
INLyD: Inter-Network-Layer Delay as a Low-cost Quality
Metric for Multi-hop Routing in Wireless Mobile Networks
Syed Rehan Afzal

Eindhoven University of
Technology, The

Netherlands

s.r.afzal@tue.nl

Majid Nabi

Eindhoven University of
Technology, The

Netherlands

m.nabi@tue.nl

Sander Stuijk

Eindhoven University of
Technology, The

Netherlands

s.stuijk@tue.nl

Twan Basten

Eindhoven University of
Technology and TNO-ESI,

The Netherlands

a.a.basten@tue.nl

ABSTRACT

The need for authentic and effective portrayal of the spatio-

temporally changing quality of wireless links has gained wide

attention especially over the last decade. Software-based link

quality estimators (LQE) classify links with help of packet

reception ratio (PRR), required number of packet transmissions

(RNP) and scoring/grading schemes that again utilize PRR, RNP

or retransmission based heuristics. On the contrary, this paper

makes a case for inter-network-layer delay as a classification

metric to boost end-to-end packet delivery in multi-hop

communication. In essence our Inter-Network-Layer Delay metric

(INLyD) uses a simplistic receiver-side in-band signaling scheme

to passively accumulate queuing, retrying, back-off, transmission

and propagation delay statistics while generating no additional

control packet overhead. Our experiments show that the INLyD

metric is not only light-weight (25% less MAC transmissions

required per node) but substantially outperforms proactive

broadcast based estimation schemes in static and mobile scenarios

(1.7 and 1.2 times more end-to-end UDP delivery respectively for

the performed experiments).

General Terms
Design, Experimentation, Measurement, Performance

Keywords

Asymmetric link quality; passive link quality measurement;

wireless ad hoc networks; wireless sensor networks

1. INTRODUCTION
Floods in 2015 Southern India left millions of people displaced

with telecom and electricity services disrupted for several days

[10]. Improving network device life span in domains such as

Mobile ad hoc networks (MANETs) for disaster relief camps or

festivals etc. or long term deployed Wireless Sensor Networks

(WSNs) is paramount. Life time is directly proportional to energy

consumption. Energy consumed to transmit a single bit over the

wireless channel is shown equivalent to that consumed to carry

out approximately 400 [15] to 800 [2] instructions (depending on

the sensor node used). Quality-of-Service (QoS) provisioning

schemes are employed to reduce packet losses. The goal of

network QoS provisioning is to achieve a more deterministic

behavior of the network apparatus involved. In a lossy, unreliable

and tempro-spatially changing medium such as wireless, the need

for effective QoS estimation becomes imperative.

Since QoS subscription always comes with its costs, the

effectiveness of a given QoS metric is a subjective term and

depends on the network and respective application requirements.

Furthermore, these qualities are almost always interdependent;

e.g., improving device coverage by increasing transmission power

will result in reduced device lifetime. The provision of QoS in

resource-scarce networks such as WSNs and MANETs introduces

additional challenges to the task. An effectiveness of a QoS metric

or routing scheme in this context therefore is to efficiently utilize

the network resources by offering improved performance in terms

of delivery ratio, bandwidth, latency and throughput at the

expense of as little as possible overhead. Several Link Quality

Estimators (LQEs) have been proposed over the years where

throughput and Packet Reception Ratio (PRR) have gained special

interest [4], [5], [6], [7] and [8].

There are two approaches to measure link quality namely active

link monitoring and passive link monitoring. Active link

monitoring requires each device to proactively transmit periodic

broadcast or unicast control packets. The link quality is then

estimated from the measured Quality of Experience (QoE) of

these control packets. Active link monitoring has its benefits.

However, from our previous work [7], we have demonstrated the

following observations:

1) Impact of active link monitoring on traffic: The overhead

resulting from proactive control packet based estimation may

outweigh the benefits in certain network conditions. Proactive

control packets affect the nodes and the data. From a node’s

perspective the energy spent in physically transmitting these

proactive control packets reduces the device’s life span. Collisions

between proactive control packets and native data packets result

in more transmissions per packet delivery thereby significantly

reducing the data throughput.

2) Dissimilitude of nature between control and data packets: The

main advantage of an active link monitoring scheme is its

characteristic ever-available quality statistics even for the links

that are in-accessible or are active and accessible but have not yet

been delegated any traffic stream. The aforementioned is achieved

due to the fact that in such schemes unused links compute link

quality just the same way as in-use links i.e. by proactively

sending control packets all the times and estimating the channel

response to them. This in essence means that such schemes use

the QoE of these proactive control packets in the network as a

predictor of how actual data packets will be treated. We have

shown that this approach has its drawbacks, mainly due to the fact

that the control packets cannot accurately represent the data

packets [7]. This is mainly because in most application

environments unicast packets have dissimilar packet size, data

rate and PHY modulation when compared to broadcast packets.

Unlike regular data packets, broadcast packets do not benefit from

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

PE-WASUN'16, November 13-17, 2016, Malta, Malta

© 2016 ACM. ISBN 978-1-4503-4505-7/16/11…$15.00

DOI: http://dx.doi.org/10.1145/2989293.2989307

the MAC layer RTS/CTS mechanism as well as MAC

retransmissions. In other words, not only do such active link

monitoring schemes inadequately represent data packets; the extra

packets generated for measurement cause additional interference

and collisions with the native data packets. Dissimilitude of nature

between actual data packets and control packets is therefore the

Achilles heel of active LQEs. The overhead of control packets

caused by such schemes makes the over-all impact even worse.

In this paper we propose Inter-Network-Layer Delay (INLyD)

which - just as inter-node-delay means delay between two nodes -

implies delay between two network layers of two distinct in-range

nodes. Based on our observations about deployment

environments, and effectiveness and implementation practicality

of link quality metrics, we have set forward three design goals for

our metric. First, the metric must solely work on natively

generated traffic and not introduce any additional control packets

in the network. Second, the metric must not require any

modifications in PHY, MAC or application layers. Third, the

metric must be independent of any routing protocol.

