enough slack for the applications while we study the effect
of changing other parameters, that is, throughput and buffer sizes, as shown in the
experiment.

Tables II and III show the summary of the results. In most cases, the algorithm
succeeds in generating a reduced-size graph in reasonable time. However, for some
cases, for example, mp3playback, the runtime varies from seconds to days depending
on the complexity of the graph. This result is in line with our expectations because
the original graph before merge is huge and consists of 10,000 firings. The algorithm
achieves large reduction rates, as shown in Table III, ranging from 2× in the case
of mp3playback up to 300× (approximately) in the case of h263decoder, in the case of
infinite buffers. In the case of finite buffers, the reduction rates are less compared to the
infinite case. It ranges from 2× up to 17× (approximately) depending on the buffer sizes
and the throughput constraint. Also, we notice that the slack-based merging algorithm’s
runtime and output graph size have an inverse relation with the buffer size of the
application. The reason is that small buffer sizes add extra dependencies in the graph
that prevent further merging and makes the algorithm spend more time exploring
every combination of actors that could be merged. The ∞ and N/A entries imply that
the merging algorithm spends unreasonable time (>1 week) without generating any
output.

From these results, we can conclude that the slack-based merging algorithm typically
succeeds in achieving large reduction rates in the size of the output graphs. This result
reflects positively on the TPE algorithm, as shown in the next experiment.
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5.2. Evaluation of TPE Performance using Merged Graphs

In Ali et al. [2015], an algorithm was proposed for TPE of HSDF applications, enabling
them to be scheduled and analysed using traditional real-time analysis techniques.
This algorithm requires conversion from an SDF graph to an HSDF graph, which may
result in large graphs and hence long runtimes of the algorithm. In the previous ex-
periment, we evaluated the runtime of the slack-based merging algorithm for different
applications and buffer sizes. The current experiment evaluates the runtime of the
TPE algorithm with HSDF graphs obtained using the classical conversion algorithm
from Sriram and Bhattacharyya [2000] (Ghsdf ) and the slack-based merging algorithm
(Gm) proposed in this article. This experiment will show that spending this extra time
running the merging algorithm to generate a graph Gm typically results in a reduc-
tion in the runtime of the TPE algorithm, thereby reducing the overall runtime of the
complete process.

5.2.1. Experimental Setup. This experiment uses the same settings as the previous one.
We change the throughput of the tested applications from the minimum throughput
constraint (denoted by 0%) to the maximum throughput (denoted by 100%) in a step-
wise fashion in increments of 20%. The latency L of each application is set to the
inverse of the minimum throughput constraint of the application, L = 1/ζmin. At each
throughput step, we apply our merging algorithm on G to generate a reduced-size
HSDF graph Gm. Then, both types of graphs (Ghsdf and Gm) are provided as inputs to
the TPE algorithm to compare and record their runtime.

5.2.2. Experimental Results. The experiment is on applications with two types of buffer
sizes: infinite buffers and minimum buffers for maximum throughput (finite buffers).
In the case of applications with infinite buffers, the results show that the proposed
algorithm succeeds in generating a reduced-size compact graph Gm at the maximum
throughput (100%) in most of the cases, as shown in Figures 6(a), 7(a) and 8(a). This
is reflected in the large speed-up in the runtime of slack-based merging added to the
TPE algorithm compared to the runtime of the TPE algorithm on the original Ghsdf
graphs, as shown in Figures 6(b), 7(b), and 8(b). Also, the results show that having
a reduced-size graph Gm at the maximum throughput is not always possible in the
case of infinite buffers. The h263encoder application results, shown in Figure 5, show
that there are cases where the ability to generate a reduced-size graph decreases with
increasing application throughput (see Figure 5(a)). This is natural, because a higher
throughput requirement restricts the ability to merge parallel firings, which results
in larger output graphs. This is reflected in the increase in the total runtime of slack-
based merging and TPE algorithm following the increase in throughput constraint due
to the larger Gm graph size, as shown in Figure 5(b).

In the case of applications with minimum buffers for maximum throughput (fi-
nite buffers), the results show that when the throughput constraint is relaxed with
respect to the maximum throughput of the application, the proposed algorithm is
able to achieve a larger reduction in the application graph size, as shown in Fig-
ures 5(a), 6(a), 7(a), and 8(a). This significantly reduces the total runtime of slack-
based merging and the TPE algorithm at relaxed throughput constraints. This effect
gradually decreases when approaching the maximum throughput of the graph, as
shown in Figures 5(b), 6(b), 7(b), and 8(b). Moreover, in some finite buffer cases, that
is, h263encoder and h263decoder, when approaching the maximum throughput, the
total runtime of slack-based merging and the TPE algorithm exceeds the runtime of
applying TPE directly on Ghsdf , as shown in Figures 5(b) and 6(b). This is due to the
increase in the throughput constraint that decreases the ability of merging parallel fir-
ings. Also, the minimum buffers introduce more dependencies in the graph compared
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Fig. 5. h263encoder results.

to the infinite buffer case, which reduces the ability to achieve a large reduction in the
graph size. For the mp3playback, the output graph Gm takes infinite time for extracting
its timing parameters. This is due to the fact that the size of the output graph Gm is
still huge (5,000 actors), although it has been reduced to 50% of its size.