Up until now research on delay based metrics have mostly been

confined to channel selection protocols [20] or for timeliness

related real-time or multimedia applications [21] [22]. However,

in this paper we show that an inter-network-layer delay accounts

for several PHY, MAC and network layer QoS related statistics.

Passively monitoring data packets traffic has been shown to be

more accurate in link estimation than active monitoring control

packets [17]. It is however argued that such schemes usually rely

on collecting statistics via packet over-hearing or altering device

sleep cycle - which in return consumes significant energy [23]

[24]. INLyD on the other hand only evaluates the active in-range

nodes. For a given packet transmission, INLyD effectively

measures seven delays namely processing delay, queuing delay,

carrier sense delay, back-off delay, transmission delay,

retransmission delay and propagation delay between the

communicating nodes. More importantly though, INLyD relies

solely on natively generated data and control packets to assess

quality, and does not generate any additional control packets. Our

results show INLyD yielding higher end-to-end packet delivery in

most of the experimental setups, that include static, mobile, low

traffic, high traffic, and uniform as well as varied traffic scenarios.

The impact of accurate estimation with no extra control is shown

with INLyD resulting in lower collisions and loss rate which

directly translates to increased battery and network lifetime.

Furthermore, in terms of costs, INLyD in comparison expends the

least number of MAC transmissions per successful end-to-end

UDP delivery thereby yielding the highest end-to-end goodput in

most of the experimental setups.

The rest of the article is organized as follows. We discuss the

different LQE metrics and estimation approaches as our related

work in Section 2. Section 3 formulates the generic network

attributes common between quality estimation in wireless network

communication in general. Section 4 presents the detailed

description and functioning of our proposed metric, INLyD.

Section 5 demonstrates experimental setup and results in which

we analyze and compare overhead of estimation as well as its

effectiveness on end-to-end packet delivery ratio.

2. RELATED WORK
A great deal of research has been conducted in the area of wireless

link quality estimation and measurement. Here we touch three

aspects of LQE schemes i.e. monitoring approach, measurement

metric and implementation perspective.

Measurement approach for LQEs can be active or passive. Passive

monitoring is performed on native network packets whereas active

monitoring entails estimation over periodically sent control probe

packets. Software based LQEs employ three main measurement

metrics, namely, PRR, Required Number of Packet transmissions

(RNP) and delay based schemes.

RNP based schemes ETX [5], HETX [4] and ETT [19] etc. send

proactive broadcast beacon packets and measure the RNP from

PRR of the periodic broadcasts to estimate link quality. For ETX

based metrics, ETX (link) = 1 / (PRRf × PRRr). PRRf is the

probability of successful (proactive broadcast) packet reception in

the forward direction while the opposite direction is PRRr. As

mentioned earlier, broadcast packets have some major differences

from unicast packets. These are reasons why estimations based on

broadcasts have shown to perform poorly in varied and especially

high traffic conditions [7]. Das et al. [25] performed

comprehensive measurements over a two mesh test bed to study

the instability in ETX link quality measurements. Their

experiments showed that introducing a transfer of just one large

file in the network resulted in link ETX value increasing up to

10000% suggesting much lower throughput than actually

experienced by the link.

xDDR [7] is a PRR based metric that avoids the ETX broadcast

problem by employing proactive unicast beacons to estimate link

quality. xDDR is shown to be more accurate than broadcast based

schemes. This however comes at the price of additional unicast

control packet overhead.

Four-bit [12] is a hybrid estimator that uses both passive and

active monitoring and is initiated at the sender. During active

monitoring, nodes periodically broadcast probe packets used to

compute approximation of the RNP.

Using delay as quality measurement metric is not a new

phenomenon. Yet most delay based metrics have been designed to

assist channel selection or timeliness requirements for real-time or

multimedia based environments [21][22]. More recently, research

related to relationship between delay and PDR is gaining attention

[19].

The per-hop Round-Trip Time (RTT) [20] measures bi-directional

delay (packet + ACK transmission time) on proactive unicast

probe packets over a given link. RTT was designed to work with

Multi-radio Unification Protocol (MUP) to assist high bandwidth

channel selection. The protocol dictates the probes to be sent

within high priority queue (available in IEEE 802.11e) in order to

avoid queuing delay in the delay recording. While queuing delay

is understandably irrelevant for channel selection, it plays a

significant role in case of data driven routing.

Authors of [19] proposed a real-time End-to-End Delay

Estimation Metric (EEDEM) that takes queuing delay into

account as well. Delay accounting is accomplished by placing

timers at parts of code in application, network, MAC and PHY

layers from where the data packets pass through. The delays used

are: 1) Generation Internal Delay (GenIntDelay) registered when

packets are generated; 2) Forward Internal Delay (FwdIntDelay)

registered when packets are being forwarded; 3) Receiving

Internal Delay (RecIntDelay) registered when packets reach the

destination. The GenIntDelay obtained at a node i with a parent p

is calculated as follows:

GenIntDelayip = L5L3Di + L3L2Di + QueueDi + TransDip

LgLhDi is the delay between layer g and layer h at the Node i,

QueueDi is the MAC queuing delay, and TransDi is the

transmission delay. The FwdIntDelay obtained at a node p with a

parent s is calculated as:

FwdIntDelayps = FwdL2L3Dp + L3L2Dp + QueueDp + TransDps

The RecIntDelay obtained at the sink s node is calculated as:

RecIntDelays = L2L3Ds + L3L5Ds

Figure 1. EEDEM Process Delay Calculation

EEDEM metric uses 9 timers placed at different layers to

calculate queuing, transmission and processing delays. Figure 1

shows the processing delay calculation. Note that this approach

requires modification in multiple layers which complicates the

implementation process. More importantly though, EEDEM does

not take into account back-off and retransmission delays. In

contrast, we use 2 timers placed at network layer to account for 7

delays effecting communicating applications i.e. queuing delay,

carrier sense delay, back-off delay, transmission delay,

retransmission delay, processing delay and propagation delay. All

these seven delays directly impact the data packets of

communicating applications. For example, EEDEM nodes are not

able to distinguish between two received packets from two

different neighbors where neighbor one delivered the packet in

first attempt while neighbor 2 delivered in the 4th attempt.

Although, there is a possibility that the lossier link might have

higher queuing delay but there is no substitute to more

information especially when all these factors directly affect the

data packets.

3. GENERIC NETWORK ATTRIBUTES
This section enlists preliminaries as well as the network

architecture and attributes that are generic regardless to the quality

optimization metric being employed. The network topology is

modeled as a directed graph involving nodes and edges

represented as (N, E) where N = {n1, n2, n3, …} and E = {e1, e2,

e3, … }. An edge represented as <n1, n2> is a directional link from

n1∈N to n2∈N (<n1, n2> ≠ <n2, n1>) when node n2 is within the

transmission range of n1 (1-hop neighbor). We use ℕ to represent

the set of natural numbers, ℝ to represent the set of real numbers

and ℝ≥0 to represent the set of non-negative real numbers.

Between a pair of in-range nodes such as n1 and n2, we compute

the link-level quality estimate represented as λ(n1, n2, t') ∈ℝ≥0

with t' the current timestamp. Moreover, λ(n1, n2, t') will often not

be equal to λ(n2, n1, t') due to the link asymmetry observed in

wireless mobile communication [14]. For a given node nk, we

have Ek(t') ⊆ E consisting of directional edges with the 1-hop

neighbors of nk at time t'. We have a set of connectionless UDP

streams M, to transmit from a source to a specific destination

node. A given stream m ∈ M is a tuple:

m(ns, nd, f, tst) ∈ N × N × ℝ≥0 × ℝ≥0

Figure 2 show the network topology at a given time instance t'

where t' > t'3> t'2> t1. Here, ns is the stream source, nd is the

stream destination, f is the data rate of the transmission and tst

represents the start time. A stream transmission can only be

initiated when there exist one or more possible routes from ns to

nd. The set of available routes is represented as tuple:

mτ(ns, nd, f, tst, t'1) = {τ1, τ2, τ3, … }

Figure 2. Network Topology

τ1, τ2 and τ3 represent the distinct routes available to reach from the

stream source ns to destination nd. Furthermore, σ(τ2, t') is the end-

to-end route quality estimate for a given route τ2 at timestamp t',

calculated from link-level quality estimates λ(ns, n5, t'1), λ(n5, n8,

t'2) and λ(n8, nd, t'3) corresponding to all the edges present in the

route τ2. Depending on the quality metric in use, end-to-end

quality estimate of a route may be the product, summation,

minimum or maximum of the individual link qualities. Once a

route is picked from the set of available routes mτ(ns, nd, f, tst, t'1),

ns sends its first network layer packet ns→n5 for stream

destination nd. Network communications are represented as

follows:

nk → nl : Unicast data packet/stream from node nk to nl

nk ⇒ * : Broadcast control packet from nk to neighbors

nk ⇒ nl : Broadcast control packet received at nl from nk

ns ››› nd : Unicast data stream originating from stream source node

ns to stream destination nd

A given network layer packet p is represented as follows:

ppid(ns, nd, npre, nnxt) ∈ N × N × N × N × N

pid represents the packet ID; npre and nnxt represent the previous

hop node and the next hop node respectively. For a given stream

m∈M, μ(s, tt∆) denotes the total number of packets transmitted till

timestamp t' where tt∆ = (t' ‒ tst). Similarly δ(m,t') represents the

total number of packets successfully received by destination node

nd till time t' where δ≤μ. End-to-end route quality is calculated at

the destination node. For a given stream the end-to-end Packet

Delivery Ratio (PDR) is:

%
t

t

(m,t)
PDR(m,t') = 100

(m,t)

(1)

In our network, the link-layer feedback is active and the sender’s

MAC layer attempts to retry packets that are unsuccessful in the

first attempt for (ᵲ-1) times where ᵲ represents the retry limit

(including first attempt).

In summary, our goal is to equip communicating end-to-end nodes

with a low cost link-level resource differentiation metric that

improves their end-to-end multi-hop packet delivery.

Figure 3. Inside inter-network-layer delay calculation

4. CUMULATIVE INTER-NETWORK-

LAYER DELAY METRIC
This section details our proposed Inter-Network-Layer Delay

(INLyD) metric as a low cost solution to finding high throughput

multi-hop links among wireless devices. INLyD assumes that the

communicating devices have clock synchronization which is a

widely researched area [9]. INLyD comprises three main

modules. The first entails Inter-Network-Layer delay calculation

per packet i.e. in-band signaling of time-related information

alongside data packets using the information at the downstream

node. The second module is responsible for per link INLyD

calculation. This entails managing freshness and integrity of

INLyD entries. Prior to averaging the packet stats this module

ensures freshness of per packet INLyD entries. The third is a

quality-aware routing module that utilizes link-level estimates to

attain a route-level estimate. In this regards, we describe INLyD

metric’s working with our extension of Dynamic Source Routing

(DSR) protocol [16].