Figures 5(c), 6(d), 7(c), and 8(c) are derived from Figures 5(b), 6(b), 7(b), and 8(b),
respectively. They show the amount of gain in reducing the overall design time in per-
centage in the cases of finite and infinite buffers. Figures 5(d), 6(d), 7(d), and 8(d) show
a decrease in the percentage of the total execution time of the CP of the applications
(0% means an execution time of CP is equal to the CP of Ghsdf ) with the increase of
the throughput constraint for a fixed end-to-end latency constraint L. This means that
the remaining slack (after generating the reduced-size graph Gm) increases along with
the increase in the throughput constraint. The interpretation of this phenomena is,
when the throughput constraint increases, a merging decision could be rejected de-
spite the availability of enough slack, because it could result in a violation of the
throughput constraint by increasing the period of the application. This conforms with
the previous result, which states that the increase in the throughput constraint limits
the ability of merging parallel firings.

From these results, we can conclude that our merging algorithm typically succeeds
in generating reduced-size graphs, in particular for applications that do not need to
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Fig. 6. h263decoder results.

execute at maximum throughput, which helps in speeding up the derivation of the
timing parameters.

5.3. Evaluation of Quality

The previous experiments have shown the capability of our heuristic to generate
reduced-size graphs that satisfy the timing constraints of the application and speed up
the timing parameter extraction process, thereby reducing the overall design time of
the real-time system. However, it does not address the quality of our solution. In this
experiment, we assess the quality of our heuristic algorithm by determining how far it
is from the optimal solution. Also, to take the opportunity to open a discussion about
the trade-off between getting the optimal solution and runtime overhead added to the
overall design time of the real-time system.

To evaluate the quality of our heuristic algorithm, we have to define optimality in the
context of our problem. Based on that definition, we can determine a method to obtain
it, then compare both solutions. The optimal solution is defined as the reduced-size
graph that satisfies the timing constraints and minimizes the TPE runtime. To obtain
this solution, we implemented an exhaustive enumerative algorithm that searches
the solution space of all possible combinations of merging operations. These merging
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Fig. 7. satellite results.

operations are valid merges (defined in Section 4.3) constrained by our heuristic merg-
ing strategy (merging firings of the same actor, defined in Section 4.2) for a fair com-
parison with the heuristic algorithm.

We have implemented a tool that incorporates an exhaustive enumerative algorithm
that searches for the optimal solution. However, such an algorithm cannot scale beyond
small synthetic examples due to its exhaustive nature. For example, assuming enough
slack, if we applied that on the smallest size dataflow graph modem used in our exper-
iments, which has 48 firings (two actors have 16 firings each, two actors have 2 firings
each, and the rest have one firing each). This means that the exhaustive enumerative
algorithm has to investigate a solution space of order 1027 merging trials to find the
optimal solution. This requires a massive runtime compared to our proposed heuristic
and creates a large overhead on the overall design time. This because our proposed
heuristic stands by a merging operation once it is valid without change terminating
the algorithm very quickly. However, the exhaustive enumerative algorithm will try
every possible merging combination to reach the optimal solution. This limitation is the
main reason for selecting small synthetic SDF graphs as an input for the experiment.

We set up an experiment that randomly generates an input set of 100 small syn-
thetic SDF graphs using the SDF3 benchmark generate tool. From our experimental
experience, each SDF graph can have a maximum of 12 firings in total, by controlling
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Fig. 8. modem results.

the value of the parameter repetitionVectorSum in the settings file passed to the
generate tool. Larger graphs result in an exponential explosion in the solution space
preventing the algorithm from terminating in reasonable time. For each graph, the tool
investigates all possible combinations of valid merges searching for the reduced-size
graph with minimum TPE runtime using the exhaustive enumerative algorithm.
Also, the experiment applies the heuristic slack-based merging algorithm on the same
input set to enable comparison of the final results. The experiment investigates both
heuristic and optimal solutions at different throughput constraints, as described in
the experimental setup in Section 5.2.1.

Figure 9 summarizes the results regarding the quality of our heuristic algorithm.
At relaxed throughput constraints, the heuristic-based solution is exactly the same as
the optimal solution. As we notice, the average TPE runtime per graph is the same for
both solutions up to 40% of the maximum throughput constraint. The reason for this is
the availability of enough slack that allows merging as much firings without violating
the latency constraint L. Also, an equally important reason is the relaxed throughput
constraint ζ , which means a large period for the application. This allows merging of
parallel firings without violating the period of the application, as demonstrated in the
previous experiment. Once the throughput constraint becomes tighter (>40%), a slight
deviation of maximum 10% in average TPE runtime appears between both solutions.
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Fig. 9. Exhaustive enumeration vs. heuristic algorithm.

This is because the tighter throughput constraints means a tighter period for the
application. This limits the merging ability of parallel firings despite the availability
of enough slack, as detailed in the previous experiment. Therefore, the final solution
our heuristic reaches depends on its first merging decision.

6. CONCLUSIONS

In this work, we presented a new heuristic reduction algorithm for synchronous
dataflow graphs called slack-based merging. The proposed algorithm generates
reduced-size HSDF graphs that satisfy the throughput and latency constraints of the
original application graph. The generated reduced-size graphs typically enable faster
extraction of timing parameters and finding a feasible real-time schedule compared
to using the original larger HSDF graphs. Moreover, the experimental results with
real application models from the SDF3 benchmark show that when the throughput
constraint is relaxed with respect to the maximal throughput of the application graph,
the merging algorithm is able to achieve a larger reduction in graph size and hence a
larger speedup in algorithms for extracting timing parameters. Also, we showed that
the slack-based merging heuristic gives results that are near optimal with a maximum
deviation of 10% and small overhead compared to an exhaustive optimal approach for
small graphs.
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