4.1 INLyD Calculation per Packet
Unlike active link monitoring schemes that estimate link statistics

from proactively generated network or MAC layer control

packets, INLyD monitors natively generated data and control

packets by the nodes to estimate the respective link’s quality. The

majority of these packets are the natively generated data packets

from applications but they also include natively generated control

packets from the network layer and higher layers. First we look at

the sender side (this implies stream source node or any

intermediate forwarding node) where each packet ppid originating

from the particular node’s network layer or above gets time-

stamped with a departure time tndep. These include the TCP and

UDP application data packets as well as control packets from

network layer and higher layers. A given node nk timestamps

packets {p1, p2, p3, …} ∈ P with departure times tndep(p1
, nk),

tndep(p2, nk) and tndep(p3
, nk). When the packet p1 is received by a

neighboring node nl it is passed up to the network layer from the

MAC layer. Node nl attaches network-layer-arrival timestamp tnarr

to the packet as tnarr(p1, nk, nl). This delay incurred by a given

packet ppid from the network layer of nk to network layer of nl

thereby makes one individual entry of per packet inter-network-

layer delay between the two neighboring nodes and is represented

as ṉ(ppid, nk, nl). Likewise set Ṉ(nk, nl) represents the list of inter-

network-layer delay entries ṉ corresponding to all the packets

received from nk to nl within a given time. Node nl obtains

tndep(p1, nk) from the received packet and computes the INLyD

entry for the first packet received as:

ṉ(p1, nk, nl) = tnarr(p1, nk, nl) − tndep(p1, nk) (2)

Packet transfer between a pair of nodes experiences these seven

delays namely processing delay, queuing delay, carrier sense delay,

back-off delay, transmission delay, retransmission delay and

propagation delay. With ň representing overall inter-nodal delay,

we have:

ň = tque + tcs + tbk + ttr + tretr + tprop + tproc (4)

Queuing delay (tque) is the time a packet spends in the queue at the

node waiting for its turn. From INLyD metric’s perspective this

includes both sender-side and receiver-side queue delays. Carrier

sense delay (tcs) is incurred when a node with packets to send

performs carrier sense e.g. Request-To-Send (RTS), Clear-To-Send

(CTS) etc. Its value also depends on the contention window size.

Back-off delay (tbk) happens when either the carrier sense detects

an ongoing transmission or a collision occurs with the RTS packet.

Transmission delay (ttr) is the time required to put the entire packet

into the channel. It is determined by datarate, packet size and the

coding scheme employed. In case the data packet’s delivery fails it

incurs retransmission delay (tretr) to retry the packet again.

Propagation delay (tprop) implies the time it takes a signal change to

propagate from physical layer of sender node to physical layer of

the receiver. Processing delay (tproc) refers to the computational

time that occurs at the device level pertaining to handling and

processing the data structures and related instructions. In wireless

sensor devices, most time is consumed at the queuing, back-off and

retransmissions; and most energy is consumed at sensing,

transmission, retransmissions and propagation of signals/packets.

Processing time in fact one of the least significant of the delays in

terms of time spent. It is shown that energy consumption to

transmit a single bit over the wireless channel is comparable to

that consumed to carry out (depending on the platform)

approximately 400 [15] to 800 [2] instructions.

Definition 1. As seen by the network layer, Inter-Network-Layer

Delay (INLyD) is the delay a packet incurs from the time it enters

sender side’s queue till it leaves receiver side’s queue.

Figure 3 shows how each instance of inter-network-delay

quintessentially records six of the seven delays in (4) while also

partially covering tproc delay incurred by network layer and below.

Application-level processing delays occur outside the INLyD

metric’s jurisdiction. However as mentioned above tproc is much

less significant compared to the other delays. We can see how the

INLyD metric benefits from the processing hierarchy of network

layer model. First we notice that the tndep is assigned by the

network layer to p1
 i.e. tndep (p1, ns), therefore each data frame

attempt (transmission or retransmission) of this packet includes the

original departure time tndep(p1, ns). When the packet is received by

the node n5 in its third attempt, the corresponding INLyD entry of

ns → n5 is:

ṉ(p1, ns, n5) = tnarr(p1, ns, n5) − tndep(p1, ns)

This in essence aggregates the processing delay partially and the

rest of the delays entirely. Furthermore, a lossier link on average

requires more retransmissions per successful network layer packet.

This is in fact the basis for all ETX-based LQEs where a link’s

lossy-ness is estimated by the number of retransmissions the link

requires for sending one successful packet. The lossier links

therefore on average require more retransmissions per data packet;

similarly, their overall average INLyD delay will be higher than

healthier less lossy links. Therefore, such link will also have higher

average inter-network-layer delay.

4.2 INLyD Averaging Module
INLyD averaging module is responsible for two main processes:

(1) maintaining freshness of entries and (2) handling the shared

channel and shared medium aspect of wireless links. INLyD

computes inter-network-delay average at the downstream node

over a variable length estimation window that keeps a

chronological list of INLyD entries related to the particular link

alongside each entry’s corresponding network-layer time of

arrivals tnarr. Since the communication data can also be sporadic in

nature, INLyD’s averaging window (ŵ) maintains freshness of

entries with the combination of sliding and/or shrinking window

feature. Which of the two actions is/are needed to be performed on

the window is dictated by two configuration parameters i.e. INLyD

window length (ŵlen) and INLyD window duration (ŵdr). These

parameters dictate two runtime attributes i.e. number of INLyD

entries in window |ŵ| and their corresponding list of network-layer

arrival timestamps tnarr represented as (₮). When | reaches allowed

limit ŵlen When a new entry arrives for the same window (i.e. from

the same upstream node) whose |ŵ|= ŵlen, the INLyD window

slides thereby discarding the oldest value from the front. ŵdr

dictates the freshness of the window in terms of time duration with

help of timestamps tnarr of all packets received within the window.

Using the combination of ŵlen and ŵdr each given node

automatically discards neighbor node entry if no fresh packets are

received from it within ŵdr.

Figure 4. No-interference, shared medium and

hidden terminal use cases

The fact that INLyD assesses a link’s performance on the basis of

natively generated communication alone raises the question as to

how a link’s quality is perceived when there is not enough

historical native communication on the link. Little to no traffic

received at network layer could mean one of two cases. (Case a)

either there is simply too little traffic load over the given link as

well as the node itself. (Case b) the link is experiencing excessive

loss rate due to the shared nature of wireless medium resulting in

collisions from neighboring traffic (Case b1) or hidden terminal [3]

nodes (Case b2). Making this distinction between the two cases is

pivotal to INLyD’s performance because case (a) in principle

should suggest much less INLyD delay average as compared to the

congested scenarios. Figure 4 illustrates the potential scenarios. All

three cases show two successful broadcast packets freshly received

from n1 to n2. From the network layer’s view point, broadcast

packets incur much less delay as compared to unicast packets

primarily due to absence of retransmissions in broadcasted packets.

Therefore unless case (a) can be correctly identified, all three cases

will result in nearly equal delay average since the number of

INLyD entries i.e. |ŵ<n1,n2>| = 2. This is why post-

sliding/shrinking INLyD window whenever a node n2 encounters

|ŵ<n1,n2>| ≤ ŵlen/ρ; it checks whether there exist any link (e.g.

<n3,n2>) with number of goodput entries within ŵdr i.e.

|ŵ<n3,n2>| > ŵlen/ρ. ŵlen/ρ is the goodput lower bound and for our

experiments we set it to ρ=10. Therefore the link-level quality

estimate λ(n1, n2, t') for case (a) and (b1) is as follows:

λ(n1, n2, t') = {
ŵavg<n1,n2> case (a)

Avg(ŵavg<n1,n2>, ŵavg<n3,n2>) case (b1)

 (5)

This way INLyD handles the shared channel and medium aspect at

the receiver node shown as case b1 resulting in higher delay at

ŵ<n1,n2> for case (b1) compared to case (a). The congestion and

collisions resulting from the sending node’s neighborhood side i.e.

case (b2) is more complicated and cannot be addressed at network

layer without introducing some additional control handshake

between n1 and n2. In principle however, channel sensing and

RTS/CTS mechanism is present at the MAC layer to take care of

this problem. In other words, node n1 will not send broadcast

packets n1 ⇒ * if it senses the channel is busy with another

streaming data or when n1 itself sent CTS packet to n4.

Figure 5. Comparison with and without nodal

neighborhood awareness

Figure 5 shows the gain from accounting for the lossiness at the

receiver side. We ran setups from 30 to 80 stationary nodes

comprising 5 source-destination pairs transferring uniform UDP

streams of CBR 30 i.e. 30 packets per second. The average end-to-

end PDR yielded by INLyD with and without neighborhood

awareness is calculated to observe the influence. For statistical

correctness 20 trials were conducted for each network size each

with different seeds resulting in a different network topology. The

results were then averaged and compared. The yellow circular

markers represent the average of a given network size i.e. average

over 200 stream sender and receiver nodes (20 × (5 + 5)) per

network size. We can see the benefit of integrating neighborhood

quality awareness when determining a link’s quality.

Algorithm 1 shows how the sliding and shrinking mechanism

works alongside the averaging module computes the inter-

network-layer delay over a given link <nk, nl> at node nk. We can

also notice how INLyD by design over-estimates quality for in-

range nodes that are not delegated a data stream yet.

Algorithm 1 INLyD Window Selection & Averaging

1: Ek ⊆ E list of first hop edges of nk at current time t'

2: ṉ<ppid,nk,nl> inter-network-delay of packet ppid for

nk→nl

3: Ṉ<nk,nl> list of inter-network-layer delays ṉ over the

link <nk,nl> (in reverse chronological order)

4: ₮<nk,nl> list of corresponding packet arrival

timestamps (in reverse chronological order)

5: while t'- tnarr(Ṉ<nk,nl>.front()) > ŵdr then

6: Ṉ<nk,nl>.pop_front()

7: ₮<nk,nl>.pop_front()

8: endwhile

9: ŵ<nk,nl> := Ṉ<nk,nl>

10: ŵavg<nk,nl> := SUM(ŵ<nk,nl>) / |ŵ<nk,nl>|

11: if |ŵ<nk,nl>| ≤ (ŵlen/ρ) then

12: count := 1

13: shared_inlyd := 0

14: for each ei in Ek then

15: ŵ<ei> := perform_freshness(Ṉ<ei>)

16: if |ŵ<ei>| > (ŵlen/ρ) then

17: shared_inlyd += SUM(ŵ<ei>) / |ŵ<ei>|

18: count++

19: endif

20: endfor

21: ŵavg<nk,nl> := (shared_inlyd + ŵavg<nk,nl>) /

count

22: endif

23: return ŵavg<nk,nl>

4.3 INLyD Propagation & Route Selection
INLyD works together with a quality aware routing/gossiping

module. For our research, we extend the Dynamic Source Routing

protocol (DSR) [16] to work coupled with INLyD and other

competing quality estimation metrics such as ETX, xDDR etc.

However, as estimation metric INLyD is completely independent

of the routing protocol, or the MAC or PHY layer for that matter.

Any network layer routing protocol can be extended to attach tndep

time to packets and the receiving node performs the averaging.

When a node ns initiates route discovery to send a stream from

source node ns to nd (ns›››nd), the cumulative INLyD - the sum of

link delays - Σλ(ττid) is set to 0 at the start. Over the course of

discovery, when an intermediate node nl receives the discovery

packet it looks up the previous hop node nk and adds the

respective link delay of its upstream neighbor λ<nk,nl, t'> to Σλ(τ1)

field in the discovery control packet. The discovery packet

continues to propagate across the network until it reaches the

intended destination of the stream nd alongside the Σλ(τ1) of all the

links traversed during the discovery by route option τ1. Once the

first discovery packet is received, nd waits for time tτ∆ expecting to

receive competing route options τ1, τ3 etc. If more route options

reach the destination node nd within tτ∆, it compares to see which

route indicates the lowest cumulative INLyD delay and thereby

selects the best route option τΘ for ns›››nd.

1 1
([(, (

(, , ,),

)) ,)]

k l stu

x x uu s

n n t

Min t t t

s f

(6)

Figure 6. INLyD working with DSR Extension

Figure 6 shows our DSR extension and INLyD in route discovery

(RREQ) operation. The three route options {τ1, τ2, τ3} for

transmission from ns to nd includes nodeList {n1, n4, n7}, {n5, n8}

and {n3, n6, n9, n10} respectively. A route τ can be decomposed

into {source, nodeList, destination}. In other words, the route τ2 =

{ns, n5, n8, nd} where the expression n5∈τ2 indicates that node n5 is

included in the route τ2. In our implementation setups node

broadcasts route maintenance only in case of link breakage.

5. EXPERIMENTAL EVALUATION
To test and compare our quality estimation metric we employed

OMNeT++ (Objective Modular Network Test-bed) simulator

[11]. OMNET++ is an open-architecture, extensible, modular,

component-based C++ discrete event simulation environment with

strong GUI support and an embeddable simulation kernel. Due to

its extensible nature, it is widely used for developing and testing

large scale communication networks. OMNET++ offers a few

extensions tailor-made for specific networking paradigms. For

our experiments we used the INETMANET extension [12] which

is specifically dedicated to MANETs and offers a variety of

mobility models specifically related to MANET mobility. We

extended the DSR implementation available in INETMANET

extension to use our quality driven routing framework. We used

INLyD, xDDR, ETX, HETX, Minimum Hop Count (MHC) as the

link-level quality estimation metrics for our quality-aware routing

module and compared their performance. Table 1 shows related

network parameters generic to our setups.

TABLE 1. Network simulation parameters omnet++

Parameter Value Parameter Value

Packet size 500 B SimulationTime (tt∆) 200 s

Trials per
experiment

20
Mobility Change

Interval
100 s

Mobility Change

Angle

normal (0deg,

90deg)
Mobility Speed

Uniform(0.5

mps,0.8mps)

INLyD Window
length (ŵdr)

100
INLyD Window
Duration (ŵdr)

10 s

Route Discovery
wait time (tτ∆)

10 ms
ETX, HETX, xDDR

send interval
0.1 s

Propagation
Model

Path Loss
Model

Radio Sensitivity -90 dBm

MAC 802.11 g MAC bitrate 54 Mbps

UDPStartTime 11 s Radio Transmit Power 1.0 mW

We did not include EEDEM in our comparison since it attempts to

do similar as INLyD but it does so accounting for lesser number

of delay metrics and in a far less efficient manner. While it

measures the processing, transmission and queuing delay, it is

completely oblivious to the number of transmissions incurred for

a given packet that it receives. Therefore, receiving nodes will not

be able to distinguish between two senders that have similar

processing, queuing and transmission delay but one with lot lower

successful delivery rate than the other. For communicating

applications, retransmission related delays are often far more

significant than queuing, transmission and processing delays.

Furthermore, authors propose placing 9 timers in multiple layers

which is a very tedious and error prone approach. INLyD on the

other hand measures every single delay that affects

communicating nodes in a far simpler efficient manner.

To examine the role of a given LQE on impacting end-to-end

delivery ratio we laid out a number of experimental setups. The

setups comprised uniform traffic, varied traffic, varied network

size, stationary as well as mobile scenarios. We compare the

influence of employing different quality estimation metrics on

delivery ratio of end-to-end UDP streams. In all our experiments

we placed 5 stream source and 5 destination nodes at the cross-

diagonal boundaries to each other on a 600m×600m terrain. The

remaining intermediate nodes are randomly spread. Each source

node is set to transmit a given stream destined for the destination

node stationed on the opposite boundary. The average end-to-end

PDR yielded by employing distinct LQEs is calculated to observe

their influence. For statistical correctness 20 trials were conducted

for each network size. Each trial used different seed resulting in a

different network topology for the intermediate nodes. The results

were then averaged and compared. The red circular markers

represent the average of a given network size i.e. average UDP

PDR recorded between 200 sender receiver nodes (20 × (5 + 5))

per network size. We compared between INLyD, ETX, HETX,

xDDR and MHC as route end-to-end quality estimation metrics.

HETX, ETX and xDDR beaconing interval is set to 0.1s.

Underlying MAC retransmission limit is 6.

5.1 Setup 1: Static topology - uniform traffic
We first examine the behavior on static setup with simultaneous

uniform streams. The goal of these experiments is to compare the

effectiveness of the estimate on network with lesser spatio-

temporal changes. All 5 stream sources initiate transmission

request (RREQ) at 11s for a uniform transmission rate stream of

50 CBR sending 50 packets per second for all source destination

pairs. The routes are refreshed every 30s by re-initiating RREQs.

We compared the end-to-end PDR conceded by employing

INLyD, ETX, HETX, xDDR and MHC as end-to-end quality

metrics in Figure 7. On overall average xDDR yielded the highest

PDR at 79%, followed by INLyD at 74%. HETX, ETX and

MHC delivered 57%, 46% and 38% respectively. We notice that

unlike other LQEs, INLyD exhibits the least drop in end-to-end

delivery as network density increases. Network density affects

active link quality estimators harshly since the number of

proactive packet sender’s increases. And since INLyD by design

favors newer unused links, increase in network size only means

additional route options.

Figure 7. End-to-end UDP PDR in static

environment without mobility (Setup 1)

We believe part of the reason why xDDR yielded higher PDR

than INLyD is that in simultaneous start scenarios such as these

by current time t' = 11s, INLyD metric has measured link

performance on less than 10 broadcast packets such as RREQs.

xDDR in comparison would assess link quality on approximately

110 unicast probe packets. This accurate estimation should mean

that xDDR nodes are better at avoiding lossy links and therefore

may experience lesser average collisions. However, in Figure 8

we see that xDDR metric’s accurate estimation comes at the cost

of generating more congestion and collisions in the network.

Unlike ETX and HETX, xDDR transmits proactive packets as

unicasts which results in additional collisions. INLyD on the other

hand registers remarkably low collisions per node due to two main

reasons. First, INLyD estimates link quality more accurately as

compared to broadcast based schemes such as ETX and HETX.

Second, it achieves this while generating no additional traffic in

the network. In comparison, when a node in an active link

monitoring environment is in range with 5 1-hop neighbors, ETX

and HETX control packet from 1-hop neighbors at 0.1s will

generate 50 packets per second on the shared channel. With

xDDR the number is even higher depending on the retry limit and

lossiness of the link. The impact of these extra control packets

becomes more evident as the network size grows. Note that with

HETX and xDDR collision rate rises sharply in comparison as the

node density increase. Overall INLyD nodes experience 37%

lesser collisions compared to that of HETX and xDDR nodes.

Figure 8. Average number of collisions recorded per

node per 20 trials (Setup 1)

Figure 9. Goodput comparison. Ratio of total no. of

packets transmitted by MAC layer and total UDP

packets delivered end-to-end (Setup 1)

In MANETs and WSNs, packet transmission is one of the most

energy intensive processes. In Figure 9 therefore we compare the

goodput of each of these schemes. Given a quality metric, we

measure the ratio of total number of MAC transmissions (MAC

out count) per node (including collisions, retransmissions etc.)

w.r.t. total number of UDP packets delivered end-to-end. As the

network density increases, so does the congestion. At network

size 60 and 70, HETX underperforms due to wavered link quality

estimates as the network density grows. Picking a lossy route

inaccurately as the best route results in data being transmitted

through links that may require more retransmissions per

successful packet delivery than other rightful options. In case of

xDDR we believe this increase is the effect of increased number

of MAC out packets resulting from proactive unicast probe

retransmissions and their respective collisions with data packets

contributing to the increased MAC out count. INLyD on the other

hand shows less the least impact of increased node density. In its

best case (70 nodes), nodes in network running INLyD expend

35% and 33% less number of MAC transmissions per successful

end-to-end UDP delivery. On average (network size 30 to 70),

INLyD network nodes spent 22% and 27% less MAC packets

than HETX and xDDR respectively.

5.2 Setup 2: Mobile topology - uniform traffic
In mobility scenarios, we aimed to emulate movement of people

with smartphones in outdoor terrains such as disaster relief camps

and festivals etc. For this purpose, we reviewed a number of

mobility models presented in [13]. These include Random

Waypoint mobility, Gauss-Markov mobility, Mass Mobility

(MM) and Chiang mobility models. We found MM to be best fit

for the scenario in terms of mobility and movement

characteristics. In MM, mobile nodes move within area specified

in the terrain. Nodes move along a straight line for a specific

duration and then make a turn. This duration of movement in

straight line is controlled by parameter changeInterval which takes

duration and standard deviation (changeInterval = 100 s, Standard

Deviation SD = 1 s in our setup). The turn angle to dictate the new

direction after every changeInterval is a normally distributed

random number with average equal to preceding direction and

standard deviation (SD = 90 degrees in our setup). Similarly, after

each changeInterval, the node speed is taken as a uniform

distribution within a range of speeds. Our setup used 1.8 km/h to

2.9 km/h.

Figure 10. Mass mobility movement trajectory of 30 of

nodes in a 600m×600m terrain during a run of 600s

selecting new angle and speed every 100 seconds

(each line represents an individual node) (Setup 2)

Figure 10 shows the aerial view of the movement pattern of 30

nodes in a 600m×600m terrain where line represents an individual

node’s movement pattern during 600s. Since the changeInterval is

set to 100s, we can see the 6 instances where change in angle of

movement.

We ran the mobility scenario with network size of 50 comprising

5 source-destination pairs communicating uniform UDP streams

at the rate of CBR 50. Results are averaged for 20 experimental

trials where each trial produces different topology for intermediate

nodes. The stream source and destination nodes are set as fixed

while the intermediate nodes move in Mass Mobility movement

pattern. Figure 11 shows the end-to-end PDR. Overall mobility

setup with INLyD yields 72% end-to-end UDP stream PDR as

opposed to 75% in the case of xDDR. ETX, HETX and MHC

resulted in 60%, 57% and 50% respectively.

Figure 11. End-to-end UDP Data Delivery Ratio in

mobility scenario with Mass mobility (Setup 2)

5.3 Setup 3: Static topology - Varied traffic

load
Figure 12 shows the end-to-end PDR comparison for the varied

traffic case on a network comprising 50 nodes. In this setup all 5

stream senders have varied stream start time (tst = 11s, 21s, 31s,

41s, 51s) as well as varied data rate (f = 20, 30, 40, 50, 60). In

varied traffic environment INLyD on average outperforms xDDR

with average 82.5% end-to-end PDR as opposed to 79% in xDDR

setup. Furthermore, ETX, HETX and MHC resulted in 66%, 60%

and 43% end-to-end packet delivery respectively.

Figure 12. End-to-end UDP Data Delivery Ratio in

variable data-rate traffic load and varied start times

case with no mobility (Setup 3)

6. CONCLUSION
In this paper, we aim at devising a low cost, passive monitoring

link quality metric that is independent of the underlying MAC

layer. INLyD is a network layer metric that incorporates queuing,

sensing, contention, transmission, retransmission, processing and

propagation delay to evaluate link quality. More importantly

though, INLyD relies solely on natively generated data and

control packets to assess quality, and does not generate any

additional control packets. We extended DSR to work with

various quality driven metrics. Our results show INLyD to

outperform contemporary QoS metrics yielding higher end-to-end

packet delivery in static, mobile, uniform as well as varied traffic

scenarios. With accurate estimations and no control packet

overhead INLyD results in lower collisions and total number of

transmissions per node in comparison. This consequently entails

lower packet transmissions needed per data packet delivery

thereby significantly improving device lifetime. These

characteristics make the INLyD metric an ideal candidate for

network environments such as disaster relief MANETs or long

term deployed WSNs.

7. ACKNOWLEDGMENTS
This work was supported by the SenSafety project in the Dutch

Commit program, www.sensafety.nl.

8. REFERENCES
[1] R.J. Ellison, D.A. Fisher, and R.C. Linger, "Survivable

Network System: An Emerging Discipline". Technical
Report, CMU/SEI-97-TR-013, Carnegie Mellon University,
1997.

[2] M. Samuel, F. Michael, H. Joseph, W. Hong. "TAG: A tiny
aggregation service for ad-hoc sensor networks". In OSDI.
Citeseer, 2002.

[3] A. Jayasuriya, S. Perreau, A. Dadej, and S. Gordon. "Hidden
vs exposed terminal problem in ad hoc networks." PhD
dissertation, ATNAC 2004, 2004.

[4] A. T. Tran, and M. K. Kim, "Characteristics of ETX Link
Quality Estimator Under High Traffic Load in Wireless
Networks", 10th International Conference on High
Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous
Computing HPCC_EUC 2013, pp.611,618, 13-15 Nov. 2013

[5] D. Couto, D. Aguayo, J. Bicket and R. Morris, "A high-
throughput path metric for multi-hop wireless routing",
Wireless Networks, vol. 11, no. 4, pp. 419–434, 2005.

[6] X. Ni, Performance evaluation of ETX on grid based
wireless mesh networks, MPhil Thesis Report EET-UNSW.
University of New South Wales, Australia, 2008

[7] S.R. Afzal, M. Nabi, S. Stuijk and T. Basten, "Improving
end-to-end packet delivery in high traffic multi-hop wireless
ad hoc networks". In Proceedings of the 8th International
Conference on Mobile Multimedia Communications, pp. 39-
46, 2015.

[8] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four bit
wireless link estimation,” In Proceedings of the Sixth
Workshop on Hot Topics in Networks (HotNets VI), 2007.

[9] Y.-C. Wu, Q. Chauhari and E. Serpedin, “Clock
synchronization of wireless sensor networks,” IEEE Signal
Processing Magazine, vol. 28, pp. 124-138, 2011.

[10] G. Prakash, and E. Anand. “Indian News Media and Natural
Calamities: Case of Chennai Floods.” International Journal
of Multidisciplinary Approach & Studies 3.2 (2016).

[11] OMNeT++ Network Simulation Framework, http://www.
omnetpp.org/ [accessed June 2016].

[12] INETMANET Extension for OMNET++, https://github.com/
inetmanet/inetmanet [accessed June 2016].

[13] T. Camp, J. Boleng, and V. Davies. “A survey of mobility
models for ad hoc network research.” Wireless
communications and mobile computing 2.5 (2002): 483-502.

[14] J. Zhao and R. Govindan. “Understanding packet delivery
performance in dense wireless sensor networks.” In the
Proceedings First ACM Sensys Conference, November 2003.

[15] M. G. C. Torres, “Energy Consumption In Wireless Sensor
Networks using GSP,” Dissertation, University of Pittsburgh,
2006.

[16] D. Johnson and D. Maltz, “Dynamic source routing in ad-hoc
wireless networks.” Proc. of SIGCOMM '96, Aug. 1996.

[17] N. Baccour, A. Koubaa., L. Mottola, M.A. Zuniga, H.
Youssef, C.A. Boano and M. Alves, 2012. “Radio link
quality estimation in wireless sensor networks: a
survey.” ACM Transactions on Sensor Networks
(TOSN), 8(4), p.34.

[18] R. Draves, J.Padhye, and B.Zill, “Routing in multi-radio,
multi-hop wireless mesh networks”, in the proceedings of
MobiCom 2004, pp.114-128.

[19] P. Pinto, A. Pinto, M. Ricardo, “End-to-end delay estimation
using RPL metrics in WSN.” In: IFIP Wireless Days (WD),
pp. 1–6 (2013).

[20] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. “A
multi-radio unification protocol for IEEE 802.11 wireless
networks.” In Proceedings of Broadnets ’04, pp. 344 – 354,
2004.

[21] K. S. Kim, C. Li, and E. Mondiano, “Scheduling multicast
traffic with deadlines in wireless networks,” Proceedings of
IEEE INFOCOM, 2014.

[22] P. Jayachandran and M. Andrews, “Minimizing end-to-end
delay in wireless networks using a coordinated edf
schedule,” in Proc. of IEEE INFOCOM, 2010.

[23] K. H. Kim and K. G. Shin, 2006. “On accurate measurement
of link quality in multi-hop wireless mesh networks.” In
Proc. of the 12th Annual Int. Conf. on Mobile Computing
and Networking (MobiCom ’06). ACM, 38–49.

[24] D. Lal, A. Manjeshwar and F. Herrmann, 2003.
“Measurement and characterization of link quality metrics in
energy constrained wireless sensor networks.” In Proc. of the
IEEE Global Telecommunications Conference (Globecom
’03). IEEE Communications Society, 446–452.

[25] S. M. Das, H. Pucha, K. Papagiannaki, and Y. C. Hu,
“Studying wireless routing link metric dynamics,” in
Proceedings of ACM SIGCOMMIMC ’07, October 2007, pp
.327–332.

